JPS60206953A - Air-fuel ratio control device in internal-combustion engine - Google Patents

Air-fuel ratio control device in internal-combustion engine

Info

Publication number
JPS60206953A
JPS60206953A JP6391684A JP6391684A JPS60206953A JP S60206953 A JPS60206953 A JP S60206953A JP 6391684 A JP6391684 A JP 6391684A JP 6391684 A JP6391684 A JP 6391684A JP S60206953 A JPS60206953 A JP S60206953A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
control
combustion engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6391684A
Other languages
Japanese (ja)
Other versions
JPH0328581B2 (en
Inventor
Toshimitsu Ito
利光 伊藤
Nobuyuki Kobayashi
信行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6391684A priority Critical patent/JPS60206953A/en
Publication of JPS60206953A publication Critical patent/JPS60206953A/en
Publication of JPH0328581B2 publication Critical patent/JPH0328581B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1487Correcting the instantaneous control value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the air-fuel ratio of an engine from becoming excessively lean, and therefore to enhance the drivability, by carrying out either an air-fuel ratio feed-back control or an air-fuel ratio open-control in accordance with the operating condition of the engine, and as well by carrying out a compensation for a decrease in air-fuel ratio when the open-control is carried out. CONSTITUTION:In an air-fuel ration control device in an internal-combustion engine M1, the control means 5 determines the supply amount of fuel in accordance with an engine load detected by an operating condition detecting means M2. Further, a selection is made between an air-fuel ratio open-control which controls a fuel supply means M3 in accordance with the above-mentioned fuel supply amount and an air-fuel ratio feed-back control which compensates the fuel supply amount in accordance with an air-fuel ratio detected by an air-fuel ratio detecting means M4. In this arrangement, the control means M5 is provided therein with an air-ratio compensating means M for compensating a decrease in air-fuel ratio when the air-fuel ratio open control is carried out, thereby the air- fuel ratio is controlled to be shifted to the rich side slightly from a desired air- fuel ratio.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関の空燃比制御装置に関し、空燃比のフ
ィードバック制御を行なわない所謂A−プン制御実施時
の空燃比を好適に制御する内燃機関の空燃比制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an air-fuel ratio control device for an internal combustion engine, and relates to an internal combustion engine that appropriately controls the air-fuel ratio when performing so-called A-fuel ratio control without feedback control of the air-fuel ratio. The present invention relates to an air-fuel ratio control device for an engine.

[従来技術] 従来、内燃機関の負荷を、例えば吸入空気mと機関回転
数とから知って、内燃機関への燃料供給量をめ、燃料供
給を制御づる内燃機関の燃料制御装置では、排気管の一
部に設けられた3元触媒による触媒コンバータの浄化効
率を十分なものとする為に、排気組成、例えば排気中の
酸素濃度に基づいて吸入混合気の空燃比を推定して燃料
供給量を補正し、内燃機関の空燃比を理論空燃比とする
ような空燃比制御をベースとして、種々の空燃比制御が
行なわれてきた。上記の空燃比制御をその制御のベース
とする内燃機関の空燃比制御装置の代表的なものを挙げ
るならば、 (1)内燃機関が暖機完了後で低負荷・定常運転されて
いる場合には、燃費の向上を計る目的で、理論空燃比を
用いた制御に代えて、空燃比をり一部どづる所謂リーン
バーンを行なうことを基本とする種々の内燃機関の空燃
比制御装置、(2)空燃比のフィードバック制御を行な
う為の空燃比検出手段が、例えば暖機完了前や故障等に
より正常に動作していない時、内燃機関の空燃比のフィ
ードバック制御に代えて、所謂オープン制911を行な
うことを基本とする種々の内燃機関の空燃比制御装置、 (33)空燃比検出手段など、空燃比制御装置を構成J
る各部の機差や経時変化を補正する為に、空燃比のフィ
ードバック補正係数に応じて設定される学習値を用いて
燃料供給量を補正することを基本とりる種々の内燃機関
の空燃比制御I波装置等がある。
[Prior Art] Conventionally, in a fuel control device for an internal combustion engine, which controls the fuel supply by determining the amount of fuel supplied to the internal combustion engine by knowing the load of the internal combustion engine from, for example, the intake air m and the engine speed, the exhaust pipe In order to ensure sufficient purification efficiency of the catalytic converter using a three-way catalyst installed in a part of the engine, the air-fuel ratio of the intake air-fuel mixture is estimated based on the exhaust composition, such as the oxygen concentration in the exhaust, and the amount of fuel supplied is determined. Various air-fuel ratio controls have been carried out based on air-fuel ratio control in which the air-fuel ratio of the internal combustion engine is adjusted to the stoichiometric air-fuel ratio. Typical examples of air-fuel ratio control devices for internal combustion engines that use the above-mentioned air-fuel ratio control as the basis of their control are as follows: describes air-fuel ratio control devices for various internal combustion engines that are based on so-called lean burn, in which the air-fuel ratio is partially reduced, instead of control using the stoichiometric air-fuel ratio, for the purpose of improving fuel efficiency. 2) When the air-fuel ratio detection means for performing feedback control of the air-fuel ratio is not operating normally due to completion of warm-up or failure, etc., the so-called open control 911 is used instead of feedback control of the air-fuel ratio of the internal combustion engine. (33) Air-fuel ratio control devices such as air-fuel ratio detection means J
Air-fuel ratio control for various internal combustion engines basically corrects the fuel supply amount using a learning value set according to the air-fuel ratio feedback correction coefficient in order to correct machine differences and changes over time in each part. There are I-wave devices, etc.

排ガス浄化性の向上や燃費の向上への強い社会的要求に
加えて、システムの一部不良が引き起こすシステム全体
への影響を最小限に押さえた確実で緻密な制御実現への
要求をうけて、最近では上述の空燃比制御を組合わせ、
排ガス浄化効率を最大限に引き出すと共に、内燃機関の
運転状態に応じて、燃費を向上させるリーンバーンを実
施したり、オープン制御を行なったりして、内燃機関の
性能を最大限に引き出づ空燃比制御装置が提案・実施さ
れてもいる。
In response to strong social demands for improved exhaust gas purification and fuel efficiency, as well as demands for reliable and precise control that minimizes the impact on the entire system caused by malfunctions in one part of the system, we Recently, the above-mentioned air-fuel ratio control has been combined,
In addition to maximizing exhaust gas purification efficiency, depending on the operating status of the internal combustion engine, lean burn improves fuel efficiency and open control is performed to maximize the performance of the internal combustion engine. Fuel ratio control devices have also been proposed and implemented.

しかしながら、こうした緻密な空燃比制御を行なう内燃
機関の空燃比制御装置において空燃比のオープン制御を
行なった場合、空燃比制9II装置Hfの機差や経時変
化により、あるいは空燃比検出手段の故障等を原因とづ
る燃料供給量の粋出上設定される補正係数の誤りから空
燃比が目標空燃比からズしてしまうことがあり、特にリ
ーン側へ空燃比がズレ込んでオーバリーンとなった場合
に【よ、ドライバビリティを悪化させるという問題がひ
在した。
However, when open control of the air-fuel ratio is performed in the air-fuel ratio control device of an internal combustion engine that performs such precise air-fuel ratio control, the air-fuel ratio control device 9II may be affected by machine differences or changes over time, or failure of the air-fuel ratio detection means. The air-fuel ratio may deviate from the target air-fuel ratio due to an error in the correction coefficient set due to the imbalance in the fuel supply amount, especially when the air-fuel ratio deviates toward the lean side and becomes over-lean. [Yo, there was the problem of worsening drivability.

