JPS60206160A - Solar-cell panel device - Google Patents

Solar-cell panel device

Info

Publication number
JPS60206160A
JPS60206160A JP59062756A JP6275684A JPS60206160A JP S60206160 A JPS60206160 A JP S60206160A JP 59062756 A JP59062756 A JP 59062756A JP 6275684 A JP6275684 A JP 6275684A JP S60206160 A JPS60206160 A JP S60206160A
Authority
JP
Japan
Prior art keywords
solar
sun
axis
error signals
cell panels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59062756A
Other languages
Japanese (ja)
Inventor
Hitoshi Kishimoto
仁 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59062756A priority Critical patent/JPS60206160A/en
Publication of JPS60206160A publication Critical patent/JPS60206160A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/428Power distribution and management
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • G01S3/7862Solar tracking systems mounted on a moving platform, e.g. space vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To control the directivity against the sun positively by providing a detecting means for sun-direction error signals of the peripheries of each shaft of a plurality of solar-cell panels and a detecting means for the mean values of the azimuth and elevation angles of solar rays. CONSTITUTION:When the angles of incidence of solar rays to first and second solar-cell panels 21, 22 change, solar sensors 25-28 detect the changes and output detecting values to a differential signal detecting circuit. Sun-direction error signals with respect to each Yp and Xp axis 30, 31 of the solar-cell panels 21, 22 are detected while sun-direction error signals with respect to a mean Yp axis 30 are detected by a summed signal detecting circuit, and sun-direction error signals with respect to a mean Xp axis 31 are detected by an arithmetic circuit and outputted to a direction control driving section. The solar-cell panels 21, 22 are rotated and driven, and the directivity against the sun is controlled. Sun-direction error signals can be detected even under the state in which the directions of normals of the solar-cell panels 21, 22 do not coinide with each other, and the directivity against the sun can be controlled positively.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は例えば人工衛星に搭載される太陽電池・やネ
ル装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to, for example, a solar cell and solar panel device mounted on an artificial satellite.

〔発明の技術的背景〕[Technical background of the invention]

一般に、この種の太陽電池パネル装置は太陽センサを設
けて、太陽光に対する姿勢誤差を検出し、太陽電池・や
ネルを太陽方向に指向制御するようになされており、通
常、第1図に示すように衛星10両端部に例えば一対の
第1及び第2の太陽電池パネル2.3がそれぞれ回転軸
4゜5を介して回転自在に設けられる。これら第1及び
第2の太陽電池パネル2,3にはその一方の第1の太陽
電池パネル2に姿勢誤差検出用の第1及び第2の太陽セ
ンサ6.7が搭載され、その他方の第2の太陽電池パネ
ル3には姿勢誤差検出用の第3及び第4の太陽センサ8
,9が搭載される。これら第1〜第4の太陽センサ6〜
9は第2図に示すように第1及び第2の太陽電池iRネ
ル2,3面に略直交する法線方向の2、軸10に対して
角度α(図中では一個所のみ図示)だけそれぞれ傾斜さ
れるもので、このうち、第1及び第4の太陽センサ6.
9は上記回転軸4,5に略平行&YP軸11と上記zP
iIり(110とによって構成する面内に取着され、他
の第2及び第3の太陽センサ7.8は上記zpM’c1
0とYP軸11に略直交するXP軸12とzP軸10と
によって構成する面内に取着される。
Generally, this type of solar panel device is equipped with a solar sensor to detect attitude errors with respect to sunlight and control the direction of the solar cells and panels toward the sun, as shown in Figure 1. For example, a pair of first and second solar cell panels 2.3 are rotatably provided at both ends of the satellite 10 via rotational shafts 4.5. One of the first and second solar panels 2 and 3 is equipped with first and second solar sensors 6.7 for attitude error detection, and the other solar panel 2 is equipped with first and second solar sensors 6.7 for attitude error detection. The second solar panel 3 is equipped with third and fourth solar sensors 8 for attitude error detection.
, 9 are installed. These first to fourth solar sensors 6 to
As shown in FIG. 2, reference numeral 9 is 2 in the normal direction substantially perpendicular to the surfaces of the first and second solar cell iR channels 2 and 3, and an angle α (only one point is shown in the figure) with respect to the axis 10. The first and fourth solar sensors 6.
9 is approximately parallel to the rotation axes 4 and 5, and the YP axis 11 and the zP
iI (110), and the other second and third solar sensors 7.8 are attached to the zpM'c1
0, the XP axis 12 which is substantially orthogonal to the YP axis 11, and the zP axis 10.

