JPS60206416A - Preparation of polysulfone membrane - Google Patents

Preparation of polysulfone membrane

Info

Publication number
JPS60206416A
JPS60206416A JP59059476A JP5947684A JPS60206416A JP S60206416 A JPS60206416 A JP S60206416A JP 59059476 A JP59059476 A JP 59059476A JP 5947684 A JP5947684 A JP 5947684A JP S60206416 A JPS60206416 A JP S60206416A
Authority
JP
Japan
Prior art keywords
membrane
solvent
coagulation bath
water
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59059476A
Other languages
Japanese (ja)
Other versions
JPH0451221B2 (en
Inventor
Kenji Koyama
小山 憲治
Shotaro Ono
大野 省太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP59059476A priority Critical patent/JPS60206416A/en
Publication of JPS60206416A publication Critical patent/JPS60206416A/en
Publication of JPH0451221B2 publication Critical patent/JPH0451221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain a polysulfone membrane having a pore size of 0.03-0.2mum and high in water permeability, by setting a coagulation bath to a high temp. in a wet membrane forming process. CONSTITUTION:A polysulfone resin represented by formula is dissolved in a solvent capable of dissolving said polysulfone resin and substantially miscible with water at an ambient temp. As a concrete example, when a solvent mixture consisting of N-methyl-2-pyrrolidone and ethylene glycol monoethyl ether, of which the volumetric ratio is changed in a range of 100:0-43:47, is used, the pore size and water permeability of a membrane can be controlled to a certain degree without changing the other condition. The concn. of the polysulfone resin is pref. in a range of 16-22g/dl. By changing the temp. of a coagulation bath within a range of 35-95 deg.C, the membrane, of which the pore size is in a range of 0.03-0.2mum and the water permeability is 1.5m<3>/m<2>hrkg/cm<2> or more, is obtained.

Description

【発明の詳細な説明】 本発明は、透水量が高く、かつ、孔径の大きいボリスル
7オン膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a Borisl 7-on membrane that has a high water permeability and a large pore size.

従来、圧を駆動力とする分離膜は、その孔径の大きいも
のから、ミクpフィルター(0.1μm以上)、限外F
過膜(数十〜数百1)そして逆浸透膜《無機イオンを阻
止する大きさ》に分類されている。ミクロフィルターは
一般に、膜素材高分子を該高分子に対する良溶剤と非溶
剤との混合溶剤に溶解し、該溶液を平板上に流延し、溶
剤を蒸発させることを特徴とする乾式法によって製造さ
れる。この方法では、膜の微細構造が断面方向に均一で
ある、対称膜力乏得られる。このミクロフィルターの二
従未;最小孔径グレードは0.2μm程度である。希に
11.1μm以下のものがあるが、これらは透水性が1
−/ぱ・hr・(k9〆ゴ)以下と著しく低く、実用性
に乏しいのが現状である。
Conventionally, separation membranes that use pressure as the driving force have been classified into the Miku-P filter (0.1 μm or more), the ultra-F
They are classified into diaphragm membranes (several tens to hundreds of membranes) and reverse osmosis membranes (sized to block inorganic ions). Microfilters are generally produced by a dry process characterized by dissolving a membrane material polymer in a mixed solvent of a good solvent and a non-solvent for the polymer, casting the solution on a flat plate, and evaporating the solvent. be done. In this method, the microstructure of the membrane is uniform in the cross-sectional direction and a symmetrical membrane is obtained. The minimum pore diameter grade of this microfilter is approximately 0.2 μm. In rare cases, there are particles less than 11.1 μm, but these have a water permeability of 1.
-/pa・hr・(k9〆go) or less, which is extremely low and is currently impractical.

ミクロフィルターに対して、限外炉過膜は、湿式法で製
造される。膜素材となる高分子を溶剤に溶解し、これを
希望する形態に流延した後、該高分子の非溶剤からなる
凝固浴へ浸漬し、凝固させることにより膜を得る。この
方法では、膜の微細構造は、膜表面が最も緻密となり、
膜内部は、スポンジ状空洞の多い非対称膜が得られる。
In contrast to microfilters, ultrafiltration membranes are manufactured by a wet process. A membrane is obtained by dissolving a polymer serving as a membrane material in a solvent, casting it into a desired form, and then immersing the polymer in a coagulation bath made of a non-solvent and coagulating it. In this method, the fine structure of the film is the most dense on the film surface,
An asymmetric membrane with many spongy cavities inside the membrane is obtained.