この問題は、内燃機関の空燃比を検出して空燃比のフィ
ードバック補正係数FAFをめ、該フィードバック補正
係数FAFの平均(*FAFAVに応じて設定される学
習値KGを用いC空燃比の学習(1r1制陣を行なって
いる場合であっても、し学習」という制御上の性質から
学習値KGの応答性は比較的緩慢であって、負荷の変化
に十分には追従することができない等の理由から、完全
には解決されていなかった。この問題について、やや詳
細に説明1−ると、本来、空燃比の学旧値制御は、駁i
1!7の機差や経時変化といった空燃比1111制御上
の誤差を学習値K Gに反映させ、内燃機関が定常状態
にある場合には、空燃比のフィードバック係数の平均値
FAFΔVを理論空燃比に対応する値1の近傍に制す1
1するものであって、空燃比のフィードバック補正係数
の平均値F A F A Vが所定の値だ(]目肋:値
からズした場合に、予め定められた補正用αを学習値K
Gに加減算して、内燃機関の空燃比を[J標空燃比にル
II nII−Jるにう構成されている。
This problem is solved by detecting the air-fuel ratio of the internal combustion engine, determining the air-fuel ratio feedback correction coefficient FAF, and learning the C air-fuel ratio using the learning value KG set according to the average (*FAFAV) of the feedback correction coefficient FAF. Even when performing 1r1 control, the response of the learning value KG is relatively slow due to the control property of "learning", and it is not possible to sufficiently follow changes in the load. For several reasons, it has not been completely resolved.Explaining this problem in more detail1-1, the old value control of the air-fuel ratio was originally
Errors in air-fuel ratio 1111 control, such as machine differences of 1!7 and changes over time, are reflected in the learned value K 1 in the vicinity of the value 1 corresponding to
1, and the average value F A F A V of the air-fuel ratio feedback correction coefficient is a predetermined value.
By adding or subtracting G, the air-fuel ratio of the internal combustion engine is determined to be the standard air-fuel ratio.

従って空燃比のフィードバック@御からオープン制御に
移ったとすると、もはや空燃比のフィードバック補正係
数FAFは意味をなさないのでFAF=λ(理論空燃比
で制御が行なわれる時λ−1、リーンバーン時λ=0.
6〜0.8)とした上で、フィードバック制御実施中に
学習された該学習(iffKGをそのまま用いて燃料噴
用吊をめれば、A−プン制御実施時においても、装置の
機差や経時変化等による誤差は生じないはずである。
Therefore, if we shift from air-fuel ratio feedback @ control to open control, the air-fuel ratio feedback correction coefficient FAF no longer has any meaning, so FAF = λ (λ - 1 when control is performed at the stoichiometric air-fuel ratio, λ during lean burn) =0.
6 to 0.8), and if the learning (ifKG) learned during feedback control is used as is to install a fuel injection hanger, even when A-Pun control is implemented, machine differences and There should be no errors due to changes over time.

しかしながら、実際の学習値制御においては、1回の学
習によって所定回αだけ学習値KGの補正が行なわれる
よう構成されていることから、(+ >第1図に示すよ
うに、内燃機関の負荷と、負荷によって要求される学習
値との関係(!!ii首毎に固有の関係を有し、図中破
FilSで示すもの)に対して、制御+上の学習値(図
中、実線dで示しl〔もの)は最大1α/21だけズレ
ることがあること、 (ii)第2図に示すように、内燃機関の負荷の変化が
急檄な場合、負荷に対応して要求される学習ta<図中
、破線tで示したもの)に対して、制tl++士の学習
値(図中、実線eで示したもの)は、その変化について
ゆけず応答上の遅れによってズレ(△1りG)を生じる
ことがあること、の2点の問題が、猶、残されていた。
However, in actual learned value control, since the learning value KG is corrected a predetermined number of times by one learning, (+ > As shown in Fig. 1, the load of the internal combustion engine and the learning value required by the load (!! ii has a unique relationship for each neck and is indicated by broken FILS in the figure), and the learning value on control + (solid line d in the figure) (ii) As shown in Figure 2, when the internal combustion engine's load changes suddenly, the learning that is required in response to the load. ta<indicated by the broken line t in the figure), the learning value of the control tl++ operator (indicated by the solid line e in the figure) cannot keep up with the change and deviates (△1) due to the delay in response. Two problems still remained: G) could occur.

空燃比のフィードバック制御が行なわれている限りこれ
らのズレは吸収されるので問題ないが、フィードバック
制911からA−ブン制911に移tjシた0、1、空
燃比のフィードバック補正係数FAFはもはや意味をな
さず、FAF−λにセン1−されることから、上記(1
)(ii)の理由によるズレはオープン制御実施前にa
3りる空燃比のズレとして表われ、内燃機関のドライバ
ビリディを悪化させることがあった。このことは、特に
、第2図の[I]の期間にJ3いては、空燃比をリーン
側ヘズラすことになるので問題どなっていた。
As long as feedback control of the air-fuel ratio is performed, these deviations are absorbed and there is no problem, but the feedback correction coefficient FAF of the air-fuel ratio of 0, 1, and The above (1
) (ii) If the deviation is due to the reason, a.
This appears as a deviation in the air-fuel ratio, which may worsen the drivability of the internal combustion engine. This was particularly a problem during the period [I] in FIG. 2 during J3, as the air-fuel ratio was shifted toward the lean side.

[発明の目的1 本発明は上記の点に鑑みなされたもので、その目的とす
るところは空燃比のオープン制御実施時にも、空燃比が
A−バリーンとなることを防ぎ、良好なドライバビリテ
ィを実現りる内燃機関の空燃比制御装置を捉供づ′るこ
とにある。
[Objective of the Invention 1 The present invention has been made in view of the above-mentioned points, and its object is to prevent the air-fuel ratio from becoming A-balleen even when performing open control of the air-fuel ratio, and to maintain good drivability. The object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that can be realized.

