JPS60205271A - Thermoelectric cooling type radiation detector - Google Patents

Thermoelectric cooling type radiation detector

Info

Publication number
JPS60205271A
JPS60205271A JP6080484A JP6080484A JPS60205271A JP S60205271 A JPS60205271 A JP S60205271A JP 6080484 A JP6080484 A JP 6080484A JP 6080484 A JP6080484 A JP 6080484A JP S60205271 A JPS60205271 A JP S60205271A
Authority
JP
Japan
Prior art keywords
detection element
radiation
coolor
cylinder
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6080484A
Other languages
Japanese (ja)
Inventor
Tetsuo Imai
今井 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6080484A priority Critical patent/JPS60205271A/en
Publication of JPS60205271A publication Critical patent/JPS60205271A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/244Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To dispense with liquid nitrogen while making noise components hard to overlap a signal from a radiation detection element by employing a thermoelectric coolor utilizing the Peltier effect of a semiconductor to cool a radiation detector. CONSTITUTION:Thermoelectric coolors 15a are connected in multiple stages at the bottom of a radiation element 1 to reduce the detection element 1 to a low temperature level. Then, the undersurface of the detection element 1 is cooled with the coolor 15a. Heat deprived of by the detection element 1 is absorbed by a coolor 15b via an internal cylinder 17 and transmitted to a lower flange 18. Then, the heat is transmitted to a fin 19 and dissipated by aircooling. On the other hand, the external cylinder 20 is made vacuum inside to prevent the transfer of heat depending on convection. The internal cylinder 17 is arranged to prevent radiant heat to the detection element 1 from the external cylinder 20. In addition, the use of O rings 23 and 24 generates a pressure between the undersurface of the cylinder 17 and the top surface of the coolor 15b and the undersurface of the coolor 15b and the top surface of a lower flange thereby improving the cooling efficiency with a better thermal contact.

Description

【発明の詳細な説明】 [発明の技術分野] この発BAVi電子冷却型放射線検出器に係り、特に電
子冷却型放射線検出器を冷却する方法として。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to a BAVi electronically cooled radiation detector, particularly as a method for cooling the electronically cooled radiation detector.

従来の液体窒素を用いる方法の代わりに電子冷却素子を
使用すること仁より直流電流を供給するだけで冷却する
ことが可能な放射線検出器に関する。
The present invention relates to a radiation detector that can be cooled simply by supplying direct current by using an electronic cooling element instead of the conventional method using liquid nitrogen.

[発明の技術的背景とその問題点] 従来、放射線検出器を冷却するのに液体IIji素が用
いられていた。第1図は放射線検出素子の従来の冷却方
法の一例を示す縦IOT面図でおる。1は放射線検出素
子、2は放射線測定部、3は信号線である。1の放射線
検出素子を冷却するのに液体窒素容器7の内部に貯蔵し
た液体窒素6を利用するものでおる。すなわち液体簡素
6の中には冷却棒4が挿入されている。通常冷却棒4は
銅のような熱伝導のよい金属を使用しているために放射
線検出素子1は、液体窒素と殆んど同程度まで冷却され
る。真空容器5は冷却棒付近の対流による熱伝導を防い
でいる08は液体窒素の供給口である。
[Technical background of the invention and its problems] Conventionally, liquid IIji elements have been used to cool radiation detectors. FIG. 1 is a vertical IOT view showing an example of a conventional cooling method for a radiation detection element. 1 is a radiation detection element, 2 is a radiation measuring section, and 3 is a signal line. The liquid nitrogen 6 stored in the liquid nitrogen container 7 is used to cool the radiation detection element 1. That is, the cooling rod 4 is inserted into the liquid stream 6. Since the cooling rod 4 is usually made of a metal with good thermal conductivity such as copper, the radiation detection element 1 is cooled to almost the same level as liquid nitrogen. The vacuum container 5 prevents heat transfer due to convection near the cooling rod. 08 is a liquid nitrogen supply port.

以上説明した従来例では、放射線検出素子を冷却するの
に大型の液体窒素容器が必要なので設置するのに広い場
所を必要とした。また液体輩素を絶やさないように供給
しなければならず、保守上大変な労力を要していた。
In the conventional example described above, a large liquid nitrogen container is required to cool the radiation detection element, so a large space is required for installation. In addition, it was necessary to constantly supply liquid nutrient, which required a great deal of maintenance effort.

