JPS6020508A - Heating apparatus - Google Patents

Heating apparatus

Info

Publication number
JPS6020508A
JPS6020508A JP12766083A JP12766083A JPS6020508A JP S6020508 A JPS6020508 A JP S6020508A JP 12766083 A JP12766083 A JP 12766083A JP 12766083 A JP12766083 A JP 12766083A JP S6020508 A JPS6020508 A JP S6020508A
Authority
JP
Japan
Prior art keywords
heated
section
semiconductor wafer
laser
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12766083A
Other languages
Japanese (ja)
Inventor
Haruo Amada
春男 天田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12766083A priority Critical patent/JPS6020508A/en
Publication of JPS6020508A publication Critical patent/JPS6020508A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To heat and treat only a material to be heated and treated or only a necessary section on the material to be heated and treated uniformly and efficiently with high accuracy by heating the desired section of the material to be treated when the whole of the material to be heated and treated is heated. CONSTITUTION:When a semiconductor wafer 2 as a material to be heated and treated is set on a stage 4, an inert gas 5 is fed from a gas supply section 6. The stage 4 is turned by a motor 21 at the same time. The semiconductor wafer 2 under the state of revolution is heated by microwaves 8, which are generated by a microwave generating section 9 and guided and projected into a treating chamber 1 from a waveguide 10. Laser lights oscillated from a laser oscillating section 13 are projected partially to the semiconductor wafer 2 as spotty laser lights 12 from a laser projecting section 15, and focussed partially to heat the wafer, thus forming a high-temperature region 16. The laser projecting section 15 is formed in structure in which it scans in the radial direction of the semiconductor wafer 2, and the wafer can be heated uniformly when the speed of travel of the laser projecting section 15 is adjusted in succession at that time and laser- light projecting time in each section of the semiconductor wafer 2 is made constant.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は加熱処理技術に関するもので、たとえば、半導
体装置の製造における半導体ウェハの加熱処理、および
反応を伴う加熱処理に利用して有効な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a heat treatment technique, and relates to a technique effective for use in, for example, heat treatment of semiconductor wafers in the manufacture of semiconductor devices and heat treatment accompanied by reactions.

〔背景技術〕[Background technology]

周知のように、半導体素子を製造する場合には、結晶成
長処理をはじめ、不純物拡散処理、結晶アニール処理、
パッシベーション膜生成処理、ドライエツチング処理、
ホトレジベーク処理等種々の形で加熱処理、または、反
応を伴う加熱処理が行なわれている。
As is well known, when manufacturing semiconductor devices, there are various processes such as crystal growth treatment, impurity diffusion treatment, crystal annealing treatment,
Passivation film generation treatment, dry etching treatment,
Heat treatment or heat treatment accompanied by reaction is performed in various forms such as photoresist bake treatment.

従来、これらの加熱処理方法はたとえば、1968年1
2月1日付発行の電子材料の106頁に記載されている
ように、ヒータ、高周波加熱等、種々の加熱方法が考案
されている。これらの加熱処理方法は被加熱処理物を加
熱雰囲気中に治具等で支持し、加熱するか、被加熱処理
物をヒータブロック等の加熱源に直接接地させて、加熱
処理する方法である。いずれの方法も、被加熱処理物が
支持体に接触している。
Conventionally, these heat treatment methods were developed, for example, in 1968.
As described on page 106 of Electronic Materials published on February 1st, various heating methods such as heaters and high frequency heating have been devised. In these heat treatment methods, the object to be heated is supported in a heating atmosphere with a jig or the like and heated, or the object to be heated is directly grounded to a heating source such as a heater block. In either method, the object to be heated is in contact with the support.

上述の方法で被加熱処理物を精度よく加熱するには、被
加熱処理物以外の被加熱処理物支持治具。
In order to accurately heat the object to be heated in the above method, a jig for supporting the object to be heated other than the object to be heated is required.

ヒータブロック等も加熱処理物同様に精度良く加熱しな
ければならない。同時に゛周囲の処理室内壁も加熱され
る。このため、上述方法では極めて加熱効率が悪く、処
1.!l’!時間が長い。丑た、治具や、ヒータブロッ
クが太きいと装置が大形化する欠点がある。
Heater blocks and the like must be heated with high precision, just like the heat-treated objects. At the same time, the surrounding walls of the processing chamber are also heated. For this reason, the heating efficiency of the above-mentioned method is extremely poor. ! l'! It's a long time. However, if the jig or heater block is thick, there is a drawback that the device becomes larger.