[発明の構成1 かかる目的を達成する為になされた本発明の構成は、第
3図に図示する如く、 内燃機関M1の、負荷を含む運転状態を検出する運転状
態検出手段M2と、 内燃機関M1へ燃料を供給−りる燃オ′31供給手段M
3と、 内燃機関排気組成に基づいて空燃比を検出づる空燃比検
出手段M4と、 前記運転状態検出手段M2によって検出された内燃I幾
関M1の負荷に応じた燃料供給量を定め、該燃料供給量
に従って燃料供給手段M3を制御し、内燃機関M1の空
燃比を制御づるオープン制御か、 該燃料供給量を前記空燃比検出手段M4によって検出さ
れた空燃比に応じて補正し、燃料供給手段M3を制御し
て内燃機関M1の空燃比を目標空燃比に制御するフィー
ドバック制御か、のいずれかを、前記運転状態検出手段
M2によって検出された内燃機関M1の運転状態に応じ
て行なう制御手段M5と、 を備えた内燃機関の空燃比制御装置において、1)h記
制御手段M5が、空燃比のA−プン制御実施時に空燃比
を減少補正づる空燃比補正手段M6を備えたことを特徴
とする内燃機関の空燃比制御装置を要旨としている。
[Configuration 1 of the Invention The configuration of the present invention made to achieve the above object, as shown in FIG. Fuel supply means M for supplying fuel to M1
3, an air-fuel ratio detecting means M4 for detecting an air-fuel ratio based on the internal combustion engine exhaust composition; and determining a fuel supply amount according to the load of the internal combustion engine M1 detected by the operating state detecting means M2; The fuel supply means M3 is controlled according to the supply amount, and the air-fuel ratio of the internal combustion engine M1 is controlled by open control, or the fuel supply amount is corrected according to the air-fuel ratio detected by the air-fuel ratio detection means M4, and the fuel supply means A control means M5 that performs either feedback control to control the air-fuel ratio of the internal combustion engine M1 to the target air-fuel ratio by controlling the air-fuel ratio of the internal combustion engine M3, depending on the operating state of the internal combustion engine M1 detected by the operating state detecting means M2. In the air-fuel ratio control device for an internal combustion engine, the air-fuel ratio control device for an internal combustion engine is characterized in that: 1) the control means M5 described in h above includes an air-fuel ratio correction means M6 that corrects the air-fuel ratio by decreasing it when performing A-pun control of the air-fuel ratio; The gist of this paper is an air-fuel ratio control system for internal combustion engines.

し実施例] 以1・本発明の実施例を図m)に基づいて詳細に説明づ
る。
Embodiments] 1. Embodiments of the present invention will be described in detail based on Figure m).

114図は実施例の内燃機関とイの周辺装置を含む空燃
比制御装置の概略構成図であって、1は自炊:賎関本体
、2は燃料供給手段どしての電磁式の燃料噴射弁、41
.1内燃礪関1からの排気中の酸素濶1αを限界電流か
ら検出する空燃比検出手段としての公知のリーンセンサ
、6は空燃比補正手段を含む制911丁段どしての電子
制御回路を各々表わしている。又、内燃機関1の運転状
態検出手段としては、図示Jる如く、吸気(晶センザ8
.スロットルバルゾ10の開度を検出するスロットルセ
ンサ12、内燃機関本体1の吸気管14に設けられたサ
ージタンク16に設置され吸気管圧力を検出づる半導体
式の吸気圧センサ18.内燃機関1の冷却水水温を検出
する水温センサ20.ディストリビュータ22内部のロ
ータ22aに対向して;1シ置されて図示しないクラン
クの一回転に24個のパルスを発生して内燃機関1の回
転数を検出Jる回転数センサ24.同じくクランクの一
回転に1個のパルスを発生ずる気筒判別セン25等のレ
ンザ群が備えられている。
FIG. 114 is a schematic configuration diagram of an air-fuel ratio control device including an internal combustion engine and peripheral devices of the embodiment, in which 1 is a self-contained control unit, and 2 is an electromagnetic fuel injection valve as a fuel supply means. , 41
.. 1 is a well-known lean sensor as an air-fuel ratio detection means for detecting the oxygen content 1α in the exhaust gas from the internal combustion tank 1 from the limit current; 6 is an electronic control circuit including an air-fuel ratio correction means; Each is represented. Further, as a means for detecting the operating state of the internal combustion engine 1, as shown in the figure, an intake (crystal sensor 8) is used.
.. A throttle sensor 12 detects the opening degree of the throttle valve 10, and a semiconductor intake pressure sensor 18 is installed in the surge tank 16 provided in the intake pipe 14 of the internal combustion engine body 1 and detects the intake pipe pressure. A water temperature sensor 20 that detects the temperature of the cooling water of the internal combustion engine 1. Opposed to the rotor 22a inside the distributor 22 is a rotational speed sensor 24 which detects the rotational speed of the internal combustion engine 1 by generating 24 pulses per rotation of a crank (not shown). Similarly, a group of lenses such as a cylinder discrimination sensor 25 which generates one pulse per revolution of the crank is provided.

ディストリビコータ22にはイグナイタ26に発生する
高電圧パルスが供給されており、ディストリビュータ2
2は各気筒の燃焼サイクルに同1す]して、内燃機関1
のシリンダ28の上部に螺1fJ4された点火プラグ3
0へ、この高電圧を印加し混合気への点火を行なってい
る。又、32は内燃機関1の排気管34に設けられた触
媒コンバータである。
The high voltage pulse generated by the igniter 26 is supplied to the distributor 22, and the distributor 2
2 is the same as the combustion cycle of each cylinder], and the internal combustion engine 1
The spark plug 3 screwed into the upper part of the cylinder 28 of
0, this high voltage is applied to ignite the air-fuel mixture. Further, 32 is a catalytic converter provided in the exhaust pipe 34 of the internal combustion engine 1.

次に、電子側011回路6の内部構成と電気信号の系統
について説明する。電子制御回路6は、tめ定められた
ブ]」ダラムに従ってデータの入力や演1′?i及び制
御を行なう中央処理ユニット(CPU)60、制御プロ
グラム等を予め記憶してa3 <読み出し専用のメモリ
(ROM)62、データ等を自由に占ぎ込み・読み出し
可能な一時記憶メモリ(RAM)64、内燃機関1の運
転状態を検出する種々の上211群より(ii号を入力
する入力ポートロ5、イブノーイタ261b燃斜哨躬弁
2等へ制御信5Jを出力−りる出カポ−1〜67、cp
ueo、R。
Next, the internal configuration of the electronic side 011 circuit 6 and the electrical signal system will be explained. The electronic control circuit 6 inputs data and performs data input according to the specified block 1'? A central processing unit (CPU) 60 that performs control, a read-only memory (ROM) 62 that stores control programs, etc. in advance, and a temporary memory (RAM) that can freely store and read data, etc. 64, from the various upper 211 groups that detect the operating state of the internal combustion engine 1 (input port 5 which inputs No. ii), control signal 5J is output to the event control valve 261b, etc. 67, cp
ueo, R.

M 62等上記各素子を相Uに接続づるデータバス(3
8、キースイッチ71を介してバッテリ73に接ワ゛、
されて電子制御回路6全体に安定化された電114供袷
りる電子15;回路75、等を備えている。入力ポート
ロ5は、回転数センサ24と気筒判別センサ25からの
パルス信号を入力するパルス入力部G5aと、吸気温セ
ンサ8.スロットルセンザ12、吸気Y[シンザ18.
リーンセンザ4.水温しンリ20からの各検出値に応じ
たアナログ信号を人力づるアナ【」グ入力部65bとを
イjしている。
Data bus (3
8. Connect to the battery 73 via the key switch 71;
The electronic control circuit 6 is provided with a stabilized electric power 114 and an electronic circuit 15; a circuit 75, and the like. The input port 5 includes a pulse input section G5a that inputs pulse signals from the rotation speed sensor 24 and the cylinder discrimination sensor 25, and an intake air temperature sensor 8. Throttle sensor 12, intake Y [Sinza 18.
Leansenza 4. An analog input section 65b for manually inputting analog signals corresponding to each detected value from the water temperature sensor 20 is connected.