よって膜の透水性は主として、膜表面の緻密層に支配さ
れ、微細な孔を持つにもかかわらず、比較的高い透水性
を示す。
Therefore, the water permeability of the membrane is mainly controlled by the dense layer on the surface of the membrane, and despite having fine pores, it exhibits relatively high water permeability.

湿式法によれば、膜表面に緻密な層が出現する関係上、
比較的孔径の小さな膜が得られる。
According to the wet method, a dense layer appears on the membrane surface;
A membrane with a relatively small pore size is obtained.

例えば、現在市販されている非対称限外炉過膜のうち、
最も大きい分画分子量は3’X10’であるがこの膜は
、分子量2X10’のブルーデキストランを98%以上
阻止する。これに対して、やはり、市販されているQ.
22μmの孔径を持つミクロフィルターでは、ブルーデ
キストランをまったく阻止しない。このことから、乾式
法によるミクロフィルタ二の孔径の下限と、湿式法によ
る限外炉過膜の孔径の上限とのあいだに適用される孔径
をもつ膜の開発が望まれている。
For example, among the currently commercially available asymmetric ultrafurnace membranes,
Although the highest molecular weight cutoff is 3'X10', this membrane blocks more than 98% of blue dextran with a molecular weight of 2X10'. On the other hand, commercially available Q.
A microfilter with a pore size of 22 μm does not block blue dextran at all. For this reason, it is desired to develop a membrane with a pore size that is between the lower limit of the pore size of the microfilter 2 produced by the dry method and the upper limit of the pore diameter of the ultrafilter membrane produced by the wet method.

本発明者等は、孔径がおよそα03〜[lL2μmの非
対称膜を湿式製膜法で製造することに関し、鋭意研究の
結果、本発明を完成するに至った。
The present inventors have completed the present invention as a result of extensive research into producing an asymmetric membrane with a pore size of approximately α03 to [1L2 μm] using a wet film forming method.

本発明は高透水性で、孔径が0,05〜[L2μmのボ
リスル7オン膜を得るための湿式製膜法に関する。ここ
で言う湿式製膜法とは通常用いられる一般的方法で、例
えば膜原料である高分子を溶剤に溶解した製膜原液をガ
ラス板や不織布,紙などの上に厚さ数十〜数百ミクロン
に塗布し、これを膜原料高分子の沈殿溶剤で、かつ製膜
原液に用いられる溶剤と容易に混和する液体よりなる凝
固浴中に浸漬し、塗布された膜原料高分子を凝固させる
ことにより分離膜を得る手法である。この場合、膜素材
高分子を溶解する溶剤は単一溶剤あるいは膜原料高分子
に対して良溶剤に、各種非溶剤や無機塩を添加したもの
が一般に用いられ、溶剤は水溶性のものが多用される。
The present invention relates to a wet membrane forming method for obtaining a Borisl 7-on membrane with high water permeability and a pore size of 0.05 to [L2 μm. The wet film forming method referred to here is a general method that is usually used. For example, a film forming stock solution in which a polymer, which is a membrane raw material, is dissolved in a solvent is coated on a glass plate, nonwoven fabric, paper, etc. to a thickness of several tens to hundreds of sheets. To coagulate the coated membrane raw material polymer by coating it on microns and immersing it in a coagulation bath consisting of a precipitation solvent for the membrane raw material polymer and a liquid that is easily miscible with the solvent used in the membrane forming stock solution. This is a method to obtain a separation membrane. In this case, the solvent for dissolving the membrane material polymer is generally a single solvent or a good solvent for the membrane material polymer, with the addition of various non-solvents or inorganic salts, and the solvent is often water-soluble. be done.

凝固浴は通常、水あるいは水を主成分とする混合液体が
用いられる。凝固浴温度は、通常、0℃から20℃が用
いられている。
The coagulation bath usually uses water or a mixed liquid containing water as a main component. The temperature of the coagulation bath is usually from 0°C to 20°C.

