JPH01182719A - Sun acquisition apparatus of space machine - Google Patents

Sun acquisition apparatus of space machine

Info

Publication number
JPH01182719A
JPH01182719A JP63006004A JP600488A JPH01182719A JP H01182719 A JPH01182719 A JP H01182719A JP 63006004 A JP63006004 A JP 63006004A JP 600488 A JP600488 A JP 600488A JP H01182719 A JPH01182719 A JP H01182719A
Authority
JP
Japan
Prior art keywords
sun
sensor
solar
angle
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63006004A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Chokai
鳥海 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63006004A priority Critical patent/JPH01182719A/en
Publication of JPH01182719A publication Critical patent/JPH01182719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)

Abstract

PURPOSE:To obtain a compact apparatus characterized by easy adjustment, by using a sun sensor using one solar cell, rotating a space machine around its axis, which is perpendicular to the null direction of the sun sensor by a specified amount based on the output of an angle sensor, and switching two rotation control means, which are perpendicular to each other at a position, where the angle of the direction of the sun becomes the lowest angle. CONSTITUTION:Rotary axes (x) and (y) of two rotation control means are made perpendicular to each other with respect to the null direction (B) of a sun sensor 11. A coordinate system is formed with the rotary axes (x) and (y). Then, the axis of the null direction (b) of the sensor 11 passes the original point. The angle of the direction of the sun (a) is detected with the sensor 11 based on the output of one solar cell. The angular speed of the space machine is detected with an angular speed sensor 12. The output signals are inputted into an operating device 13. The rotary axis (x) and the rotary axis (y) are switched in this sequence with the device 13 through an actuator 14, and the space machine is rotated. The space machine is stopped at a position, where the angle of the direction of the sun is the lowest angle. This operation is repeated, and the position of the sun is focused to the original point. Thus, the angle of the direction of the sun is kept at zero, and the sun is kept acquired.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は、例えば人工衛星等の宇宙機に搭載され、太
陽方向を検出して宇宙機を任意の姿勢から太陽指向姿勢
に駆動制御する場合に用いられる太陽捕捉装置の改良に
関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) This invention is mounted on a spacecraft such as an artificial satellite, detects the direction of the sun, and changes the spacecraft from an arbitrary attitude to a sun-oriented attitude. This invention relates to improvements in solar capture devices used for drive control.

(従来の技術) 一般に、人工衛星の太陽捕捉は、太陽センサで太陽方向
を検出すると共に角速度センサで衛星回転軸に対する太
陽の角速度を検出し、これらの検出出力に基づいてガス
ジェット装置あるいはリアクションホイール等のアクチ
ュエータからなる姿勢制御システムを駆動することによ
って行なっている。太陽センサはそれぞれセンサヌル方
向に対して所定角度を与えられた4個の太陽電池セルか
らなり、°各セルの出力信号を処理することによって太
陽方向角度を検出する。
(Prior art) In general, solar capture for an artificial satellite involves detecting the direction of the sun with a sun sensor, and detecting the angular velocity of the sun with respect to the satellite rotation axis with an angular velocity sensor.Based on these detection outputs, a gas jet device or a reaction wheel is This is done by driving an attitude control system consisting of actuators such as The solar sensor consists of four solar cells, each of which has a predetermined angle with respect to the sensor null direction, and detects the solar direction angle by processing the output signal of each cell.

すなわち、太陽電池セルの出力特性は一般に太陽光入射
角の余弦に比例し、第4図に示すように角度αを持たせ
た一組(2個)の太陽電池セルA。
That is, the output characteristic of a solar cell is generally proportional to the cosine of the sunlight incident angle, and as shown in FIG. 4, a pair (two) of solar cells A have an angle α.

日の出力の差をとると第5図に示す実線のようになる。If we take the difference in daily output, we get the solid line shown in Figure 5.

第5図において、S^はセルAの出力、SRはセルBの
出力、Slは合成出力(差)である。第5図から明らか
なように、1組の太陽電池セルA、Bの出力差をとれば
1軸回りの太陽方向角度θに比例した信号を得ることが
できる。そこで、互いに直交するように2組の太陽電池
セルA〜Dを配置し、各組のセル出力差を求めることに
よって直交する2軸回りの太陽方向角度信号を求め、こ
れらの信号と角速度信号を用いて太陽捕捉を行なってい
る。尚、太陽方向角度θは太陽センサヌル方向と太陽光
入射方向とのなす角である。
In FIG. 5, S^ is the output of cell A, SR is the output of cell B, and Sl is the combined output (difference). As is clear from FIG. 5, by taking the output difference between a pair of solar cells A and B, a signal proportional to the solar direction angle θ around one axis can be obtained. Therefore, two sets of solar cells A to D are arranged orthogonally to each other, and the solar direction angle signals around the two orthogonal axes are obtained by determining the cell output difference between each set, and these signals and the angular velocity signal are It is used to capture the sun. Note that the solar direction angle θ is the angle formed between the solar sensor null direction and the sunlight incident direction.

