JPS60205909A - Light permeabile conductive film - Google Patents

Light permeabile conductive film

Info

Publication number
JPS60205909A
JPS60205909A JP6016484A JP6016484A JPS60205909A JP S60205909 A JPS60205909 A JP S60205909A JP 6016484 A JP6016484 A JP 6016484A JP 6016484 A JP6016484 A JP 6016484A JP S60205909 A JPS60205909 A JP S60205909A
Authority
JP
Japan
Prior art keywords
layer
conductive film
light
metal oxides
permeabile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6016484A
Other languages
Japanese (ja)
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP6016484A priority Critical patent/JPS60205909A/en
Publication of JPS60205909A publication Critical patent/JPS60205909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は透光性導電膜、特に金属酸化物からなる低抵抗
透光性導電膜に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light-transmitting conductive film, particularly a low-resistance light-transmitting conductive film made of a metal oxide.

従来、透光性導電膜または透光性導電性積層体は、例え
ば液晶ディスプレイ用の電極、エレクトロルミネンセン
ス用の電極、光導電性感光体用の電極をはしめ、ブラウ
ン管、各種測定器の窓部分の静電遮蔽層、帯電防止層、
発熱体等の電気、電子分野に広く利用されている。これ
らのうち、選択的光透過性を有する透光性遮蔽膜は、そ
の赤外光反射能によって太陽エネルギ利用のためのコレ
クタ用窓材として、又は建物の窓材として応用されてい
る。
Conventionally, light-transmitting conductive films or light-transmitting conductive laminates have been used, for example, for electrodes for liquid crystal displays, electrodes for electroluminescence, electrodes for photoconductive photoreceptors, and windows for cathode ray tubes and various measuring instruments. Electrostatic shielding layer, antistatic layer,
Widely used in electrical and electronic fields such as heating elements. Among these, transparent shielding films having selective light transmittance are used as window materials for collectors for solar energy utilization or as window materials for buildings due to their infrared light reflecting ability.

また情報処理の発展に伴って、ブラウン管に代わる表示
装置として、エレクトロル、ミネッセンス、液晶、プラ
ズマ、強誘電体を用いた各種の固体ディスプレイが開発
されており、これらのディスプレイには透光性電極が必
ず用いられる。更に、電気信号と光信号との相互作用ま
たは相互交換による新しい電気光学素子や記録材料が交
互の情報処理技術にとって有用視されてきているが、こ
れにも透光性および導電性を兼備した膜が必要とされる
。一方、こうした透光性導電膜は自動車、飛行機等にお
ける凝固防止用の透光性断熱窓としても利用可能である
In addition, with the development of information processing, various solid-state displays using electroluminescent, mineral, liquid crystal, plasma, and ferroelectric materials have been developed as display devices to replace cathode ray tubes, and these displays have translucent electrodes. is always used. Furthermore, new electro-optical elements and recording materials based on the interaction or mutual exchange of electrical and optical signals are becoming useful for information processing technology, and these also require films that are both transparent and conductive. is required. On the other hand, such a light-transmitting conductive film can also be used as a light-transmitting heat-insulating window for preventing solidification in automobiles, airplanes, etc.

特に、近年、液晶ディスプレイ、エレクトロルミネッセ
ンス、プラズマディスプレイ、エレクトロクロミックデ
ィスプレイ、螢光表示装置等においては、高画素表示の
要求が高まっており、これに伴って透明導電層からなる
電極によって画素部を形成すると同時に、金属層からな
る電極によって信号印加ラインを形成し、画素の表示速
度の向上と画像の改良とを図ることが提案されている。
In particular, in recent years, there has been an increasing demand for high-pixel displays in liquid crystal displays, electroluminescent displays, plasma displays, electrochromic displays, fluorescent display devices, etc., and along with this, pixel portions are formed using electrodes made of transparent conductive layers. At the same time, it has been proposed to form signal application lines using electrodes made of metal layers to improve the display speed of pixels and improve images.

この場合、金属層と透明導電層との積層体構造が透明基
板上に形成されることがある。
In this case, a laminate structure of a metal layer and a transparent conductive layer may be formed on a transparent substrate.

上記したごとき透明導電膜ば大別して、金属薄膜と金属
酸化物薄膜とに分けられる。
Transparent conductive films as described above can be broadly classified into metal thin films and metal oxide thin films.