本発明の特徴は既に述べた公知の湿式製膜法において、
凝固浴温度を高く設定すーることにより、容易に高透水
量で、孔径αロ3〜0.2μmのポリスルフオン膜を得
ることにある。実施例に述べるように、本発明者等の検
討によれば、ポリスルフオン膜を通常の湿式製膜法によ
り、製膜するに際し、凝固浴温度が65℃未満では、そ
の透水性および孔径に、さしたる凝固浴温度依存性が見
られないのに対し、凝固浴温度35℃以上では顕著な温
度依存性が見られ、膜の孔径は大きくなり、透水性は大
巾に改良されることが判明した。又、95℃を越えると
溶剤が沸騰しはじめるなど操作上問題が生じる。以下、
本発明を更に詳細に説明する。
The features of the present invention are as follows in the already-mentioned known wet film forming method:
By setting a high coagulation bath temperature, it is possible to easily obtain a polysulfone membrane with a high water permeability and a pore size α of 3 to 0.2 μm. As described in the Examples, according to the studies of the present inventors, when forming a polysulfone membrane by a normal wet membrane forming method, if the coagulation bath temperature is lower than 65°C, the water permeability and pore size will be significantly affected. It was found that while no coagulation bath temperature dependence was observed, a significant temperature dependence was observed when the coagulation bath temperature was 35° C. or higher, the pore size of the membrane became larger, and the water permeability was greatly improved. Moreover, if the temperature exceeds 95°C, operational problems such as the solvent starting to boil occur. below,
The present invention will be explained in more detail.

本発明に用いられるポリスル7オン樹脂は下記の一般式
(I)で示される構造をもつ。
The polysulfone resin used in the present invention has a structure represented by the following general formula (I).

ポリスル7オン樹脂を溶解する溶剤は、ポリスル7オン
樹脂を溶解可能で、かつ、常温で水と実質的に混和する
ものであれば、単独溶剤であろうが混合溶媒であろうが
使用できる。勿論、溶剤中に常温では固体である無機塩
,有機物やギの他が溶解していても構わない。このよう
な溶剤として、例えばN−メチル−2−ピロリドン,N
,N’−ジメチルホルムアミド,ジメチルアセトアミド
等を主成分とするものが一般的であり、これらの溶剤に
、ボリスルフオン樹脂に対して、実質的に非溶剤である
ジメチルスル7オキシド,エチレングリコールモノエチ
ルエーテル,エチレングリコールモノメチルエーテル,
アセトアミド等の有機物、あるいはエチレングリコール
,ジエチレングリコール等を加えたものなどがある。
The solvent for dissolving the polysul 7-one resin may be a single solvent or a mixed solvent, as long as it can dissolve the polysul 7-one resin and is substantially miscible with water at room temperature. Of course, inorganic salts, organic substances, and other substances that are solid at room temperature may be dissolved in the solvent. Such solvents include, for example, N-methyl-2-pyrrolidone, N-methyl-2-pyrrolidone,
, N'-dimethylformamide, dimethylacetamide, etc. are generally used as main components, and these solvents include dimethylsulf7oxide, ethylene glycol monoethyl ether, which is a substantially non-solvent for borisulfon resin. ethylene glycol monomethyl ether,
These include organic substances such as acetamide, or those containing ethylene glycol, diethylene glycol, etc.

これらの溶剤群の中でも特に効果的なものに、N一メチ
ル−2−ピロリドンとエチレングリコールモノエチルエ
ーテルの混合溶剤がある。N−メチル−2−ビロリドン
とエチレングリコールモノエチルエーテルとの体積比1
00:0から43:57の範囲で変化させることにより
、その他の条件を変えずに、ある程度膜の孔径および透
水性をコントロールできる。同様にN,N’−ジメチル
ホルムアミドとエチレングリコールモノエチルエーテル
との混合系も有効である。この場合、混合比は100:
Oから84:16の範囲が望ましい。
Among these solvents, a mixed solvent of N-methyl-2-pyrrolidone and ethylene glycol monoethyl ether is particularly effective. Volume ratio of N-methyl-2-pyrrolidone to ethylene glycol monoethyl ether: 1
By changing the ratio between 00:0 and 43:57, the pore size and water permeability of the membrane can be controlled to some extent without changing other conditions. Similarly, a mixed system of N,N'-dimethylformamide and ethylene glycol monoethyl ether is also effective. In this case, the mixing ratio is 100:
A range of 0 to 84:16 is desirable.