こめように、従来の宇宙機の太陽捕捉装置では、別々の
方向に向けた少なくとも4個の太陽電池セルを必要とし
、各セルの配置調整が難しい。また各セルの出力信号を
信号処理しなければならないため、構成が複雑かつ大形
であり、衛星搭載において大きな問題となっている。
In general, conventional solar capture devices for spacecraft require at least four solar cells oriented in different directions, making it difficult to adjust the placement of each cell. Furthermore, since the output signal of each cell must be processed, the configuration is complicated and large, which poses a major problem when mounted on a satellite.

(発明が解決しようとする問題点) 以上述べたように従来の宇宙機の太陽捕捉装置では、太
陽センサが大形かつ複雑であり、また配置調整が困難で
あった。
(Problems to be Solved by the Invention) As described above, in the conventional solar capture device for a spacecraft, the solar sensor is large and complicated, and the arrangement is difficult to adjust.

この発明は上記問題点を解決するためになされたもので
、太陽センサが小形かつ簡易であり、調整も容易な宇宙
機の太陽捕捉装置を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a sun capture device for a spacecraft in which the sun sensor is small and simple, and the adjustment is easy.

[発明の構成] (問題点を解決するための手段) 上記目的を達成するためにこの発明に係る宇宙機の太陽
捕捉装置は、1個の太陽電池セルの出力から太陽方向角
度を検出する太陽センサと、宇宙機の角速度を検出する
角速度センサと、この角速度センサの出力に基づいて宇
宙機を前記太陽センサのヌル方向に垂直な軸回りに一定
回転させる第1の回転制御手段と、前記角速度センサの
出力に基づいて宇宙機を前記太陽センサのヌル方向に垂
直でかつ前記第1の回転制御手段の回転軸に垂直な軸回
りに一定回転させる第2の回転制御手段と、前記太陽セ
ンサで検出される太陽方向角度が最低になる位置で前記
第1及び第2の回転制御手段を切換える切換手段とを具
備して構成される。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, a solar capture device for a spacecraft according to the present invention includes a solar capture device that detects a solar direction angle from the output of one solar cell. a sensor, an angular velocity sensor that detects the angular velocity of the spacecraft, a first rotation control means that rotates the spacecraft at a constant rate around an axis perpendicular to the null direction of the solar sensor based on the output of the angular velocity sensor, and the angular velocity a second rotation control means for rotating the spacecraft at a constant rate around an axis perpendicular to the null direction of the sun sensor and perpendicular to the rotation axis of the first rotation control means based on the output of the sensor; and switching means for switching the first and second rotation control means at a position where the detected solar direction angle is the lowest.

(作用) 上記構成による宇宙機の太陽捕捉装置において、第1及
び第2の回転制御手段の回転軸はそれぞれ太陽センサの
ヌル方向に対してかつ互いに垂直であり、各回転軸によ
って座標系を作ると太陽センサのヌル方向軸が原点を通
る。第1の回転手段によって宇宙機を回転させ、太陽方
向角度が最低となる位置で停止させると、太陽位置は上
記座標系において第1の回転制御手段の回転軸上にある
。ここで、第2の回転制御手段に切換え、第2の回転手
段によって宇宙機を回転させ、太陽方向角度が最低とな
る位置で停止させると、太陽位置は上記座標系において
第2の回転制御手段の回転軸上、すなわち原点にある。
(Operation) In the spacecraft sun capture device configured as described above, the rotation axes of the first and second rotation control means are respectively perpendicular to the null direction of the sun sensor and mutually perpendicular, and a coordinate system is created by each rotation axis. and the null direction axis of the sun sensor passes through the origin. When the spacecraft is rotated by the first rotation means and stopped at a position where the sun direction angle is the lowest, the sun position is on the rotation axis of the first rotation control means in the coordinate system. Here, if the spacecraft is switched to the second rotation control means and the spacecraft is rotated by the second rotation means and stopped at the position where the solar direction angle is the lowest, the sun position is determined by the second rotation control means in the above coordinate system. on the axis of rotation, that is, at the origin.