−1)、内燃機関1の図示しないクランク角度を回転数
センサ24からの信号によつ−(検出し、これに同期し
てイグナイタ26を駆動づる(:号と、燃利噴則最に応
じて定まる燃131噴川0.1間だ(J燃Jul唱射弁
2を開弁する制御信号と、リーンセン(ノ4において限
界電流から酸素潤度を検出する為にり一部センサ4に印
加される定電圧信号とが出ツノボート67を介して出力
されている。該制御信号によって燃料哨用弁2は制御・
開弁され、図示しない燃料圧送ポンプJ、り燃料供給を
う(ノて、吸気管14内部への燃料鳴O1が行なわれる
よう414成されている。
-1), the crank angle (not shown) of the internal combustion engine 1 is detected by the signal from the rotation speed sensor 24, and the igniter 26 is driven in synchronization with this. The control signal to open the fuel injection valve 2 and the sensor 4 to detect the oxygen moisture level from the limit current in the fuel sensor (No. 4) A constant voltage signal is outputted via the output horn boat 67.The fuel sentry valve 2 is controlled and controlled by the control signal.
When the valve is opened, the fuel pressure pump J (not shown) supplies fuel (414) so that a fuel noise O1 is supplied to the inside of the intake pipe 14.

次に電子制御回路6が行なう処理を表わす第5図のフロ
ーチト一トに依拠し−(、本実施例の内燃機関の空燃比
制御装置が行なう制911について説明づる。キースイ
ッチ71が閉成され内燃機関1が始動した後、クランク
角の720°、即ち2回転毎に気筒判別センサ25から
入力されるパルスによって水制御ルーヂンは起動され、
第3図△j、り制御に入り、まずステップ100で入カ
ポートロ5を介して、吸気圧セン→ノ1BにJ:って検
出される吸気管圧力pu+、回Φム数レンリし24にj
、って検出される内燃機関1の回転数Nc、水温センサ
20にJ、って検出されるi Ml水IKITWsスO
ットルセンリ12によって検出されるスロットルバルブ
10の開度Op1等の内燃機関の運転状態とり一部しン
サ4の出力信弓v文とを読み込む処理が行4fわねる。
Next, the control 911 carried out by the air-fuel ratio control device of the internal combustion engine of this embodiment will be explained based on the flowchart of FIG. 5 showing the processing carried out by the electronic control circuit 6. After the internal combustion engine 1 is started, the water control routine is activated by a pulse input from the cylinder discrimination sensor 25 every 720 degrees of the crank angle, that is, every 2 revolutions.
In Fig. 3, △j, control is entered, and first, in step 100, the intake pipe pressure pu+, which is detected via the input port 5, is determined from the intake pressure sensor to 1B, and the number of rotations Φ is changed to 24j.
, the rotational speed Nc of the internal combustion engine 1 is detected, and the water temperature sensor 20 detects i Ml water IKITWs O.
The process of reading the operating state of the internal combustion engine, such as the opening Op1 of the throttle valve 10 detected by the throttle sensor 12, and the output signal of the sensor 4 is interrupted in line 4f.

続くステップ110では、内燃機関の負前、即ら内燃機
関1への気筒あたりの吸入空気ITIに比例した吸気管
圧力pmに応じて、基本燃料唱0」早く基本燃料噴射時
間)Tpをめる処理が行なわれる。即ちI<1゛を定数
として Hp=ttrxpm―から基本燃料噴射時間T
I’lが演算される。ステップ110に続くステップ1
20では、ステップ100t”読み込んだ運転状態を示
す各信号値から、基本¥X lit II+1川ffl
 l−1)を補正Jる種々の補正係数がtW C4され
る。例えば、スロットルセンサ12からの信号013の
変化の割合からめられる過渡11N ?+Ii正係数F
TCや水温センサ20から読み込まれた水1晶−「wの
11で1に応じて定められる暖機増量係数1−Wシなど
′Cある。
In the following step 110, the basic fuel injection time (Tp) is set earlier in accordance with the intake pipe pressure pm which is proportional to the negative front of the internal combustion engine, that is, the intake air ITI per cylinder to the internal combustion engine 1. Processing is performed. That is, with I<1゛ as a constant, the basic fuel injection time T is calculated from Hp=ttrxpm-
I'l is calculated. Step 1 following step 110
In Step 20, from each signal value indicating the operating state read in step 100t, the basic ¥X lit II + 1 riverffl is calculated.
Various correction coefficients are applied to correct 1-1). For example, the transient 11N? determined from the rate of change of the signal 013 from the throttle sensor 12? +Ii positive coefficient F
There are warm-up increase coefficients 1-W, etc., which are determined according to the 11 of water read from the TC and the water temperature sensor 20.

ステップ120での処1■の後、処理はステップ130
へ進み、ステップ100で読み込まれた内燃機関1の運
転状態やリーン[ンサ4の出力伝号v立等から、空燃比
のフィードバック制御が行なわれるべきかオープン1J
1101Iが行なわれるべきかの判断が行なわれる。ス
テップ130での判断は、例えば冷却水温Twが十分に
高く暖機完了とみなすことができ、スロットルセンサの
出ツノ信号Opの変化の割合が所定の範囲内であって緩
かな加速中と判断でき、なおかつリーンセンサ4の出力
が正常とみなしつる範囲に収まっている場合には、内燃
機関1はリーンセンサ4の出力を用いて空燃比のフィー
ドバック制御ll (空燃比のF / [3ilI’l
陣)を行なう状態にあるとして、その制御をステップ1
40に移行させる。上述の3つの条件のうしひとつでも
満たされていなければ、ステップ130の判断は、内燃
機関1が空燃比のA−プン制御を行なうべき状態にある
として、その制御をステップ150に移す。
After processing 1■ in step 120, the process proceeds to step 130.
The process proceeds to OPEN 1J to determine whether feedback control of the air-fuel ratio should be performed based on the operating state of the internal combustion engine 1 read in step 100, the output signal of the lean sensor 4, etc.
A determination is made whether 1101I should be performed. The determination in step 130 can be made, for example, when the cooling water temperature Tw is sufficiently high and it can be considered that warm-up has been completed, and when the rate of change in the output horn signal Op of the throttle sensor is within a predetermined range, it can be determined that gradual acceleration is being performed. , and when the output of the lean sensor 4 is within the normal range, the internal combustion engine 1 uses the output of the lean sensor 4 to perform feedback control of the air-fuel ratioll (air-fuel ratio F / [3ilI'l
Assuming that the control is in step 1,
40. If even one of the above three conditions is not met, the determination in step 130 determines that the internal combustion engine 1 is in a state where it should perform A-pun control of the air-fuel ratio, and the control is shifted to step 150.