製膜原液の組成は、膜の透水性および孔径に大きく影響
する。この中で、ポリスル7オン樹脂の濃度は、169
/d/以上、22ク/’a1以下の範囲であることが望
ましい。樹脂濃度169/At未満では、得られた膜の
強度が著しく低く、使用に対して、不安であり、また2
297dlを越えると、透水性能,孔径共に大きな改良
は期待できない0 次に凝固浴について説明する。凝固浴の温度を35℃以
上95℃以下で変化させることにより、膜の孔径をα0
3〜α2μmの範囲でかつ、1.5一/一・レ・(k9
/cdt)以上の透水性を持たせることがてきるが、製
膜原液中の樹脂濃度および溶剤の種類により、その効果
は多少変化する。凝固液は通常、水で十分であるが、水
にエチレングリコール,ジエチレングリコール,プロピ
レングリコール,グリセリン等のグリコール類の水溶性
添加剤を加えてもよい。ポリスル7オン樹脂に対して、
良溶剤を添加してもよい。しかし、水にこれら添加剤を
加える場合は、添加剤の容積分率は70%未満が望まし
い。容積分率が70%を越えても透水性能が秀れた大孔
径の膜は得られるが、膜の凝固浴中での凝固速度が遅れ
ること、凝固浴の経済性等の問題から望ましくない。
The composition of the membrane forming stock solution greatly influences the water permeability and pore size of the membrane. Among these, the concentration of polysulfone resin is 169
It is desirable that the range is from /d/ to 22k/'a1. If the resin concentration is less than 169/At, the strength of the obtained film is extremely low, making it uneasy to use, and
If it exceeds 297 dl, no significant improvement can be expected in both water permeability and pore size.Next, the coagulation bath will be explained. By changing the temperature of the coagulation bath from 35°C to 95°C, the pore size of the membrane can be adjusted to α0.
In the range of 3 to α2μm and 1.51/1・re・(k9
/cdt) or higher, but the effect varies somewhat depending on the resin concentration and the type of solvent in the membrane forming stock solution. Water is usually sufficient as the coagulating liquid, but water-soluble additives such as glycols such as ethylene glycol, diethylene glycol, propylene glycol, and glycerin may be added to the water. For polysul 7-one resin,
A good solvent may be added. However, when adding these additives to water, the volume fraction of the additives is preferably less than 70%. Even if the volume fraction exceeds 70%, a large-pore membrane with excellent water permeability can be obtained, but this is not desirable because of problems such as the slow coagulation rate of the membrane in the coagulation bath and the economical efficiency of the coagulation bath.

本発明によって得られるボリスル7オン膜は、従来のミ
クロフィルターと限外枦過膜の間を埋める孔径の領域、
すなわち、[1.03〜11.2μmの孔径を有する膜
として、多方面へ応用が考えられる。
The Borisl 7on membrane obtained by the present invention has a pore size region that fills the gap between conventional microfilters and ultrafiltration membranes.
That is, the membrane having a pore diameter of 1.03 to 11.2 μm can be applied in many fields.

以下、実施例により本発明を説明するが、これら実施例
のみに本発明は限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1〜6,比較例1′〜4′ ポリスルフオン樹脂([ユーデルポリスルホンP−55
00J商品名、U.O.O社製)1809を、N−メチ
ル−2−ピロリドンとエチレングリコールモノエチルエ
ーテルとの容積比1:1の混合溶媒1l!に溶解し、均
一な溶液とした。この溶液をポリエチレン不織布上に厚
さ150μmに流延し、凝固浴中に浸漬した。凝固浴は
水で、その温度を2℃,10℃,20℃,50℃,40
℃,500G,60℃,70℃,80℃,90℃と変化
させた。
Examples 1 to 6, Comparative Examples 1' to 4' Polysulfone resin ([Udel Polysulfone P-55
00J product name, U. O. (manufactured by Company O) 1809 in 1 liter of a mixed solvent of N-methyl-2-pyrrolidone and ethylene glycol monoethyl ether at a volume ratio of 1:1! to make a homogeneous solution. This solution was cast onto a polyethylene nonwoven fabric to a thickness of 150 μm and immersed in a coagulation bath. The coagulation bath is water and its temperature is 2℃, 10℃, 20℃, 50℃, 40℃.
℃, 500G, 60℃, 70℃, 80℃, and 90℃.