前者は、金、パラジウム等を数100人の厚さに蒸着し
たものであって、導電性は良好であるが、一般に光透過
性が悪いとされている。
The former is made by vapor-depositing gold, palladium, etc. to a thickness of several hundred layers, and has good electrical conductivity, but is generally said to have poor light transmittance.

これに対して後者は、酸化インジューム、酸化ススまた
は両者の混合物、あるいはカドミュームと酸化スズとの
混合物等からなり、化学的製膜法(例えばスプレー法、
化学的気相成長法(CVD >。
On the other hand, the latter is made of indium oxide, soot oxide, a mixture of both, or a mixture of cadmium and tin oxide, and is formed by chemical film forming methods (e.g. spray method,
Chemical vapor deposition method (CVD>.

塗イ」法)や物理的製膜法(例えば真空蒸着法、イオン
ブレーティング法、スパンクリング法)によって形成さ
れる。
It is formed by a coating method) or a physical film forming method (e.g., vacuum evaporation method, ion blating method, spankling method).

化学的製膜法では、被蒸着基板の温度が一般に500〜
600℃と高くて生産性が悪いが、4IJ2府鮭3法不
匝−被青lト巷振の温痩肛へ勝に初春ζ倶厖′e8音+
で生蔭性本を枚が一物理的製膜法の場合ヒ にば、基板の温度は250〜300″Cが比較的低くて
よいとされている。
In the chemical film forming method, the temperature of the substrate to be deposited is generally 500 - 500℃.
The temperature is high at 600℃, which is bad for productivity, but the temperature of the 4IJ2 salmon 3 methods is low - the temperature of the blue salmon and the warm slender anus can be improved in early spring.
In the case of a physical film forming method, the temperature of the substrate may be relatively low at 250 to 300''C.

これらに対し、本発明は、導電膜を形成する際に、少な
くとも1つ以上の異なった元素を有する2種類以上の金
属酸化物を交互に積層していくことを特徴とする透光性
導電膜に関する。
In contrast, the present invention provides a light-transmitting conductive film characterized in that, when forming the conductive film, two or more types of metal oxides containing at least one different element are alternately laminated. Regarding.

即ち、絶縁性基板または絶縁物層もしくはこれらの上に
形成された半導体層の上に透光性導電膜を形成する際に
、第1の金属酸化物層を形成した後、第1の金属酸化物
層とは異なる少なくとも1つの元素を有する第3の金属
酸化物層を積層する。
That is, when forming a transparent conductive film on an insulating substrate, an insulating layer, or a semiconductor layer formed thereon, after forming a first metal oxide layer, the first metal oxide layer is formed. A third metal oxide layer having at least one element different from that of the metal oxide layer is deposited.

以後必要に応し、異なった元素を有する金属酸化物は2
種類のものを交互に積Jfiシてもよく、3種類のもの
を交互に積層してもよい。なおこれら金属酸化物のうち
、少なくとも1つは導電性を有するものであることとす
る。
From now on, metal oxides containing different elements may be added as necessary.
Different types of materials may be alternately stacked, or three types of materials may be alternately stacked. Note that at least one of these metal oxides is electrically conductive.

このように、異なった種類の金属酸化物を積層していく
ことにより、膜厚を厚くせずに低抵抗の透光性導電膜を
有することができた。
By stacking different types of metal oxides in this way, it was possible to have a light-transmitting conductive film with low resistance without increasing the film thickness.

これば異なった金属酸化物の第1層と第2層、第2層と
第3層等のように、その層界面において各々の層を構成
する元素の一部が反応し、金属化合物を形成するため、
低抵抗になると考えられる。
In this way, some of the elements constituting each layer react at the layer interface, such as the first layer and second layer, second layer and third layer, etc. of different metal oxides, forming a metal compound. In order to
It is thought that the resistance will be low.

し、交互に積層していった場合、第1屓中のInと第2
層中のsbが反応し、直接遷移型半導体である1−V族
の化合物半導体層を界面で形成し、そのため、電子の有
効質量が大きく、電子移動度が大きい。従って抵抗値は
下がるものと考えられる。
However, when laminated alternately, the In in the first layer and the second
sb in the layer reacts to form a 1-V group compound semiconductor layer, which is a direct transition type semiconductor, at the interface, and therefore the effective mass of electrons is large and the electron mobility is large. Therefore, it is thought that the resistance value will decrease.

このように本発明によれは、膜厚を増すことなく低抵抗
の透光性導電膜を得ることができる。
As described above, according to the present invention, a light-transmitting conductive film with low resistance can be obtained without increasing the film thickness.