ステップ140ではフィードバックIす11+が行なわ
れることから、A−プン制御丈施1.′l補正係数Kを
1<2に設定する。続くステップ160では、空燃比の
フィードバック制御を行なうべく、リーンロン1ノ4の
出力からめられる実際の空燃比と目標空;2I!比との
差を検出して、フィードバック補正係数FAllIi出
づる。目標空燃比は、通常は理論空燃比に、リーンバー
ン実施時には理論空燃比より大きな伯に、各々設定され
ている。
Since the feedback I11+ is performed in step 140, the A-Pun control operation 1. 'l Correction coefficient K is set to 1<2. In the following step 160, in order to carry out feedback control of the air-fuel ratio, the actual air-fuel ratio determined from the output of Reinron 1 and 4 and the target air; 2I! A feedback correction coefficient FAllIi is obtained by detecting the difference with the ratio. The target air-fuel ratio is normally set to the stoichiometric air-fuel ratio, and is set to a value larger than the stoichiometric air-fuel ratio when performing lean burn.

一方、ステップ150ではA−シン制御を行なうとのス
テップ130での判断をうけて、オーブン11す121
1実施115 ?+Ii il係数Kをに1にレツ1−
する処11!が行な4つれる。ここで]く1はに2より
若干大きい賄で(1すつ−C1内燃機関の燃わ1噴銅シ
ステムに応じて予め定められ、A−シン制御実施時に空
燃比を[1標空燃比J、り若干リッチ側へ制御するよう
な鋤さをJる空燃比補正手段として用いられている。
On the other hand, in step 150, in response to the determination in step 130 that A-sin control is to be performed, the oven 11 and 121
1 implementation 115? +Ii il coefficient K to 1 1-
Place 11! There are 4 results. Here, 1 is slightly larger than 2 (1 - C1 is predetermined according to the fuel injection system of the internal combustion engine, and the air-fuel ratio is set to [1 standard air-fuel ratio J It is used as an air-fuel ratio correction means to control the plowing speed to be slightly richer.

#;1 <ステップ170では、空燃比のフィートバッ
クル11■10ま行イエわれない事がら空燃比のフィー
ドバック補11係数rAt二をλにセラ1〜づる。
#; 1 <In step 170, the air-fuel ratio feedback correction coefficient rAt2 is set to λ, since the air-fuel ratio foot buckle 11-10 is not rejected.

空燃比のフィードバック制御が行なわれるケースでのス
テップ160の終了後、あるいはオーブン制御が行なわ
れるケースでのステップ170の終了後、処理はステッ
プ180へ移1]シ、燃わ1. l1fa射吊(燃料噴
射時間)τを演界する。ここでτは、すでにステップ1
10でめた基本燃料噴射61 Tp1ステップ120で
めた各補正係数(1援1幾増量係数FWLや過渡時補正
係数FTOなど種々の補正係数を代表して丁oN+、j
z、・・・tm) 。
After completing step 160 in the case where air-fuel ratio feedback control is performed, or after completing step 170 in the case where oven control is performed, the process moves to step 180. The l1fa injection period (fuel injection time) τ is determined. Here τ is already in step 1
Basic fuel injection 61 determined in step 10 Tp1 Each correction coefficient determined in step 120 (representing various correction coefficients such as 100% increase coefficient FWL and transient correction coefficient FTO)
z,...tm).

fl (u+、uz、・・・Ll r+ )であられす
)、ステップ140あるいはステップ150でセラ1−
されたA−プン制御尖施口4補正係vIK、スフツブ1
60あるいはステップ170でセットされた空燃比のフ
ィードバック補正係数FΔF等から次式にJ:り演算さ
れる。
fl (u+, uz, . . . Ll r+)), in step 140 or step 150
A-Pun control tip opening 4 correction section vIK, smooth 1
J: is calculated from the air-fuel ratio feedback correction coefficient FΔF set in step 60 or step 170 using the following equation.

τ−Tll XFAFXf o (t + 、 t 2
、−tm)X [1+に+f 1 (u 1 、IJ 
2. −IIn) ]+Tv・・・(1) ここでTVはm料噴躬弁の作動遅れを補正するための無
効噴QJ ll?J間である。続くステップ190では
、ステップ180でめた燃)F31唱用吊〈燃料1f1
1JJ I+、) +7i1 )τに従って、出カポ−
1−67を介してガj11料哨IJJ フ72に制御信
号を出力し、燃料噴射弁24聞ブrして燃斜鳴用里の制
御l+が行なわれる。
τ-Tll XFAFXf o (t + , t 2
, -tm)X [+f 1 (u 1 , IJ
2. -IIn) ]+Tv...(1) Here, TV is the invalid injection QJ ll? for correcting the delay in the operation of the m-fuel injection valve. It is between J. In the following step 190, the fuel (fuel) F31 chanting hanger (fuel 1f1
1JJ I+,) +7i1) According to τ, the output cap-
A control signal is output to the fuel injection valve 72 via the fuel injection valve 1-67, and the fuel injection valve 24 is ignited to control the fuel pitch.

以上の処理の終了後、処理はNへ抜けて本制御ルーチン
を終了Jる。
After the above processing is completed, the process exits to N and ends this control routine.

1、ス上のように構成された本実施例にJ3いては、内
燃世間の運転状態に応じて空燃比のフィードバック制御
かA−シン制御かのいずれかを行なうとJ(に、内燃機
関の運転状fl!(暖は完了か否かなど)(5リーンレ
ンリ−4の異常等の理由がら空燃比のオーブン制御が実
施される場合には、空燃比のフィードバック補正係数F
AFをλとし、A−プン制御実IM11.!1補正係数
1くをフィードバック制御実施時の蛸1<7より大きい
値に1に設定し、該補正係数1〈の植を用い−(燃オ′
31鳴OJ Inτを増量補正するよう4iIS成され
ている。従って、空燃比のオーブン制御実施+1i’+
には、内燃機関の空燃比が目標空燃比より名Tリッチと
なるように空燃比の制御が行なわれる。この為、装置の
は差や経時変化等によって、A−シン制御実施時に内燃
機関の空燃比がリーン側にズしてドライバビリディが悪
化Jることがあるという問題は十分に解消されている。
1. In J3 of this embodiment configured as above, if either feedback control or A-synth control of the air-fuel ratio is performed depending on the operating state of the internal combustion engine, Operating status fl! (Whether warming is completed or not, etc.) (5) If air-fuel ratio oven control is performed due to an abnormality in Lean-4, etc., the air-fuel ratio feedback correction coefficient F
Let AF be λ, A-Pun control real IM11. ! 1 correction coefficient 1 is set to 1 to a value larger than 1 < 7 when feedback control is performed, and using the correction coefficient 1
4iIS is configured to increase and correct the 31-ring OJ Inτ. Therefore, air-fuel ratio oven control implementation +1i'+
The air-fuel ratio is controlled so that the air-fuel ratio of the internal combustion engine becomes richer than the target air-fuel ratio. For this reason, the problem that the air-fuel ratio of the internal combustion engine shifts to the lean side when A-shin control is performed due to differences in equipment, changes over time, etc., resulting in deterioration of drivability has been sufficiently resolved. .