そして、上記第1及び第2の太陽電池パネル2,3の指
向制御は第1〜第4の太陽センサ6〜9からの検出信号
を第3図に示すように信号処理して行なわれる。すなわ
ち、第1及び第2の太陽電池パネル2,3はXP軸12
まわりの太陽方向に対する誤差信号Qxを第1の差信号
検出回路13に入力される第1及び第4の太陽センサ6
.9の各出力信号によってめ、かつYp軸11まわりの
太陽方向に対する誤差信号QYを第2の差信号検出回路
14に入力される第2及び第3の太陽センサ7.8の各
出力信号によってめることで、太陽方向に対する指向制
御が行なわれる。
Directional control of the first and second solar panels 2 and 3 is performed by processing the detection signals from the first to fourth solar sensors 6 to 9 as shown in FIG. 3. That is, the first and second solar panels 2 and 3 are aligned with the XP axis 12
The first and fourth sun sensors 6 input an error signal Qx with respect to the direction of the surrounding sun to the first difference signal detection circuit 13.
.. 9, and the error signal QY with respect to the sun direction around the Yp axis 11 is determined by each output signal of the second and third sun sensors 7.8 input to the second difference signal detection circuit 14. By doing so, directivity control in the direction of the sun is performed.

〔背景技術の問題点〕[Problems with background technology]

ところが、上記太陽パネル装置は第1及び第2の太陽電
池パネル2,3が回転軸4.5に対して略同様に回転、
駆動される状態(すなわち、法線方向の一致状態)では
確実な指向制御が行なわれるが、該第1及び第2の太陽
電池ツクネル2.3が別々に回転駆動される如き法線方
向の不一致状態となった場合に問題がある。すなわち、
xP軸12及びYP軸11まわりの各太陽方向に対する
誤差信号Qx、QYは第1の太陽電池Aネル2の第1及
び第2の太陽センサ6.7と第2の太陽電池ノ9ネル3
の第3及び第4の太陽センサ8,9によって検出される
ため、相互パネル面の法線方向が不一致状態ではその検
出誤差が生じて適格な指向制御を行なうことができない
からである。
However, in the above solar panel device, the first and second solar panels 2 and 3 rotate approximately in the same manner about the rotation axis 4.5,
In the driven state (that is, in the state where the normal directions match), reliable pointing control is performed, but when the normal directions do not match, such as when the first and second solar cell tunnels 2.3 are rotationally driven separately. There is a problem if the situation occurs. That is,
Error signals Qx and QY for each solar direction around the xP axis 12 and the YP axis 11 are generated by the first and second solar sensors 6.7 of the first solar cell A panel 2 and the second solar cell panel 3.
This is because if the normal directions of the mutual panel surfaces do not match, a detection error will occur and proper pointing control will not be possible.

〔発明の目的〕[Purpose of the invention]

この発明は上記の事情に鑑みてなされたもので、特に複
数の太陽電池・ぐネルがその法線方向の不一致状態にお
いても、太陽方向に対する誤差信号を確実に検出して、
各太陽方向指向制御を確実に行なうことができる太陽電
池パネル装置を提供することを目的とする。
This invention was made in view of the above circumstances, and in particular, even when a plurality of solar cells/gunnels have mismatched normal directions, the error signal with respect to the solar direction can be reliably detected.
It is an object of the present invention to provide a solar panel device that can reliably perform solar direction control.

〔発明の概要〕[Summary of the invention]

すなわち、この発明は太陽方向に対して指向制御される
複数の太陽電池パネルを有してなる太陽電池パネル装置
において、前記複数の太陽電池・やネルの各回転軸まわ
シの太陽方向指向誤差信号を検出する第1の検出手段と
前記複数の太陽電池パネルに対する太陽光の方位及び仰
角の平均値を検出する第2の検出手段とを有してなる検
出部を葎えたことを特徴とする。
That is, the present invention provides a solar cell panel device having a plurality of solar cell panels whose orientation is controlled in the direction of the sun. The present invention is characterized in that it is equipped with a detecting section comprising a first detecting means for detecting the azimuth and a second detecting means for detecting the average value of the azimuth and elevation angle of sunlight with respect to the plurality of solar panels.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について図面を参照して詳細
に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第4図はこの発明の一実施例に係る太陽電池ノぐネル装
置を示すもので、衛星200両端部には一対の第1及び
第2の太陽電池7′eネル21゜22がそれぞれ回転軸
23.24を介して回転自在に設けられる。これら第1
及び第2の太陽’IiT、池パネル21.22にはその
一方の第1の太陽電池パネル2ノの両端に姿勢誤差検出
用の第1及び第2の太陽センサ25,26がそれぞれ搭
載され、その他方の第2の太陽電池パネル220両端に
は姿勢誤差検出用の第3及び第4の太陽センサ27,2
&がそれぞれ搭載される。
FIG. 4 shows a solar cell nozzle device according to an embodiment of the present invention, in which a pair of first and second solar cells 7'e 21 and 22 are located at both ends of a satellite 200, respectively, with rotational axes. It is rotatably provided via 23 and 24. These first
First and second solar sensors 25 and 26 for attitude error detection are respectively mounted on both ends of the first solar panel 2 of the second solar 'IiT and pond panels 21 and 22, At both ends of the other second solar panel 220, there are third and fourth solar sensors 27, 2 for attitude error detection.
& are installed respectively.