以下に実施例を示す。Examples are shown below.

実施例1 基板としてガラス基板とステンレス基板上に絶縁膜を形
成した物を用いた。第1層としてITO(5wt%のS
nを含む)を真空蒸着法で200℃、酸素分圧2 X1
O−4torrの条件下で、約1000人作成し、次に
第2層としてSnO(7,5wt%sbを含む)を真空
蒸着法で同条件下で約200人種層し、さらに第3層と
してrTOを第1層と同条件で積層し、更に第4層とし
てSnOを第2層と同条件で積層し、総膜厚約2400
 人の透光性導電膜を得た。 −その各総でのシート抵
抗値(四端子法による)とガラス基板については500
nmでの透過率(自動分光度計を使用)を表1に示す。
Example 1 A glass substrate and a stainless steel substrate on which an insulating film was formed were used as substrates. ITO (5wt% S) as the first layer
n) by vacuum evaporation at 200°C and oxygen partial pressure 2X1
Approximately 1,000 layers of SnO (containing 7.5 wt% SB) were formed as a second layer under the same conditions using a vacuum evaporation method, and then a third layer was formed. As a fourth layer, rTO was laminated under the same conditions as the first layer, and then SnO was laminated as a fourth layer under the same conditions as the second layer, resulting in a total film thickness of approximately 2400.
A human translucent conductive film was obtained. -The total sheet resistance value (according to the four-terminal method) and the glass substrate are 500
The transmittance in nm (using an automatic spectrometer) is shown in Table 1.

表 1 シート抵抗値 透過率 (Ω/口)(%) 第1層(I−TO)64.4 84.0第2層(ITO
+SnO) 45.8 72.0第3層 (ITO+S
nO+ITO) 33.4 83.0第4層 (ITO
+SNO+ITO+SnO)21.9 74.5率の関
係を図1に示す。
Table 1 Sheet resistance value Transmittance (Ω/hole) (%) 1st layer (I-TO) 64.4 84.0 2nd layer (ITO)
+SnO) 45.8 72.0 3rd layer (ITO+S
nO+ITO) 33.4 83.0 4th layer (ITO
+SNO+ITO+SnO) 21.9 74.5 ratio relationship is shown in FIG.

図1に見られるように、積層回数を増す程に抵抗価値は
減少していくが、ある回数よりその減少率は段々小さく
なってゆ(。また透過率に関し、SnOを積層した場合
は悪くなり、次にITOを積層した場合は良くなってい
るが、これは本実施例の条件下で作成したSnO股の粒
i¥が大きいため、光が散乱してしまい、このような結
果になったと考えられる。
As shown in Figure 1, the resistance value decreases as the number of layers is increased, but after a certain number of times, the rate of decrease gradually becomes smaller (Also, regarding transmittance, when SnO is layered, it becomes worse When ITO was laminated next, the results were better, but this is because the SnO crotch grains i created under the conditions of this example were large, which caused light to scatter, resulting in this result. Conceivable.

実施例2 実施例1とまったく同じ方法、同じ条件で積層を行った
が、第1層をITO、第2層をSiOとした。
Example 2 Lamination was performed in exactly the same manner and under the same conditions as in Example 1, except that the first layer was ITO and the second layer was SiO.

この場合においても、図2に見られるように、積層する
ことにより、抵抗値は減少していくことがわかる。この
実施例のように最後の層をSiOとし非単結晶半導体上
に積層した場合、最後の層は半導体の保護被膜として用
いることが可能であった。
Even in this case, as seen in FIG. 2, it can be seen that the resistance value decreases as the layers are stacked. When the last layer was made of SiO and laminated on a non-single crystal semiconductor as in this example, the last layer could be used as a protective film for the semiconductor.

このように−、本発明によると、膜厚を厚くせずに低抵
抗の透光性導電膜を得ることができた。
In this way, according to the present invention, a light-transmitting conductive film with low resistance could be obtained without increasing the film thickness.

なお、導電膜を形成する手段としては真空蒸着法のみで
なく、スパッタ法、イオンブレーティング法、プラスマ
CVD法、光CVD法でもよい。
Note that the method for forming the conductive film is not limited to the vacuum evaporation method, but may also be a sputtering method, an ion blating method, a plasma CVD method, or a photoCVD method.