以後、この操作を繰返すことによって太陽位置は原点に
収束するようになり、これによって太陽方向角度を0″
に維持し、太陽捕捉を行なうことができる。
From then on, by repeating this operation, the sun position will converge to the origin, thereby reducing the sun direction angle to 0''
can be maintained and solar capture can be performed.

(実施例) 以下、第1図乃至第3図を参照してこの発明の一実施例
を説明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

第1図は宇宙機を太陽指向姿勢に制御する場合のこの発
明の構成を示すもので、11は太陽方向角度θを検出す
る太陽センサ、I2は宇宙機の角速度を検出する角速度
センサ、13は太陽センサ11及び角速度センサ12の
各出力信号に基づいて駆動信号を生成する演算処理装置
、14はこの演算処理装置13からの駆動信号を受けて
宇宙機の姿勢を制御するアクチュエータである。
FIG. 1 shows the configuration of the present invention when controlling a spacecraft to a sun-oriented attitude, where 11 is a solar sensor that detects the sun direction angle θ, I2 is an angular velocity sensor that detects the angular velocity of the spacecraft, and 13 is a solar sensor that detects the angular velocity of the spacecraft. An arithmetic processing unit 14 that generates drive signals based on output signals of the sun sensor 11 and angular velocity sensor 12 is an actuator that receives drive signals from the arithmetic processing unit 13 and controls the attitude of the spacecraft.

太陽センサ11は1個の太陽電池セルで構成され、第2
図に示すように太陽方向角度θの余弦に比例した信号を
出力する。すなわちセンサ出力は、太陽方向角度θが太
陽センサヌル方向(太陽電池セルの受光面垂直方向)に
一致(θ−00)したとき最大となり、大きくなるに従
って減少する。演算処理装置13は小型コンピュータ等
で構成され、太陽センサ11及び角速度センサ12の各
出力信号を入力し、太陽センサ11で得られる太陽方向
角度θが小さくなる方向にアクチュエータ駆動信号を制
御するものである。
The solar sensor 11 is composed of one solar cell, and a second
As shown in the figure, a signal proportional to the cosine of the solar direction angle θ is output. That is, the sensor output reaches a maximum when the solar direction angle θ coincides with the solar sensor null direction (direction perpendicular to the light-receiving surface of the solar cell) (θ-00), and decreases as it increases. The arithmetic processing unit 13 is composed of a small computer, etc., and inputs each output signal of the sun sensor 11 and the angular velocity sensor 12, and controls the actuator drive signal in a direction in which the solar direction angle θ obtained by the sun sensor 11 becomes smaller. be.

上記構成において、以下第3図を参照してその動作につ
いて説明する。
The operation of the above configuration will be described below with reference to FIG.

まず、初期状態において、太陽センサ11のヌル方向を
宇宙機の太陽指向姿勢に一致させる。また、演算処理装
置13にて第3図に示すようなx−y座標系を作成する
。この座標系の原点は太陽センサヌル方向を示す直線上
の一点であり、X軸及びy軸はヌル方向に対して垂直で
ある。
First, in the initial state, the null direction of the sun sensor 11 is made to match the sun pointing attitude of the spacecraft. Further, the arithmetic processing unit 13 creates an x-y coordinate system as shown in FIG. The origin of this coordinate system is a point on a straight line indicating the solar sensor null direction, and the X-axis and y-axis are perpendicular to the null direction.

上記座標系において、太陽方向軸上に太陽方向角度θを
原点からの距離としてプロットし、この点を太陽位置と
する。今、太陽捕捉開始時点で太陽位置がA点にあると
する。ここで、太陽センサ11及び角速度センサ12の
出力に基づいて演算処理装置13によりアクチュエータ
14を通じて宇宙機をX軸回りに一定回転させると、太
陽位置は図に示すように楕円上を移動する。そこで、太
陽センサ11の出力が最大になる位置、すなわちθが最
小になる位置で停止させる。このとき、太陽位置は図中
B点、すなわちX軸上にある。
In the above coordinate system, the solar direction angle θ is plotted as a distance from the origin on the solar direction axis, and this point is defined as the sun position. Assume that the sun position is at point A at the start of sun capture. Here, when the spacecraft is rotated a certain amount around the X axis through the actuator 14 by the arithmetic processing unit 13 based on the outputs of the sun sensor 11 and the angular velocity sensor 12, the sun position moves on an ellipse as shown in the figure. Therefore, the solar sensor 11 is stopped at a position where the output of the solar sensor 11 is maximum, that is, at a position where θ is minimum. At this time, the sun position is at point B in the figure, that is, on the X axis.