これら第1〜第4の太陽センサ25〜28は第5図に示
すように第1及び第2の太陽電池パネル21.22面に
対する法線方向のzP軸29に対して角度β(図中では
一個所のみ図示)だけ傾斜され、かつ上記回転軸23.
24と略平行なYPP2O3び2.軸29とYPP2O
3略直交するXP軸31に対してそれぞれ約45°の位
置に取着される。
As shown in FIG. 5, these first to fourth solar sensors 25 to 28 are arranged at an angle β (in the figure, (only one location is shown) and the rotation axis 23.
24 and YPP2O3 and 2. Axis 29 and YPP2O
3 are each attached at a position of approximately 45° with respect to the XP axis 31 which is substantially perpendicular to the XP axis 31.

第6図は上記第1〜第4の太陽センサ25〜28の信号
処理回路の構成を示すもので、菌1の太陽センサ25の
出力端は第1の太陽電池パネル21のYPP2O3びX
P軸31甘わりの太陽方向誤差信号QY1及びQxlを
それぞれ出力する第1及び第3の差信号検出回路32.
33の各一方の入力端に共通に接続される。そして、こ
れら第1及び第3の差信号検出回路32゜33の各他方
の入力端には第2及び第3の太陽センサ26.27の各
出力端がそれぞれ接続される。まだこれら第2及び第3
の太陽センサ26.27の各出力端は第2の太陽電池パ
ネル22のX、軸31及びY、軸30−!わりの太陽方
向′°誤差信号Qx2及びQY2をそれぞれ出力する第
4及び第2の差信号検出回路34.35の各一方の入力
端に接続され、これら第4及び第2の差信号検出回路3
4.35の各他方の入力端にd、第4の太陽センサ28
の出力端が共通に接続される。このうち、上記第1及び
第2の差信号検出回路、? 2 、35の各出力端には
第1及び第2の太陽電池パネル21.22の平均YP軸
3゜まわりの太陽方向誤差信号QY3を出方する第1の
和信号検出回路36の各入力端に接続される。
FIG. 6 shows the configuration of the signal processing circuit of the first to fourth solar sensors 25 to 28, and the output terminal of the solar sensor 25 of the fungus 1 is connected to the YPP2O3 and X of the first solar panel 21.
First and third difference signal detection circuits 32 that output solar direction error signals QY1 and Qxl, respectively, that are too sensitive to the P axis 31.
33 in common. The output ends of the second and third sun sensors 26 and 27 are connected to the other input ends of the first and third difference signal detection circuits 32 and 33, respectively. Still these 2nd and 3rd
The respective output ends of the solar sensors 26, 27 are connected to the X, axis 31 and Y, axis 30-! of the second solar panel 22. The fourth and second difference signal detection circuits 34 and 35 are connected to one input terminal of each of the fourth and second difference signal detection circuits 34 and 35 that output the solar direction '° error signals Qx2 and QY2, respectively.
d, fourth solar sensor 28 at each other input end of 4.35
The output ends of the two are connected in common. Among these, the first and second difference signal detection circuits, ? Each output terminal of the first sum signal detection circuit 36 outputs a solar direction error signal QY3 around the average YP axis 3 degrees of the first and second solar panels 21.22 to each output terminal of 2 and 35. connected to.

一方、上記第3及び第4の差信号検出回路33゜34の
各出力端には太陽方向誤差信号QX+及びQX2の和信
号QX3を出力する第2の和信号検出回路37の各入力
端に接続される。そして、この第2の和信号検出回路3
7の出力端、上記第3及び第4の差信号検出回路33.
34の出力端は上記第1及び第2の太陽電池パネル21
゜220平均XP軸31まわりの太陽方向誤差信号Qx
4を出力する演算回路38の入力端に接続される。
On the other hand, each output terminal of the third and fourth difference signal detection circuits 33 and 34 is connected to each input terminal of a second sum signal detection circuit 37 that outputs a sum signal QX3 of the solar direction error signal QX+ and QX2. be done. This second sum signal detection circuit 3
7, the third and fourth difference signal detection circuits 33.
The output end of 34 is connected to the first and second solar panel 21.
゜220 average solar direction error signal Qx around the XP axis 31
It is connected to the input terminal of the arithmetic circuit 38 which outputs 4.