[発明の目的] この発明は上記の欠点を解決す、るためになされたもの
で、液体窒素の供給が不快で、なおかつ放射線検出素子
からのイs号に雑音成分かに畳しにくい構造にした小型
で軽量な電子冷却型放射線検出器を提供するものである
[Object of the Invention] This invention has been made to solve the above-mentioned drawbacks, and has a structure in which the supply of liquid nitrogen is unpleasant and it is difficult to mix noise components with the noise component from the radiation detection element. The present invention provides a small and lightweight electronically cooled radiation detector.

[発明の概要] この発明によれば、半導体のベルチェ効果を利用した電
子冷却器により放射線検出器を冷却するので液体鴛素の
供給が不用となる。さらに放射線検出素子より発生する
微弱な46号を電気的にシールドされた容器の中で増幅
する為に雑音成分が1+>1.ない。(本発明が実開昭
56−119534と異なる点は1%電子冷却器多層構
造にして、到達最低m度を下げた点と、増幅器を内蔵し
て46号の%を向上させた点にある。) [発明の実施例] 以下図面を参照してこの発明の詳細な説明する。
[Summary of the Invention] According to the present invention, a radiation detector is cooled by an electronic cooler that utilizes the Bertier effect of a semiconductor, so that there is no need to supply liquid lyron. Furthermore, since the weak No. 46 generated by the radiation detection element is amplified in an electrically shielded container, the noise component is 1+>1. do not have. (The difference between this invention and Utility Model Application No. 56-119534 is that it uses a 1% electronic cooler multi-layered structure to lower the minimum attainable m degrees, and that it has a built-in amplifier to improve the % of No. 46. .) [Embodiments of the Invention] The present invention will be described in detail below with reference to the drawings.

第2図はベルチェ効果の原理を表わした図である。n型
半導体9とp型半導体10を金Jlillで接続し、金
属12.13を通して直流電源14より電流を流すと、
金属IIの面は吸熱され金JIt12,13では発熱が
起きる。したがって、吸熱側に放射線検出器を設置すれ
ば、電気を供給するだけで冷却が可能になる。1.5 
Vi電子冷却器を示している。
FIG. 2 is a diagram showing the principle of the Beltier effect. When the n-type semiconductor 9 and the p-type semiconductor 10 are connected with gold Jill, and a current is passed from the DC power supply 14 through the metal 12.13,
The metal II surface absorbs heat, and the gold JIt12 and 13 generate heat. Therefore, if a radiation detector is installed on the endothermic side, cooling can be achieved simply by supplying electricity. 1.5
Vi electronic cooler is shown.

第3図は、本発明に係る電子冷却型放射線検出器の一実
施例を表わす縦断面図である。まず構成について説明す
る。放射線検出素子1の下部には電子冷却器15aを多
段に接続して配置する。多段にする理由は熱落差を大き
くして、放射線検出素子をより低温にする為である。放
射線検出素子の周囲には固定ジグ16を配置する。固定
ジグ16と電子冷却器15Mは内側円筒17内に収納さ
れる。内側円筒17の下部には電子冷却器15bを配置
し、さらにその下部には下部フランジ18及びフィン1
9を配置する。さらに、下部フランジ18の上を外側円
筒20及び上部フランジ21で槍ってその内部空間は、
排気口22より排気して真空にする。23.24は気密
保持用のOリングである。25Vi増幅器である。26
け気密性のコネクタであり増幅器の信号伝送及び電子冷
却器へ供給する直流の伝送に用いる。
FIG. 3 is a longitudinal sectional view showing one embodiment of the electronically cooled radiation detector according to the present invention. First, the configuration will be explained. Below the radiation detection element 1, electronic coolers 15a are arranged in a multi-stage connection. The reason for using multiple stages is to increase the heat drop and lower the temperature of the radiation detection element. A fixing jig 16 is placed around the radiation detection element. The fixing jig 16 and the electronic cooler 15M are housed within the inner cylinder 17. An electronic cooler 15b is arranged at the bottom of the inner cylinder 17, and a lower flange 18 and fins 1 are arranged at the bottom of the electronic cooler 15b.
Place 9. Further, the inner space of the lower flange 18 is
It is evacuated from the exhaust port 22 to create a vacuum. 23 and 24 are O-rings for maintaining airtightness. It is a 25Vi amplifier. 26
This is an airtight connector used for transmitting amplifier signals and direct current supplied to electronic coolers.

次に作用について説明する。放射線検出素子1け電子冷
却器15Mによってその下面を冷却される。
Next, the effect will be explained. The lower surface of the radiation detection element is cooled by a single electronic cooler 15M.