特に、リーンバーン実IM時にあっては、空燃比のリー
ン側へのわずかな偏位もドライバビリティに大きな影響
を与えるので、本実施例にお【プるA−ブン制j)11
実施時補正係数にの設定による空燃比のリーツチ側への
制御は、A−プン制御によるリーンバーン実施時の空燃
比の制御としてtfj酋Cある。
In particular, during lean burn actual IM, even a slight deviation of the air-fuel ratio toward the lean side has a large effect on drivability.
Control of the air-fuel ratio toward the reach side by setting the correction coefficient at the time of execution is tfj-C as control of the air-fuel ratio when performing lean burn by A-pu control.

次に本発明の第2実施例について説明Jる。第2実施例
は、第1実施例と同一の装@構成を有し、その制御が、
第6図のフローチャー1〜に示す如く、第1実施例とは
一部異なっている。第2実施例において、第6図にステ
ップ200ないしステップ290で表わされた各処理は
、第1実施例の第5図フローチャートに示したステップ
100ないしステップ190の各処理と以下の点を除い
て同一である。
Next, a second embodiment of the present invention will be explained. The second embodiment has the same equipment and configuration as the first embodiment, and its control is
As shown in flowcharts 1 to 1 in FIG. 6, there are some differences from the first embodiment. In the second embodiment, each process shown in steps 200 to 290 in FIG. 6 is different from each process in steps 100 to 190 shown in the flowchart in FIG. 5 of the first embodiment, except for the following points. are the same.

(a )第1実施例のステップ160に対応するステッ
プ260の直後に学習値KGの設定を行ムうステップ2
65が挿入されている。
(a) Step 2 of setting the learning value KG immediately after step 260 corresponding to step 160 of the first embodiment
65 has been inserted.

(1))第1実施例のステップ180に対応づるステッ
プ280において、燃料噴01量(燃料噴射時間)τが
第1実施例で既述しに式(1)に代えて、r=Tp x
KGxFAFxf o (t 、 、 t 2 。
(1)) In step 280 corresponding to step 180 of the first embodiment, the fuel injection amount (fuel injection time) τ is calculated as r=Tp x in place of equation (1) as already described in the first embodiment.
KGxFAFxf o (t , , t 2 .

−Lm) x [1千に+f 1 (u + 、 u 
2. ・un) ]4− l” v ・・・(2) によって演算される。
−Lm) x [+f 1 (u + , u
2.・un)]4−l”v...(2) Calculated as follows.

即ち、第2実施例においては、空燃比フィードバック補
正係数FAFによって設定される学習値KOを用いて燃
わ1噴DAffiの補正がなされる所謂空燃比の学習値
制御が採用されている。
That is, in the second embodiment, so-called learned value control of the air-fuel ratio is adopted in which the combustion single injection Daffi is corrected using the learned value KO set by the air-fuel ratio feedback correction coefficient FAF.

ステップ265どステップ280とを除くステップ20
0ないしステップ290の各処理は第1実施例のステッ
プ100ないしステップ190の各処理に対応している
ので説明は省略し、第6図に、I月Jるステップ265
の処理についてイの詳細を第7図のフローチャートに基
づいて説明する。
Step 20 excluding steps 265 and 280
Each process from step 0 to step 290 corresponds to each process from step 100 to step 190 of the first embodiment, so a description thereof will be omitted.
The details of the process will be explained based on the flowchart of FIG.

ステップ260にJ3いて空燃比のフィードバック制御
を行なって空燃比のフィードバック補正係数FAFをめ
た後で、ステップ265aでは、フィードバック補正係
数FAFの平均値[八FAVをめる処理が行なわれる。
After performing air-fuel ratio feedback control in step 260 and calculating the air-fuel ratio feedback correction coefficient FAF, a process is performed in step 265a to calculate the average value [8FAV] of the feedback correction coefficient FAF.

続くステップ265)bでは、ステップ265aでめた
フィードバック補正係数FAFの平均値FΔFAVより
理論空燃比に対応する値1を減綽し、目標空燃比がらの
偏差量ΔFAFを算出づる処理が行なわれる。ステップ
265bの処理の後、ステップ265Gでは該偏差量Δ
FAFが所定の範囲(ここでは−0゜02〜0.02)
に入っているか否がが判断される。偏差量ΔFAFがこ
の範囲に収まっている場合には処理は何も行なわれず、
ステップ280へど抜ける。一方、該偏差量Δ1:Δ[
が−0,02よりも小さい時には処理はステップ265
dへ進み、学W(flKGから予め定められた所定1n
α、例えば0.03を減鋒する。逆に、該偏差量ΔFA
Fが0.02よりも大きい++、1Nには処理はステッ
プ265eへ移行し、学習値KGに同じく所定値α(0
,03)を加算覆る。ステップ265d、ステップ26
5eのいずれの処理の後も、処理はスラーツブ280へ
1友ける。
In the subsequent step 265)b, a value 1 corresponding to the stoichiometric air-fuel ratio is subtracted from the average value FΔFAV of the feedback correction coefficient FAF determined in step 265a, and a process is performed to calculate the deviation amount ΔFAF from the target air-fuel ratio. After the process in step 265b, in step 265G, the deviation amount Δ
FAF is within a predetermined range (here -0°02 to 0.02)
It is determined whether or not it is included. If the deviation amount ΔFAF is within this range, no processing is performed,
Exit to step 280. On the other hand, the deviation amount Δ1:Δ[
is smaller than -0,02, the process proceeds to step 265
Proceed to d and select the predetermined 1n from Gaku W (flKG).
α, for example 0.03, is reduced. Conversely, the deviation amount ΔFA
If F is larger than 0.02 ++, 1N, the process moves to step 265e, and the learning value KG is set to the same predetermined value α(0
,03) is added and overturned. Step 265d, Step 26
After any processing in step 5e, the processing returns to slurry tube 280.

ステップ280では既に説明したように前述の式(2)
に括づいて?、!i $31噴川m1が演算される。
In step 280, as already explained, the above equation (2) is used.
Based on? ,! i $31 Fukawa m1 is calculated.

従って、空燃比の学習値制御がなされている場合には、
目標墾燃比からの実空燃比のズレは一旦、フィードバッ
ク補正係数FAFに反映された後、該フィードバック補
■、係数の平均値FAFAVのズレが所定(1らを越え
る毎に学習値KGに移しかえられ(ゆさ、定常的には空
燃比のノイードバック袖i[係数は常に理論空燃比に対
応覆る値1の近傍に保たれ、装置各部のI幾差や経11
□1変化ににる誤差は、学習1ffj K Gによって
補正されることになる。
Therefore, if the air-fuel ratio is controlled by the learned value,
The deviation of the actual air-fuel ratio from the target enhanced fuel ratio is once reflected in the feedback correction coefficient FAF, and then the feedback correction coefficient is transferred to the learning value KG every time the deviation of the average value FAFAV of the coefficient exceeds a predetermined value (1). On a steady basis, the air-fuel ratio noise back coefficient i [coefficient is always kept near the value 1, which corresponds to the stoichiometric air-fuel ratio, and the I difference of each part of the device and the coefficient
□The error caused by one change will be corrected by learning 1ffj K G.