さて、このように構成された太陽電池パネル装置は次に
述べるように動作する。すなわち、上記太陽電池パネル
装置は第1及び第2の太陽電池パネル21.22に対す
る太陽光の入射角が変化すると、それを、第1〜第4の
太陽センサ25〜28が検出して第1〜第4の差信号検
出回路32.35,33.34に出力する。すると、こ
れら第1〜第4の差信号検出回路32゜35.33.3
4によって太陽方向誤差信号Q 、Q 、Q 、Q が
検出されると共に、YI Y2 Xi X2 第1の和信号検出回路36によって平均Y、軸30まわ
りの太陽方向誤差信号QY3が検出され、かつ演算回路
38によって平均XPQa 、? 1−5わりの太陽方
向誤差信号QX4が検出されて図示しない指向制御駆動
部に出力される。そこで、上記第1及び第2の太陽電池
パネル21.22は上記太陽方向誤差信号QY1 ’ 
QY2 ’ QY31QX1 +Q 、Q に応動する
上記指向制御駆動部を介x2 x4 して回転駆動されて太陽方向指向制御が行なわれる。
Now, the solar cell panel device configured as described above operates as described below. That is, in the solar panel device, when the angle of incidence of sunlight on the first and second solar panels 21 and 22 changes, the first to fourth solar sensors 25 to 28 detect it and - Output to fourth difference signal detection circuits 32.35, 33.34. Then, these first to fourth difference signal detection circuits 32°35.33.3
4, the solar direction error signals Q, Q, Q, Q are detected, and the first sum signal detection circuit 36 detects the average Y, solar direction error signal QY3 around the axis 30, and calculates The circuit 38 averages XPQa, ? A solar direction error signal QX4 of 1-5 is detected and output to a pointing control drive section (not shown). Therefore, the first and second solar panels 21 and 22 receive the solar direction error signal QY1'.
QY2' QY31QX1 +Q, and is rotationally driven via x2 x4 through the above-mentioned pointing control drive unit responsive to Q, and solar pointing control is performed.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明によれば最小数の第1〜
第4の太陽センサ32,35133J34を用いて第1
及び第2の太陽電池パネル21.22の各YP及びXP
軸30.:31捷わシの太IX弓方向誤差信号Q 、Q
 及びQ 、QYj Y2 XI X2 と平均Y、及びXP軸30,31まわシの太陽方向誤差
信号QY3及びQx4を検出するように構成したので、
第1及び第2の太陽電池パネル21゜22が略凹様に回
転駆動される法線方向の一致状態は熱論のこと、法線方
向の不一致状態においても太陽方向誤差信号を検出する
ことができ、その゛確実な太陽方向指向制御を行なうこ
とができる。
As detailed above, according to the present invention, the minimum number of first to
The first solar sensor using the fourth solar sensor 32, 35133J34
and each YP and XP of the second solar panel 21.22
Axis 30. :31 thick IX bow direction error signal Q,Q
and Q, QYj Y2 XI
The state in which the normal directions of the first and second solar panels 21 and 22 are rotationally driven in a substantially concave manner is thermal theory, and even in a state in which the normal directions do not match, a solar direction error signal can be detected. , it is possible to perform reliable solar pointing control.