電子冷却器15aは熱的に直列に接続されているので、
放射線検出素子1で奪った熱は、内側円筒17に伝達さ
れる。内側円筒17に伝達された熱は、電子冷却器15
bに吸熱され、その熱は下部フランジ18に伝達される
。さらに、下部フランジの熱はフィン19に伝達されて
、フィンからは空冷で熱を放散する。以上の様に放射線
検出素子の熱は%電子冷却器によってフィンまで伝達さ
れるのでこのフィンを1強制空冷又は自然空冷で冷却す
ればよい。
Since the electronic coolers 15a are thermally connected in series,
The heat removed by the radiation detection element 1 is transferred to the inner cylinder 17. The heat transferred to the inner cylinder 17 is transferred to the electronic cooler 15
b absorbs heat, and the heat is transferred to the lower flange 18. Furthermore, the heat of the lower flange is transferred to the fins 19, and the heat is dissipated from the fins by air cooling. As described above, the heat of the radiation detection element is transferred to the fins by the electronic cooler, so the fins may be cooled by forced air cooling or natural air cooling.

一方外側円筒20の内部は真をにして対流仁よる熱伝達
を防止している。内側円筒内部及び固定ジグの上部空間
も真空である。又、内側円筒17、は、外側円筒20か
ら放射線検出素子1への輻射熱を防止する為の物であり
、内側円筒は電子冷却器15bの動作により外側円筒2
Uより数10度C温度が低くなっており放射線検出素子
1への入力熱量を少なくしている。Oリング23は、外
側円筒側の内部を真空にするための気密シール用、0リ
ング冴は電子冷却器15bの熱伝達性能を良くするため
に用いる加圧用の0リングで、これの使用により、内側
円筒17の下面と電子冷却器15bの上面及び、電子冷
却器15bの下面と下部フランジ上面間に圧力がかかる
ために熱的接触が良好になり冷却効率が向上する。内側
円筒と下部フランジの間をビスで止めることも可能だが
、この場合には高温側の下部フランジの熱がビスを通し
て内側円筒の方へ流れ込むので内側円筒の温度が高くな
り冷却効率が低下する。電子回路回路25は放射線検出
素子1より発生する微弱信号を増幅する為の物であり、
外側円筒20の内部に収納することにより、外部の電界
からシールドされた状態で前記微弱1g号の増幅を行う
ので%の良い良好な信号を気密性コネクタあから取り出
すことができる。気密性コネクタ26は前記の他に直流
電源14からの電流を電子冷却器15へ伝送する為と、
電子回路5への電源供給用にも使用する。27は、放射
線検出用の窓でおる。
On the other hand, the inside of the outer cylinder 20 is lined to prevent heat transfer due to convection. The interior of the inner cylinder and the upper space of the fixing jig are also vacuumed. The inner cylinder 17 is for preventing radiant heat from the outer cylinder 20 to the radiation detection element 1, and the inner cylinder 17 is used to prevent the outer cylinder 2 from being radiated by the operation of the electronic cooler 15b.
The temperature is several tens of degrees C lower than that of U, and the amount of heat input to the radiation detection element 1 is reduced. The O-ring 23 is used for airtight sealing to create a vacuum inside the outer cylinder side, and the O-ring 23 is used for pressurization to improve the heat transfer performance of the electronic cooler 15b.By using this, Since pressure is applied between the lower surface of the inner cylinder 17 and the upper surface of the electronic cooler 15b, and between the lower surface of the electronic cooler 15b and the upper surface of the lower flange, thermal contact is improved and cooling efficiency is improved. It is also possible to fasten the space between the inner cylinder and the lower flange with screws, but in this case, the heat from the lower flange on the high temperature side flows into the inner cylinder through the screws, increasing the temperature of the inner cylinder and reducing cooling efficiency. The electronic circuit 25 is for amplifying the weak signal generated by the radiation detection element 1.
By housing it inside the outer cylinder 20, the weak 1g signal is amplified while being shielded from external electric fields, so a good signal with a high percentage can be extracted from the airtight connector. In addition to the above, the airtight connector 26 is used for transmitting current from the DC power supply 14 to the electronic cooler 15.
It is also used to supply power to the electronic circuit 5. 27 is a window for detecting radiation.

m4図は、第3図のA −A’断面図で電子回路5と内
側円筒17のみ記載した。図の様に、電子回路基板を馬
蹄形にすることにより、内側円筒17と外側円筒20の
間に設置することが可能になる。
Figure m4 is a sectional view taken along the line A-A' in Figure 3, and shows only the electronic circuit 5 and the inner cylinder 17. As shown in the figure, by forming the electronic circuit board into a horseshoe shape, it becomes possible to install it between the inner cylinder 17 and the outer cylinder 20.