得られた膜を蒸留水で3日間脱溶剤した後、透水テスト
をおこなった。透水テストに用いた水は13℃の蒸留水
である。また、これらの膜のブルーデキストラン(分子
量2×10’)の阻止率を調べた。用いた装置は攪拌型
限外p過装置(「up−50」商品名、東洋F紙■社製
)で40dの[L1%ブルーデキストランを装置内へ入
れ、圧力LL3k9/mで戸過し、20dの炉液が得ら
れた時、装置内に残った液と膜透過液の濃度から、次式
で阻止率Rを算出した。
After removing the solvent from the obtained membrane with distilled water for 3 days, a water permeability test was conducted. The water used for the water permeability test was distilled water at 13°C. In addition, the rejection rate of blue dextran (molecular weight 2 x 10') of these membranes was investigated. The device used was a stirring type ultrap filter device (trade name ``up-50'', manufactured by Toyo F Paper Company), and 40 d of [L1% blue dextran was put into the device and passed through the door at a pressure of LL3k9/m. When 20 d of furnace liquid was obtained, the rejection rate R was calculated from the concentration of the liquid remaining in the apparatus and the membrane permeate liquid using the following formula.

膜の平均孔径は、走査型電子顕微鏡写真によった。The average pore size of the membrane was determined by scanning electron micrograph.

これらの結果を表1に示す。These results are shown in Table 1.

実施例7〜10,比較例5′〜7′ 実施例1〜6と同じボリスルフオン樹脂210ノをN,
N’−ジメチルホルムアミド1lに溶解し、,製膜原液
とした。この溶液をポリプロピレン製不?織布上、ドク
ターナイフで厚さ160μmに塗布し、直後、凝固浴中
に浸漬し、ポリスルフオン膜を得た。凝固液は、水/エ
チレングリコール=7/3(容積)の混合液を用いた。
Examples 7 to 10, Comparative Examples 5' to 7' The same borisulfon resin as in Examples 1 to 6 was mixed with N,
It was dissolved in 1 liter of N'-dimethylformamide to prepare a membrane forming stock solution. Is this solution not made of polypropylene? It was coated onto a woven fabric to a thickness of 160 μm using a doctor knife, and immediately thereafter immersed in a coagulation bath to obtain a polysulfon film. As the coagulating liquid, a mixed liquid of water/ethylene glycol=7/3 (volume) was used.

凝固液温度を32℃,15℃,30℃,40℃,55℃
,80尤,95℃と変化させ、得られた膜の性能を実施
例1〜6と同様に調べた。得られた膜の性能を表2に示
10 実施例11〜13 実施例1〜6と同ビポリスル7オン樹脂180gをN,
11’−ジメチルホルムアミドとエチレングリコールモ
ノエチルエーテルの容積比95:5の溶剤1l!に溶解
し、均一な溶液として製膜原液とした。
Coagulation liquid temperature: 32℃, 15℃, 30℃, 40℃, 55℃
, 80° C., and 95° C., and the performance of the obtained membranes was examined in the same manner as in Examples 1 to 6. The performance of the obtained membrane is shown in Table 2.10 Examples 11 to 13 180 g of the same bipolysul 7-one resin as in Examples 1 to 6 was mixed with N,
1 liter of solvent with a volume ratio of 11'-dimethylformamide and ethylene glycol monoethyl ether of 95:5! The mixture was dissolved in a homogeneous solution and used as a film-forming stock solution.