従って、第2実施例においては第1実施例の効果に加え
て、次のような効果も得られている。つまり、学習1i
f1制御が行なわれている場合でも、学謂仙K Gのズ
レ、即ち、学習値制御の応答遅れにJ、つ−C牛しる学
習(ifj K Gのズレ(第2図にお(」る実に1に
Cど破線(どのズレ)は存在し、空燃比η1制御がフィ
ードバック制(11からA−プン制御へ移行した場合、
第2図の期間[I]にあっては空燃比をリーン側ヘズラ
ず要因どなるが、本実施例においては、空燃比のオープ
ン制御を行なう際には、オープン割口11実施時補正係
数Kがフィードバック制御実施時の値に2よりも大さい
値に1に設定されており、燃料噴躬聞が該補正係数1〈
によって増量補正される結果、空燃比をリッチ側へ補正
するので、学習値制御を行なっても空燃比のA−ブン制
御実施時に空燃比がリーンとなってドライバビリティが
悪化することがあるという問題は十分前d′jされてい
る。又、排気温度の異常加熱などによりリーンヒンサ4
の出ツノが異常となって、誤った学習値KGの学習がな
されたような場合でも、上述の理由がら空燃比はリッチ
側へ補正されるので、オーバリーンによるドライバビリ
ティの悪化を生じることはない。
Therefore, in addition to the effects of the first embodiment, the second embodiment also provides the following effects. In other words, learning 1i
Even when f1 control is being performed, the so-called "sensor K G deviation", that is, the response delay of the learned value control causes a learning (ifj K G deviation (see Fig. 2). Actually, there is a broken line (what deviation) between C and C in 1, and when air-fuel ratio η1 control shifts from feedback control (from 11 to A-pun control),
During the period [I] in FIG. 2, the air-fuel ratio does not shift toward the lean side, but in this embodiment, when performing open control of the air-fuel ratio, the correction coefficient K at the time of opening splitter 11 is The value at the time of feedback control is set to 1, which is larger than 2, and the fuel injection malfunction is set to the correction coefficient 1<
As a result of the increase correction, the air-fuel ratio is corrected to the rich side, so even if learning value control is performed, the air-fuel ratio may become lean and drivability may deteriorate when A-bun control of the air-fuel ratio is performed. has been done d′j sufficiently before. In addition, due to abnormal exhaust temperature heating, Lean Hinsa 4
Even in the case where an incorrect learning value KG is learned due to an abnormality in the starting angle, the air-fuel ratio will be corrected to the rich side for the above-mentioned reasons, so there will be no deterioration of drivability due to overleaning. .

尚、以上詳述した2つの実施例に43いては、空燃比の
補正手段として制御上の補正係数を用い、これをA−ジ
ン911j御実III!!萌補正係数にどして用いてい
るが、オープン制御実施時補正係数Kを用いる代わりに
、空燃比フィードバック補正係数に八FAを1にりも大
きい値に設定づることにより空燃比をリッヂ側に補正し
てもよいし、オープン制U++実施時に空燃比をリッチ
側に補正するよう補助燃料幅用に行なう補助燃料噴射手
段によって空燃比の抽i[を行なってもよい。
In addition, in the two embodiments detailed above, a control correction coefficient is used as the air-fuel ratio correction means, and this is used as the A-JIN 911j Mijitsu III! ! However, instead of using the correction coefficient K when performing open control, the air-fuel ratio is set to a value as large as 1 as the air-fuel ratio feedback correction coefficient to shift the air-fuel ratio to the ridge side. Alternatively, the air-fuel ratio may be extracted by an auxiliary fuel injection means for the auxiliary fuel width so that the air-fuel ratio is corrected to the rich side when the open control U++ is implemented.

又、これらの実施例ではクランクの′2回転に1回の燃
オ゛:1げi!J’Jが行なわれるにうな燃131鳴躬
1.II tallが行なわれる内燃機関を用いて説明
したが、多気筒独立燃料llI′3川の内燃機関に適用
することも何ら差支えない。
In addition, in these embodiments, the combustion is performed once every 2 revolutions of the crank. J'J will be held 131 times 1. Although the present invention has been described using an internal combustion engine in which the II tall is performed, there is no problem in applying the present invention to a multi-cylinder independent fuel internal combustion engine.

更に、上)小の実施例では、オープン制御実施時イ 補iL−係故K LJ A−ブン制御実施時に一律に1
に設定されるものとしたが内燃機関の負荷や冷却水の水
)品などその他内燃機関の運転状態に応じて値を変えて
もにい。この場合、加速中のように内燃機関の出ツノを
増加させる必要がある時には該補正係数1<を大キクシ
て、リーン側からリッチ側への空燃比の補正量を増加さ
せ、ドライバビリティの一層の向上を計るといった緻密
な制御を行なうことかでさる。
In addition, in the above example, when open control is executed, A supplementary iL-failure KLJ A-when control is executed, 1 is uniformly set.
However, the value may be changed depending on the internal combustion engine load, cooling water, etc., and other operating conditions of the internal combustion engine. In this case, when it is necessary to increase the output of the internal combustion engine, such as during acceleration, the correction coefficient 1 is increased to increase the correction amount of the air-fuel ratio from the lean side to the rich side, thereby further improving drivability. This is achieved through precise control such as measuring the improvement of

以上本発明のいくつかの実施例について説明したが、本
発明はこのような実施例に何等限定されるものではなく
、本発明の要旨を逸In2 LないfU囲において、種
々なる態様で実施し得ることは勿論である。
Although several embodiments of the present invention have been described above, the present invention is not limited to these embodiments in any way, and the gist of the present invention can be implemented in various embodiments within the scope of In2L and fU. Of course you can get it.

[発明の効果] 以上詳述したように、本発明の内燃機関の空燃比制御装
置は、内燃機関の運転状態に応じて空燃比のフィードバ
ック制御かA〜ブン制御かのいずれかの空燃比制御を行
なうと共に、A−ブン制御実施時には、空燃比の減少補
正を行なうように構成されている。
[Effects of the Invention] As detailed above, the air-fuel ratio control device for an internal combustion engine of the present invention performs air-fuel ratio control of either air-fuel ratio feedback control or A-bun control depending on the operating state of the internal combustion engine. At the same time, when the A-bun control is executed, the air-fuel ratio is corrected to decrease.