次に、同様にして宇宙機をy軸回りに回転させ、太陽セ
ンサ11の出力が最大になり、θが最小になる位置で停
止させる。このとき、太陽位置はX軸上を移動し、図中
y軸上の0点つまり原点で停止する。この原点の位置は
θ−06で、太陽がセンサヌル方向にあることを示す。
Next, the spacecraft is similarly rotated around the y-axis and stopped at a position where the output of the solar sensor 11 is maximized and θ is minimized. At this time, the sun position moves on the X-axis and stops at the 0 point, that is, the origin, on the y-axis in the figure. The position of this origin is θ-06, indicating that the sun is in the sensor null direction.

さらにX軸回りの検出、y軸回りの検出を順次繰返せば
、宇宙機が例えば軌道上を移動していても太陽位置は常
に原点(0点)に収束するようになる。これによって太
陽方向がセンサヌル方向に一致し続け、宇宙機は太陽を
捕捉して太陽指向姿勢に制御される。
Furthermore, by sequentially repeating the detection around the X-axis and the detection around the y-axis, the sun position will always converge to the origin (0 point) even if the spacecraft is moving on an orbit, for example. As a result, the direction of the sun continues to match the direction of the sensor null, and the spacecraft captures the sun and is controlled to a sun-oriented attitude.

したがって、上記太陽捕捉装置は、太陽センサ11を太
陽電池セルで構成しているので小形、簡易でかつ軽量で
あり、太陽センサヌル方向を宇宙機の太陽指向姿勢に一
致させるだけでよいのでその角度調整も極めて容易であ
る。
Therefore, the above-mentioned solar capture device is small, simple, and lightweight since the solar sensor 11 is composed of a solar battery cell, and it is only necessary to align the solar sensor null direction with the solar pointing attitude of the spacecraft, so its angle can be adjusted. It is also extremely easy.

尚、通常宇宙機は電力発生用の太陽電池を搭載している
ので、この太陽電池の出力をセンサ出力として用いれば
専用の太陽センサを省略することができる。また、角速
度センサも宇宙機搭載のものを用いれば特別に設ける必
要はない。この発明は、宇宙機を太陽指向姿勢に制御す
る場合に限らず、人工衛星の太陽電池パネルを太陽方向
に向ける場合等、種々の宇宙発電システム等にも応用可
能である。
Incidentally, since a spacecraft is normally equipped with a solar cell for power generation, a dedicated solar sensor can be omitted by using the output of this solar cell as a sensor output. Further, if an angular velocity sensor is used that is mounted on the spacecraft, there is no need to provide a special angular velocity sensor. The present invention is applicable not only to controlling a spacecraft to a sun-oriented attitude, but also to various space power generation systems, such as when directing a solar panel of an artificial satellite toward the sun.

[発明の効果] 以上述べたようにこの発明によれば、太陽センサが小形
かつ簡易であり、調整も容易な宇宙機の太陽捕捉装置を
提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a sun capture device for a spacecraft in which the sun sensor is small and simple, and the adjustment is easy.

【図面の簡単な説明】 第1図はこの発明に係る宇宙機の太陽捕捉装置の一実施
例を示すブロック構成図、第2図は同実施例の太陽セン
サの太陽方向角度に対する出力特性を示す特性図、第3
図は同実施例の動作を説明するための図、第4図及び第
5図はそれぞれ従来の宇宙機の太陽捕捉装置の動作を説
明するための図である。 11・・・太陽センサ、12・・・角速度センサ、13
・・・演算処理装置、14・・・アクチュエータ、θ・
・・太陽方向角度。 出願人代理人 弁理士 鈴江武彦 かへ喝 第1図
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a block diagram showing an embodiment of a sun capture device for a spacecraft according to the present invention, and Fig. 2 shows the output characteristics of the sun sensor of the same embodiment with respect to the sun direction angle. Characteristic diagram, 3rd
This figure is a diagram for explaining the operation of the same embodiment, and FIGS. 4 and 5 are diagrams for explaining the operation of the conventional solar capture device for a spacecraft, respectively. 11... Sun sensor, 12... Angular velocity sensor, 13
... Arithmetic processing unit, 14... Actuator, θ・
...Sun direction angle. Applicant's Representative Patent Attorney Takehiko Suzue Kaheki Figure 1