[号ら明の効果] 以上述べた本発明を用いることにエリ次の効果が祷られ
る。
[Advantageous Effects] The following effects are expected by using the present invention described above.

1)液体窒素の供給が不用になるので、長期間無保守で
の運転が可能になる。
1) Since the supply of liquid nitrogen is no longer necessary, long-term operation without maintenance is possible.

2)液体窒素の供給が不用になるので、恢出器が小型・
軽鴛になり設に場所の制約が少なくなる。
2) Since the supply of liquid nitrogen is no longer required, the shovel can be made smaller and
Since it is a light vehicle, there are fewer restrictions regarding the location of the installation.

3)人が容易に接近できない様な放射線下でも設置口■
能になる。
3) Installation port can be installed even under radiation conditions that cannot be easily accessed by people.
become capable.

4)a弱信号を電界シールドされた雰囲気中で増幅する
ので48号の”/Nが向上して、放射線検出感度が増す
4) Since the a-weak signal is amplified in an electric field-shielded atmosphere, the "/N" of No. 48 is improved and radiation detection sensitivity is increased.

[変形例] 1)本発明においては、下部フランジに伝送された熱を
フィンを用いて空冷していたが、この方法にこだわらず
冷却水を用いて冷却してもよい02)本発明では放射線
検出素子を固定するのに固定ジグを用いていたが、接着
剤で電子冷却器に固定してもよい。
[Modifications] 1) In the present invention, the heat transferred to the lower flange is air-cooled using fins, but it is not limited to this method and cooling water may be used for cooling.02) In the present invention, the heat transferred to the lower flange is cooled by air. Although a fixing jig was used to fix the detection element, it may also be fixed to the electronic cooler with adhesive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷却方法の一例を示す縦断面図、第2図
はペルチェ効果の原理の説明図、tJ43図は本発明の
一実施例である電子冷却型放射線検出器を表わした縦断
面図、第4図はt子回路基板形状と内側円筒の横断面図
である。 1・・・放射線検出素子 2・・・放射線測定部3・・
・信号m 4・・・冷却棒 5・・・真空容器 6・・・液体9I素7・・・液体窒
素容器 8・・・供給口9・・・n型半導体 10・・
・pa!!半導体II 、 12.13・・・金属 1
4・・・直流電源15・・・電子冷却器 16・・・同
定ジグ17・・・内側円筒 18・・・下部フランジ1
9・・・フィン 20・・・外側円筒21・・・上部フ
ランジ 22・・・排気口2:(、24・・・0リング
 25・・・電子1pj路;シロ・・・気腎コネクタ 
27・・・放射#i!検出用窓代理人 弁理士 則 近
 憲 佑(はが1名)第 1 図 第 2 図 第 3 図 t!5ム t’/ 第4図
Fig. 1 is a longitudinal cross-sectional view showing an example of a conventional cooling method, Fig. 2 is an explanatory diagram of the principle of the Peltier effect, and Fig. tJ43 is a longitudinal cross-sectional view showing an electronically cooled radiation detector which is an embodiment of the present invention. FIG. 4 is a cross-sectional view of the shape of the t-shaped circuit board and the inner cylinder. 1... Radiation detection element 2... Radiation measurement section 3...
・Signal m 4...Cooling rod 5...Vacuum container 6...Liquid 9I element 7...Liquid nitrogen container 8...Supply port 9...N-type semiconductor 10...
・pa! ! Semiconductor II, 12.13...Metal 1
4...DC power supply 15...Electronic cooler 16...Identification jig 17...Inner cylinder 18...Lower flange 1
9...Fin 20...Outer cylinder 21...Upper flange 22...Exhaust port 2: (, 24...0 ring 25...Electronic 1pj path; Shiro...Air kidney connector
27... Radiation #i! Detection Window Agent Patent Attorney Noriyuki Chika (1 person) Figure 1 Figure 2 Figure 3 Figure t! 5m t'/ Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)放射線検出米子と、これをベルチェ効果を利用し
て冷却する第1の多段型電子冷却器と、前記放射線検出
素子の周囲に設置する内側円筒と、該内側円筒を冷却す
る第2の電子冷却器と、前記内側円筒の外側に記報した
外側容器と、該外側円筒の上方と下方に設置するフラン
ジと、前記外側円筒と上・下のフランジ間に設置した一
対の気密手段と、PI+1記外側円外側円筒する気密性
コネクタと、前記内側円筒と外側円筒の間の空間に接続
された前記放射線検出素子用電子回路と、前記電子冷却
器用の直流、電源とを具備することを特徴とする麺、子
冷却型放射腺検出器。
(1) A radiation detection Yonago, a first multi-stage electronic cooler that cools it using the Bertier effect, an inner cylinder installed around the radiation detection element, and a second cooler that cools the inner cylinder. an electronic cooler, an outer container written on the outside of the inner cylinder, flanges installed above and below the outer cylinder, a pair of airtight means installed between the outer cylinder and the upper and lower flanges; PI+1: an airtight connector having an outer cylinder, an electronic circuit for the radiation detection element connected to a space between the inner cylinder and the outer cylinder, and a direct current and power source for the electronic cooler. Noodles and child cooling type radiation gland detector.
(2)外側円筒とフランジ間を気密性の醗接構造にする
ことを特徴とする特許請求の範囲第1項記載の′電子冷
却型放射線検出器。
(2) An electronically cooled radiation detector according to claim 1, characterized in that the outer cylinder and the flange have an airtight welded structure.
JP6080484A 1984-03-30 1984-03-30 Thermoelectric cooling type radiation detector Pending JPS60205271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6080484A JPS60205271A (en) 1984-03-30 1984-03-30 Thermoelectric cooling type radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6080484A JPS60205271A (en) 1984-03-30 1984-03-30 Thermoelectric cooling type radiation detector