また、反応を伴う加熱処理では反応を必要としない被加
熱処理物以外の部分が加熱されるため、反応を必要とし
ない被加熱処理物以外で反応を起こし、不要生成物が、
被加熱処理物支持治具や、処理室内壁に生成される。こ
の結果、反応を伴う加熱処理により、半導体素子を製造
する際半導体素子を製造する被加熱処理物上に落下し、
製造する半導体素子の品質低下を招く。また、この場合
、処理室内壁に生成された不要生成物の清浄作業などの
付帯作業が増える。
In addition, in heat treatment that involves a reaction, parts other than the object to be heated that do not require reaction are heated, so reactions occur in areas other than the object to be heated that do not require reaction, and unnecessary products are generated.
It is generated on the support jig for the object to be heated and on the inner wall of the processing chamber. As a result, due to the heat treatment accompanied by a reaction, when manufacturing semiconductor elements, it falls onto the object to be heated for manufacturing semiconductor elements.
This leads to a decline in the quality of manufactured semiconductor devices. Furthermore, in this case, incidental work such as cleaning work of unnecessary products generated on the walls of the processing chamber increases.

また、前記の方法では、全体加熱構造となっていること
から、被加熱処理物を外部的に選択加熱することが難か
しい欠点がある。
Furthermore, since the above-mentioned method has an overall heating structure, it is difficult to selectively heat the object to be heated externally.

〔発明の目的〕[Purpose of the invention]

本発明の目的は被加熱処理物のみおるいは被加熱処理物
上の必要部分のみを精度よく均一にかつ効率的に加熱処
理する加熱処理技術および反応物質と反応を必要とする
被加熱処理物領域のみを活性化し、反応させる反応処理
技術を提供することにある。
The purpose of the present invention is to provide a heat treatment technique for accurately, uniformly and efficiently heating only the entire part of the object to be heated, or only the required portion of the object to be heated, and to provide an object to be heated that requires reaction with a reactant. The purpose of the present invention is to provide a reaction treatment technology that activates only a region and causes it to react.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面から明らかになるであろ
う。
The above and other objects and novel features of the present invention include:
It will become clear from the description herein and the accompanying drawings.

〔発明の概蚤〕[Overview of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、回転する半導体ウェハ全体にマイクロ波を照
射して半導体ウェハ全体を加熱するとともに、レーザ光
を半導体ウェハの半径方向に移動させながら半導体ウェ
ハに照射させて局所加熱を行なうことによって、半導体
ウェハを部分的にかつ短時間に高温度に高めて高精度効
率的なアニール処理が達成できるものである。
In other words, the semiconductor wafer is heated by irradiating the entire rotating semiconductor wafer with microwaves to heat the entire semiconductor wafer, and by irradiating the semiconductor wafer with laser light while moving in the radial direction of the semiconductor wafer to locally heat the semiconductor wafer. Highly accurate and efficient annealing processing can be achieved by raising the temperature locally and in a short time to a high temperature.

〔実施例1〕 第1図は本発明の一実施例による加熱処理装置の要部を
示す断面図であって、半導体装置製造における半導体ウ
ェハのアニーリング装置に適用した例を示す要部断面図
である。すなわち、半導体ウェハにイオンインプランテ
ーションを施した場合にはイオンインプランテーション
による半導体ウェハ表層部に発生した・結晶ダメージを
回復させるためにアニーリングを施す必要がある。
[Embodiment 1] FIG. 1 is a sectional view showing the main parts of a heat treatment apparatus according to an embodiment of the present invention, and is a sectional view of the main parts showing an example of application to an annealing apparatus for semiconductor wafers in the manufacture of semiconductor devices. be. That is, when a semiconductor wafer is subjected to ion implantation, it is necessary to perform annealing to recover crystal damage caused to the surface layer of the semiconductor wafer due to the ion implantation.