従って、空燃比のA−プン制御実施時には内燃機関の空
燃比が目標空燃比より若干リッヂ側に制御+される結果
、装置の機差や経11ミ変化どいった種々の理由によっ
ても、オープン制御実施時に内燃機関の空燃比がリーン
側にスレることはなく、良好なドライバビリティを確保
できるどい)優れた効果がある。
Therefore, when performing A-Pun control of the air-fuel ratio, the air-fuel ratio of the internal combustion engine is controlled slightly to the ridge side compared to the target air-fuel ratio, and as a result, the air-fuel ratio of the internal combustion engine is controlled to be slightly higher than the target air-fuel ratio. The air-fuel ratio of the internal combustion engine does not deviate to the lean side when the control is executed, and good drivability can be ensured, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術における内燃機関の負荷と学門値との
関係を示す説明図、第2図は同じく学門関とその周辺装
置を含む空燃比制御装置の概略構 イ成図、第5図は第
1実施例の制御を表わす70−ヂト一ト、第6図は同じ
く第2実施例の70−チ+7−ト、第7図は第2実施例
における学習値の制御の詳11を説明Jるフ1」−チt
 −1・である。 1・・・内燃機関本体 2・・・燃料噴射弁 4・・・リーンセンリ 18・・・吸気1]−けンサ イ( 24・・・回転数センサ K 2O・・・CPU 代理人 弁理士 定立 勉 他1名 第1図 第2図 時FJI
Fig. 1 is an explanatory diagram showing the relationship between the internal combustion engine load and the internal combustion value in the prior art, Fig. 2 is a schematic diagram of the air-fuel ratio control device including the internal combustion engine and its peripheral devices, and Fig. 5 The figure shows 70-digits representing the control of the first embodiment, FIG. Explain Jrufu 1”-Chit
-1. 1...Internal combustion engine main body 2...Fuel injection valve 4...Lean sensor 18...Intake 1) 1 other person Figure 1 Figure 2 Time FJI

Claims (1)

【特許請求の範囲】 内燃機関の、負荷を含む運転状態を検出する運転状態検
出手段と、 内燃1jll!lへ燃料を供給する燃料供給手段と、内
燃機関排気組成に塁づいて空燃比を検出する空燃比検出
手段と、 前記運転状態検出手段によって検出された内燃(蔑閑の
負荷に応じた燃料供給量を定め、該塩11供給量に従っ
て燃料供給手段を制御し、内燃機関の空燃比を制御する
オープン制御か、該燃料供給Iを前記空燃比検出手段に
よって検出された空燃比に応じて補正し、燃料供給手段
を制御して内燃機関の空燃比を目標空燃比に制御Jるフ
ィードバック制御か、 のいずれかを、前記運転状態検出手段によって検出され
た内燃機関の運転状態に応じて行なう制御手段と、 を錫えた内燃機関の空燃比制御装置において、前記制御
手段が、空燃比のオーブン制御実施時に空燃比を減少補
正する空燃比補正手段を備えたことを特徴とする内燃機
関の空燃比制御装置。
[Claims] Operating state detection means for detecting the operating state of an internal combustion engine, including the load; an air-fuel ratio detection means for detecting an air-fuel ratio based on the internal combustion engine exhaust composition; and an air-fuel ratio detection means for detecting an air-fuel ratio based on the internal combustion engine exhaust composition; The amount of salt 11 is determined, and the fuel supply means is controlled according to the supply amount of the salt 11, and the air-fuel ratio of the internal combustion engine is controlled by open control, or the fuel supply I is corrected according to the air-fuel ratio detected by the air-fuel ratio detection means. , feedback control that controls the fuel supply means to control the air-fuel ratio of the internal combustion engine to a target air-fuel ratio, or a control means that performs either of the following in accordance with the operating state of the internal combustion engine detected by the operating state detecting means. An air-fuel ratio control device for an internal combustion engine, characterized in that the control means includes an air-fuel ratio correction means for decreasing the air-fuel ratio when performing oven control of the air-fuel ratio. Device.
JP6391684A 1984-03-30 1984-03-30 Air-fuel ratio control device in internal-combustion engine Granted JPS60206953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6391684A JPS60206953A (en) 1984-03-30 1984-03-30 Air-fuel ratio control device in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6391684A JPS60206953A (en) 1984-03-30 1984-03-30 Air-fuel ratio control device in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60206953A true JPS60206953A (en) 1985-10-18
JPH0328581B2 JPH0328581B2 (en) 1991-04-19

Family

ID=13243141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6391684A Granted JPS60206953A (en) 1984-03-30 1984-03-30 Air-fuel ratio control device in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60206953A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182458A (en) * 1986-02-06 1987-08-10 Honda Motor Co Ltd Air-fuel ratio control of internal combustion engine
DE3916605A1 (en) * 1988-05-23 1989-11-30 Toyota Motor Co Ltd Device for the control of an air-fuel ratio for an internal combustion engine
US5279275A (en) * 1989-10-05 1994-01-18 Siemens Aktiengesellschaft Process for operating an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285633A (en) * 1976-01-10 1977-07-16 Nissan Motor Co Ltd Internal combustion engine
JPS52129834A (en) * 1977-03-24 1977-10-31 Nippon Denso Co Ltd Air fuel ratio feedback controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285633A (en) * 1976-01-10 1977-07-16 Nissan Motor Co Ltd Internal combustion engine
JPS52129834A (en) * 1977-03-24 1977-10-31 Nippon Denso Co Ltd Air fuel ratio feedback controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182458A (en) * 1986-02-06 1987-08-10 Honda Motor Co Ltd Air-fuel ratio control of internal combustion engine
DE3916605A1 (en) * 1988-05-23 1989-11-30 Toyota Motor Co Ltd Device for the control of an air-fuel ratio for an internal combustion engine
US5279275A (en) * 1989-10-05 1994-01-18 Siemens Aktiengesellschaft Process for operating an internal combustion engine

Also Published As

Publication number Publication date
JPH0328581B2 (en) 1991-04-19

Similar Documents

Publication Publication Date Title
JP2002535533A (en) Method and apparatus for operating an internal combustion engine
US4528956A (en) Method of and apparatus for controlling air-fuel ratio and ignition timing in internal combustion engine
JPH04224244A (en) Air fuel ratio control device of engine
JPS6356416B2 (en)
US5845624A (en) Air-fuel ratio control system for internal combustion engine
KR960016085B1 (en) Air-fuel ratio controller of internal combustion engine
JPS60206953A (en) Air-fuel ratio control device in internal-combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
JPS60237134A (en) Air-fuel ratio controller for internal-combustion engine
JP2002106399A (en) Control method and device for internal combustion engine
US5505184A (en) Method and apparatus for controlling the air-fuel ratio of an internal combustion engine
JPH0316498B2 (en)
JPS6187935A (en) Air-fuel ratio controller for internal-combution engine
JPH11107829A (en) Air-fuel ratio controller for internal combustion engine
JPS63195356A (en) Fuel feeding device for engine
JPS6075737A (en) Air/fuel ratio control method for internal-combustion engine
JP2715208B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH04279746A (en) Fuel character detecting device of internal combustion engine
JPS6090949A (en) Air-fuel ratio controlling apparatus
JPH02169836A (en) Air-fuel ratio controller of engine
JPS618438A (en) Method of controlling air-fuel ratio of internal combustion engine
JP2860855B2 (en) Electronic control fuel supply device for internal combustion engine
JPH02104938A (en) Device for controlling air-fuel ratio of internal combustion engine
JP2861034B2 (en) Air-fuel ratio control device for LPG engine
JPS61201842A (en) Control device for rarefied air-fuel ratio during idling of internal-combustion engine