この原液をポリエチレン製不織布上、厚さ約200μm
に塗布し、凝固液中へ浸漬してボリスルフオン膜を得た
。凝固液は水とし、温度を40℃,60℃,80℃とし
た。得られたポリスルフオン膜の性質を実施例1〜6と
同様に調べ、その結果を表5に示す。
Spread this stock solution on a polyethylene nonwoven fabric to a thickness of approximately 200 μm.
A borisulfon film was obtained by applying the solution to a coagulating solution and immersing it in a coagulating solution. The coagulating liquid was water, and the temperature was 40°C, 60°C, and 80°C. The properties of the obtained polysulfon membrane were investigated in the same manner as in Examples 1 to 6, and the results are shown in Table 5.

比較例8/ 実施例11〜13とまったく同様にし、ポリスル7オン
樹脂量のみを150976l!として、ポリスルフオン
膜を得た。得られた膜は、いずれも透水量は2−/一●
hr拳(lvH以上を示したが、支持体のポリエチレン
不織布と剥離してしまった。
Comparative Example 8/ Exactly the same as Examples 11 to 13, only the amount of Polysul 7-on resin was 150,976 liters! As a result, a polysulfon membrane was obtained. The obtained membranes have a water permeability of 2-/1●
hr (1vH or higher), but it peeled off from the polyethylene nonwoven fabric of the support.

Claims (1)

【特許請求の範囲】 1,一般式(1)に示す繰り返し単位を持つボリスルフ
オン樹脂を湿式製膜法により分離膜を得る方法において
、凝固浴温度範囲が35℃〜95℃で、浴剤として水が
主成分であることを特徴とする高透水性ポリスル7オン
膜の製造方法。 2.凝固浴温度が50℃から95℃である特許請求の範
囲第1項記載の方法。 五凝固浴の30容積%以上が水であり、他の成分がエチ
レングリフール,ジエチレングリコール,プロピレング
リコール,グリセリンまたはそれらの2以上の混合溶液
である特許請求の範囲第1項または第2項記載の方法。 4.ボリスルフォン樹脂を溶解する水溶性溶剤が、N−
メチル−2−ビロリドン,ジメチルホルムアミド,ジメ
チルアセトアミドのいずれか、あるいは、これらの混合
物である特許請求の範囲第1項〜第3項のいずれかの項
記載の方法。 5.ポリスル7オン樹脂を溶解する溶剤が、N,N−ジ
メチルホルムアミドとエチレングリコールモノエチルエ
ーテルとの容積比が100:0から、84:16の範囲
の混合溶剤であることを特徴とする特許請求の範囲第1
項〜第5項のいずれかの項記載の方法。 &ポリスル7オン樹脂を溶解する溶剤が、Nーメチル2
−ピロリドンとエチレングリコールモノエチルエーテル
との容WI比100:0から45:57の範囲の混合溶
剤であることを特徴とする特許請求の範囲第1項〜第3
項のいずれかの項に記載の方法。 Zポリスルフオン樹脂溶液中のポリスルフオン樹脂の濃
度が169/+i/から22g/dl!であることを特
徴とする特許請求の範凹第1項〜第6項のいずれかの項
記載の方法。
[Claims] 1. A method for obtaining a separation membrane using a wet membrane forming method using borisulfone resin having a repeating unit represented by general formula (1), wherein the coagulation bath temperature range is 35°C to 95°C, and water is used as a bath agent. A method for producing a highly water permeable polysulfonate membrane, characterized in that the main component is 2. The method according to claim 1, wherein the coagulation bath temperature is from 50°C to 95°C. 5. The coagulation bath according to claim 1 or 2, wherein 30% by volume or more of the coagulation bath is water, and other components are ethylene glyfur, diethylene glycol, propylene glycol, glycerin, or a mixed solution of two or more thereof. Method. 4. The water-soluble solvent that dissolves the borisulfone resin is N-
The method according to any one of claims 1 to 3, wherein methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, or a mixture thereof is used. 5. A patent claim characterized in that the solvent for dissolving the polysulfone resin is a mixed solvent of N,N-dimethylformamide and ethylene glycol monoethyl ether in a volume ratio ranging from 100:0 to 84:16. Range 1
The method described in any one of Items 1 to 5. & The solvent that dissolves the polysul 7-one resin is N-methyl 2
Claims 1 to 3 are characterized in that the solvent is a mixed solvent of pyrrolidone and ethylene glycol monoethyl ether with a volume WI ratio in the range of 100:0 to 45:57.
The method described in any of the sections. The concentration of polysulfone resin in the Z polysulfone resin solution ranges from 169/+i/ to 22 g/dl! A method according to any one of claims 1 to 6, characterized in that:
JP59059476A 1984-03-29 1984-03-29 Preparation of polysulfone membrane Granted JPS60206416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059476A JPS60206416A (en) 1984-03-29 1984-03-29 Preparation of polysulfone membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059476A JPS60206416A (en) 1984-03-29 1984-03-29 Preparation of polysulfone membrane