なお、この発明は上記実施例に限定されるものではなく
、その他この発明の要旨を逸脱しない91i囲で種々の
変形を実施し得ることは云う迄もないことである。
It should be noted that the present invention is not limited to the above embodiments, and it goes without saying that various modifications can be made within the scope of 91i without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図はそれぞれ従来の太陽電池・臂
ネル装置を示す構成図、植成詳11i111)、回路構
成図、第4図はこの発明の一実施例に係る太陽電池パネ
ル装置を示す構成図、第5図は第4図の要部を示す構成
詳細図、第6図は第4図の信号処理回路を示す回路1;
1・ν成図である。 20・・・衛星、21・・・第1の太陽電池ノeネル、
22・・・第2の太陽電池パネル、23.24・・・回
転軸、25〜28・・・第1〜第4の太陽センサ、29
−ZP軸、30−Yp軸、31 ・XPI軸、32・・
・第1の差信号検出回路、33・・・第3の差信号検出
回路、34・・・第4の差信号検出回路、35・・・第
2の差信号検出回路、36・・・第1の和信号検出回路
、37・・・第2の和信号検出回路、38・・・演算回
路。 出願人代理人 弁理士 鈴 江 武 彦第1図 第3図 第4図 第6図
Figures 1, 2, and 3 are block diagrams showing a conventional solar cell/armpit device, a circuit diagram, and a circuit diagram, respectively, and Figure 4 is a solar cell according to an embodiment of the present invention. A configuration diagram showing the panel device, FIG. 5 is a detailed configuration diagram showing the main parts of FIG. 4, and FIG. 6 is a circuit 1 showing the signal processing circuit of FIG. 4;
It is a 1・ν composition diagram. 20... Satellite, 21... First solar cell node,
22... Second solar cell panel, 23.24... Rotating shaft, 25-28... First to fourth solar sensors, 29
-ZP axis, 30 -Yp axis, 31 ・XPI axis, 32...
・First difference signal detection circuit, 33... Third difference signal detection circuit, 34... Fourth difference signal detection circuit, 35... Second difference signal detection circuit, 36... Third difference signal detection circuit 1 sum signal detection circuit, 37... second sum signal detection circuit, 38... arithmetic circuit. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 3 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 太陽方向に対して指向制御される複数の太陽電池パネル
を有してガる太陽電池パネル装置において、前記複数の
太陽電池・9ネルの各1転軸まわりの太陽方向指向誤差
信号を検出する第1の検出手暉と前記複数の太陽電池ノ
Rネルに対する太陽光の゛方位及び仰角の平均値を検出
する第2の検出手段とを有してなる検出部を備えたこと
を特徴とする太陽電池/eネル装置。
In a solar cell panel device having a plurality of solar cell panels whose orientation is controlled in the direction of the sun, a solar cell panel device that detects a solar direction pointing error signal around one axis of rotation of each of the plurality of solar cells/9 channels; 1. A solar cell characterized in that it is equipped with a detection unit comprising a first detection device and a second detection device that detects an average value of the azimuth and elevation angle of sunlight with respect to the plurality of solar cell channels. Battery/e-nel device.
JP59062756A 1984-03-30 1984-03-30 Solar-cell panel device Pending JPS60206160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59062756A JPS60206160A (en) 1984-03-30 1984-03-30 Solar-cell panel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062756A JPS60206160A (en) 1984-03-30 1984-03-30 Solar-cell panel device

Publications (1)

Publication Number Publication Date
JPS60206160A true JPS60206160A (en) 1985-10-17

Family

ID=13209561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062756A Pending JPS60206160A (en) 1984-03-30 1984-03-30 Solar-cell panel device

Country Status (1)

Country Link
JP (1) JPS60206160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180464A (en) * 2005-12-28 2007-07-12 Kazuyuki Agata Automatic sunlight-tracking type highly efficient power generation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180464A (en) * 2005-12-28 2007-07-12 Kazuyuki Agata Automatic sunlight-tracking type highly efficient power generation apparatus

Similar Documents

Publication Publication Date Title
JPH0420124B2 (en)
US3435246A (en) Light radiation direction indicator with a baffle of two parallel grids
JPS60206160A (en) Solar-cell panel device
US3205362A (en) Photosensitive device to detect bearing deviation
JPH09145357A (en) Sun-direction detection apparatus
JP2001249001A (en) Capacitance type displacement detector
JPH10325717A (en) Detecting apparatus for solar direction
JP2633653B2 (en) Sun sensor
JPH07311035A (en) Sun sensor
JPS61200099A (en) Mirror scanning type biaxial earth sensor
JPS60189696A (en) Controller for attitude of artificial satellite
JP2798938B2 (en) 3-axis attitude control device
JPS6273109A (en) Solar sensor
JPH0333611A (en) Detecting method of attitude angle of artificial satellite
JP2535854Y2 (en) Sun sensor
JPS63131022A (en) Solar sensor
JPH01182719A (en) Sun acquisition apparatus of space machine
JPS62124409A (en) True north detecting device
JPH01297399A (en) Attitude controller for artificial satellite
JPS61226399A (en) Earth sensor for artificial satellite
JPS59192698A (en) Control system of attitude of artificial satellite
JPH02141615A (en) Earth sensor arrangement
JPH04231297A (en) Control device for driving solar cell paddle
JPH07165195A (en) Solar sensor
JPS62215817A (en) Posture sensor apparatus for artificial satellite