Publications (1)

Publication Number Publication Date
JPS60205271A true JPS60205271A (en) 1985-10-16

Family

ID=13152883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6080484A Pending JPS60205271A (en) 1984-03-30 1984-03-30 Thermoelectric cooling type radiation detector

Country Status (1)

Country Link
JP (1) JPS60205271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418280A (en) * 1987-07-13 1989-01-23 Sharp Kk Superconducting device
FR2726904A1 (en) * 1994-11-14 1996-05-15 Europ Synchrotron Radiation Fa DETECTION DEVICE WITH SENSOR ARRANGED IN AN ENCLOSURE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418280A (en) * 1987-07-13 1989-01-23 Sharp Kk Superconducting device
FR2726904A1 (en) * 1994-11-14 1996-05-15 Europ Synchrotron Radiation Fa DETECTION DEVICE WITH SENSOR ARRANGED IN AN ENCLOSURE
WO1996015463A1 (en) * 1994-11-14 1996-05-23 Installation Europeenne De Rayonnement Synchrotron (European Synchrotron Radiation Facility) E.S.R.F. Sensor detection device in an enclosure

Similar Documents

Publication Publication Date Title
US5198753A (en) Integrated circuit test fixture and method
CN104062990B (en) Noise reduction and temperature control system based on semiconductor refrigeration mechanism
JPS6167705U (en)
RU2011146550A (en) MODULE WITH GRADIENT SUPERCONDUCTOR COILS WITH CRYOGENIC COOLING FOR MAGNETIC RESONANCE TOMOGRAPHY
US4230945A (en) Device for detecting ionizing radiation
Garvey et al. Performance characteristics of a low‐flow rate 25 mW, LN2 Joule–Thomson refrigerator fabricated by photolithographic means
JPS60205271A (en) Thermoelectric cooling type radiation detector
US4555626A (en) Radiation shield in light detector and/or assembly
US6573509B2 (en) Detection system
US7633054B2 (en) Radiation detecting system using solid-state sensors with electronic cooling and method of preventing condensation using the same
JP2005106381A (en) Electronic cooling unit
JPS59224187A (en) Exciting leading conductor unit for superconductive unit andparticularly magnet
GB2149901A (en) Low temperature containers
CN215218540U (en) Cooling structure of refrigeration type infrared spectrum imaging device and imaging device
JPS60161579A (en) Radiant ray detector
JPH0618257Y2 (en) Infrared detector
CN217817538U (en) Vortex tube refrigeration camera
CN214627792U (en) Reagent storehouse heat abstractor of chemiluminescence appearance
JPH0629698Y2 (en) Infrared detector
JP3657701B2 (en) Photodetector
JPH0325419Y2 (en)
JP2817744B2 (en) Infrared image sensor device
JP2002083914A (en) Electronic circuit cooler
JPH056337U (en) Infrared detector
RU14666U1 (en) INFRARED RADIATION RECEIVER