Publications (2)

Publication Number Publication Date
JPS60206416A true JPS60206416A (en) 1985-10-18
JPH0451221B2 JPH0451221B2 (en) 1992-08-18

Family

ID=13114391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059476A Granted JPS60206416A (en) 1984-03-29 1984-03-29 Preparation of polysulfone membrane

Country Status (1)

Country Link
JP (1) JPS60206416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927572A3 (en) * 1997-12-30 1999-07-14 Kolon Industries, Inc. A polysulfone based hollow fiber membrane, and a process for preparing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144456A (en) * 1978-05-03 1979-11-10 Rhone Poulenc Ind Polymer composition for membrane
JPS5750508A (en) * 1980-09-11 1982-03-25 Mitsubishi Rayon Co Ltd Permselective membrane and its production
JPS58132111A (en) * 1982-01-29 1983-08-06 Asahi Chem Ind Co Ltd Polysulfone hollow fiber
JPS59173105A (en) * 1983-03-19 1984-10-01 Nitto Electric Ind Co Ltd Polysulfone semipermeable membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144456A (en) * 1978-05-03 1979-11-10 Rhone Poulenc Ind Polymer composition for membrane
JPS5750508A (en) * 1980-09-11 1982-03-25 Mitsubishi Rayon Co Ltd Permselective membrane and its production
JPS58132111A (en) * 1982-01-29 1983-08-06 Asahi Chem Ind Co Ltd Polysulfone hollow fiber
JPS59173105A (en) * 1983-03-19 1984-10-01 Nitto Electric Ind Co Ltd Polysulfone semipermeable membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927572A3 (en) * 1997-12-30 1999-07-14 Kolon Industries, Inc. A polysulfone based hollow fiber membrane, and a process for preparing the same

Also Published As

Publication number Publication date
JPH0451221B2 (en) 1992-08-18

Similar Documents

Publication Publication Date Title
US5700902A (en) Block copolymers
US4207182A (en) Polymeric compositions for membranes
JPS5857205B2 (en) Manufacturing method of semipermeable membrane
WO2000045942A1 (en) Preparation of polyethersulfone membranes
JPS59225705A (en) Composite membrane and preparation thereof
US4319008A (en) Polyether admixture and semi-permeable membranes comprised thereof
Blicke et al. Ultrafiltration membranes from poly (ether sulfonamide)/poly (ether imide) blends
Kusumawati et al. Polysulfone/polyvinylidene fluoride composite membrane: Effect of coating dope composition on membrane characteristics and performance
JPS6138208B2 (en)
JPS60132605A (en) Preparation of asymmetric membrane
JPS60206416A (en) Preparation of polysulfone membrane
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
Sivakumar et al. Modification of polysulphone with cellulose acetate and application as membranes
KR102593611B1 (en) Preparation method of cellulose-based polymer microfiltration membrane and microfiltration membrane thereby
JPS63258603A (en) Aromatic polymer membrane
JPS60206404A (en) Permselective membrane and its prepration
JP3456739B2 (en) Amorphous aromatic polyetherketone hollow fiber separation membrane and method for producing the same
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane
JPS6329562B2 (en)
JPH01299606A (en) Separation film for pervaporation
KR0123279B1 (en) Method for semipermeable composite membrane
JPS59139902A (en) Preparation of permselective membrane
JPS63151333A (en) Gas separation membrane and its preparation
KR950004919B1 (en) Manufacturing method for polysulfone membrane
JPS59135239A (en) Production of porous polysulfone membrane