Claims (1)

【特許請求の範囲】[Claims]  1個の太陽電池セルの出力から太陽方向角度を検出す
る太陽センサと、宇宙機の角速度を検出する角速度セン
サと、この角速度センサの出力に基づいて宇宙機を前記
太陽センサのヌル方向に垂直な軸回りに一定回転させる
第1の回転制御手段と、前記角速度センサの出力に基づ
いて宇宙機を前記太陽センサのヌル方向に垂直でかつ前
記第1の回転制御手段の回転軸に垂直な軸回りに一定回
転させる第2の回転制御手段と、前記太陽センサで検出
される太陽方向角度が最低になる位置で前記第1及び第
2の回転制御手段を切換える切換手段とを具備する宇宙
機の太陽捕捉装置。
A solar sensor that detects the solar direction angle from the output of one solar cell, an angular velocity sensor that detects the angular velocity of the spacecraft, and a spacecraft that moves perpendicular to the null direction of the solar sensor based on the output of the angular velocity sensor. a first rotation control means for constant rotation around an axis; and a first rotation control means for rotating the spacecraft based on the output of the angular velocity sensor around an axis perpendicular to the null direction of the sun sensor and perpendicular to the rotation axis of the first rotation control means. a second rotation control means for rotating the sun at a constant speed; and a switching means for switching between the first and second rotation control means at a position where the sun direction angle detected by the sun sensor is the lowest. Capture device.
JP63006004A 1988-01-14 1988-01-14 Sun acquisition apparatus of space machine Pending JPH01182719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006004A JPH01182719A (en) 1988-01-14 1988-01-14 Sun acquisition apparatus of space machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006004A JPH01182719A (en) 1988-01-14 1988-01-14 Sun acquisition apparatus of space machine

Publications (1)

Publication Number Publication Date
JPH01182719A true JPH01182719A (en) 1989-07-20

Family

ID=11626595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006004A Pending JPH01182719A (en) 1988-01-14 1988-01-14 Sun acquisition apparatus of space machine

Country Status (1)

Country Link
JP (1) JPH01182719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240655A (en) * 1991-11-27 1993-09-17 Hughes Aircraft Co Method for searching and capturing celestial body of triaxial stable spacecraft
JP2019043430A (en) * 2017-09-05 2019-03-22 三菱電機株式会社 Sun capture device, control system and space structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240655A (en) * 1991-11-27 1993-09-17 Hughes Aircraft Co Method for searching and capturing celestial body of triaxial stable spacecraft
JP2019043430A (en) * 2017-09-05 2019-03-22 三菱電機株式会社 Sun capture device, control system and space structure

Similar Documents

Publication Publication Date Title
US3741500A (en) A cmg fine attitude control system
CN1039300C (en) Equipment and method for attitude control of cosmonautic vehicle rotating around fixed axle
CN110775302B (en) Emergency sun-checking method based on solar panel output current information
JPH08253200A (en) Control method of attitude of spaceship by scanning of earth sensor
US5139218A (en) Fast earth recovery procedure for earth-pointing satellites
JP4354144B2 (en) Transportation control system
JPH0420124B2 (en)
CN110641741B (en) Double-freedom-degree solar panel control method and control system thereof
US3350033A (en) Reaction wheel scanner
US4909460A (en) Device and method for aiming a space probe toward a celestial body
JPH05240655A (en) Method for searching and capturing celestial body of triaxial stable spacecraft
JPH01182719A (en) Sun acquisition apparatus of space machine
RU2414392C1 (en) Method of spacecraft axes orientation in solar orbital coordinate system
CN116331525B (en) Satellite flywheel rotating speed zero crossing avoidance method
JPH0632295A (en) System and method for detecting position of space- ship having tracker error of fixed star equalized along three axes intersecting at right angles
JP2798938B2 (en) 3-axis attitude control device
JPH0377903A (en) Method and device for condensing sunlight
JPH01292209A (en) Earth pick-up apparatus for space craft
JPH09145357A (en) Sun-direction detection apparatus
JPH01297399A (en) Attitude controller for artificial satellite
JPH072194A (en) Attitude control device for artificial satellite
JP2633653B2 (en) Sun sensor
JPH07311035A (en) Sun sensor
JPH07165195A (en) Solar sensor
JPH08258799A (en) Attitude control device