また絶縁性基板としてはガラス基板、セラミック基板、
可撓性の有機フィルムでもよい。
Insulating substrates include glass substrates, ceramic substrates,
A flexible organic film may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1RをITO、第2層をSnOとした場合の
シーI・抵抗値、透過率と積層回数の関係を示す。 第2図は第1層をITO、第2層をSiOとした場合の
シー]・抵抗、透過率と積層回数の関係を示す。 特許出願人 第 7 図 /z3 ぐ 左 49回数 (1町 苗え図
FIG. 1 shows the relationship between the C/resistance value, the transmittance, and the number of laminations when the first layer is ITO and the second layer is SnO. FIG. 2 shows the relationship between resistance, transmittance, and number of laminations when the first layer is ITO and the second layer is SiO. Patent applicant Figure 7/z3 left 49 times (1 town seedling map

Claims (1)

【特許請求の範囲】 1、絶縁性基板または絶縁物層および前記基板または絶
縁物層上に設けられた非単結晶半導体層上に透光性導電
膜を形成する際に、少なくとも1つ以上の異なった元素
を有する2種類以上の金属酸化物を交互に積層していく
ことを特徴とする透光性導電膜。 2、特許請求の範囲第1項において、少なくとも1つ以
上の異なった元素を有する2種類以上の金属酸化物を交
互に積層する回数は3回以上であることを特徴とする透
光性導電膜。 3、特許請求の範囲第1項において、前記金属酸化物の
うち少なくとも1つは高い導電性を有することを特徴と
する透光性導電膜。
[Claims] 1. When forming a transparent conductive film on an insulating substrate or an insulating layer and a non-single-crystal semiconductor layer provided on the substrate or insulating layer, at least one A translucent conductive film characterized by alternately laminating two or more types of metal oxides containing different elements. 2. A transparent conductive film according to claim 1, characterized in that two or more metal oxides containing at least one different element are alternately laminated three or more times. . 3. The light-transmitting conductive film according to claim 1, wherein at least one of the metal oxides has high conductivity.
JP6016484A 1984-03-28 1984-03-28 Light permeabile conductive film Pending JPS60205909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6016484A JPS60205909A (en) 1984-03-28 1984-03-28 Light permeabile conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6016484A JPS60205909A (en) 1984-03-28 1984-03-28 Light permeabile conductive film

Publications (1)

Publication Number Publication Date
JPS60205909A true JPS60205909A (en) 1985-10-17

Family

ID=13134238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6016484A Pending JPS60205909A (en) 1984-03-28 1984-03-28 Light permeabile conductive film

Country Status (1)

Country Link
JP (1) JPS60205909A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259888A (en) * 1975-11-12 1977-05-17 Matsushita Electric Ind Co Ltd Manufacturing of two layer transparent conduction film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259888A (en) * 1975-11-12 1977-05-17 Matsushita Electric Ind Co Ltd Manufacturing of two layer transparent conduction film

Similar Documents

Publication Publication Date Title
US6040056A (en) Transparent electrically conductive film-attached substrate and display element using it
US6014196A (en) Transparent electrically conductive film-attached substrate
CN203658697U (en) Conducting support for vitrage with variable scattering characteristic of liquid crystal medium and vitrage
CN101622721B (en) Transparent electrode for solar cell and method for manufacturing same
CN105374845A (en) Organic lighting emitting display device including light absorbing layer and method for manufacturing same
CN101416320A (en) TFT substrate, reflective TFT substrate, and manufacturing method thereof
CN101379539A (en) Reflection type TFT substrate and method for manufacturing reflection type TFT substrate
JPS63239044A (en) Transparent conductive laminate
CN101097948A (en) Transparent conductive film, semiconductor device and active matrix display unit
JPH09221340A (en) Substrate with transparent conductive film
JP2004050643A (en) Thin film laminated body
JPS6196609A (en) Transparent conductive film
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
JPH11174993A (en) Substrate with transparent conductive film and flat type display element using the same
JPS60205909A (en) Light permeabile conductive film
JP2793102B2 (en) EL element
JPH09251161A (en) Substrate for display element
JPS6174838A (en) Transparent conductive laminate
JPH11262968A (en) Transparent conductive film
JPH10208554A (en) Transparent conductive film and liquid crystal element using the same
CN214152473U (en) Double-sided conductive film and touch screen
JPS6380413A (en) Transparent conductor
JPH04340522A (en) Transparent conductive film
JPS614094A (en) Electro-optic function element and manufacture thereof
JPS63252304A (en) Transparent conducting substrate