同図において処理室1はマイクロ派を反射する材質(導
電性で電気抵抗の小さいもの、たとえば金属)によって
構成された箱体となっていて、被加熱処理物である半導
体ウエノ・2を加熱する室となっている。処理室1の中
央部には半導体ウエノヘ2(表面に結晶ダメージ3を受
けている。)をビンで保持するステージ4が配設されて
いる。このステージ4はマイクロ波を通過し、かつ、電
磁気損失の小さい材質たとえば石英等で形成されている
In the figure, the processing chamber 1 is a box made of a material (conductive and low electrical resistance, e.g. metal) that reflects microscopic radiation, and heats the semiconductor wafer 2 that is the object to be heated. It is a room. In the center of the processing chamber 1, a stage 4 for holding a semiconductor wafer 2 (with crystal damage 3 on the surface) in a bottle is provided. This stage 4 is made of a material that allows microwaves to pass through and has low electromagnetic loss, such as quartz.

また、処理室l内には清浄化された不活性ガス5がガス
供給部6より、ガス供給パイプ7を通し、供給されてい
る。一方、マイクロ波8がマイクロ波発生部9より発生
され、導波管10全通し、処理室1内に照射され、半導
体ウエノ・2が加熱される。
Further, a cleaned inert gas 5 is supplied into the processing chamber l from a gas supply section 6 through a gas supply pipe 7. On the other hand, microwaves 8 are generated by a microwave generator 9 and irradiated into the processing chamber 1 through the entire waveguide 10, thereby heating the semiconductor wafer 2.

同時に、処理室1上方窓11からレーザ光12がレーザ
発振部13より発生され、ステーション部14に設置さ
れたレーザ照射部15から半導体ウェハ2に照射され、
照射された部分は追加加熱され、高温領域16となる。
At the same time, laser light 12 is generated from the laser oscillation unit 13 through the upper window 11 of the processing chamber 1, and is irradiated onto the semiconductor wafer 2 from the laser irradiation unit 15 installed in the station unit 14.
The irradiated area is additionally heated and becomes a high temperature region 16.

一方この高温領域16は同一ステーション部14に設置
された温度センサ17により、温度計測される。
On the other hand, the temperature of this high temperature area 16 is measured by a temperature sensor 17 installed in the same station section 14.

温度センサ17により、計測された情報は温度計測部1
8により処理され、全体制御部19へ伝送される。一方
、ステージ4はモータ21により回転される。
Information measured by the temperature sensor 17 is sent to the temperature measurement unit 1
8 and transmitted to the overall control section 19. On the other hand, the stage 4 is rotated by a motor 21.

全体制御部19ではガス供給部6より供給されるガス量
の指定および、温度計測部18に応じて、マイクロ波発
生部9から発生するマイクロ波8強度ならびにレーザ発
振部13から発生するレーザ光120強度を制御し、半
導体ウニ’・2上の高温領域16の温度を一定に制御す
る機能がある。
In the overall control section 19, the intensity of the microwave 8 generated from the microwave generation section 9 and the laser beam 120 generated from the laser oscillation section 13 are determined according to the specification of the amount of gas supplied from the gas supply section 6 and the temperature measurement section 18. It has a function of controlling the strength and keeping the temperature of the high temperature region 16 on the semiconductor sea urchin 2 constant.

同時に全体制御部19ではステーション部14を左右動
するステーション駆動部20を作動させ、ステーション
部14を所要スピード、所要移動量を制御する。またモ
ータ21を作動させ、半導体ウェハ2を所要速度で回転
させる〇 一方、不活性ガス5は処理室1内に供給され、処理室1
内を清浄な不活性雰囲気にすると同時に、排気部22か
ら排気ガス23とに排気される。
At the same time, the overall control section 19 operates the station drive section 20 that moves the station section 14 left and right, thereby controlling the required speed and amount of movement of the station section 14. Also, the motor 21 is operated to rotate the semiconductor wafer 2 at a required speed.Meanwhile, the inert gas 5 is supplied into the processing chamber 1.
A clean inert atmosphere is created inside, and at the same time, the exhaust gas 23 is exhausted from the exhaust section 22.

つぎに、前記装置により半導体ウエノ・2表面上に発生
した結晶ダメージをアニールする方法について説明する
Next, a method of annealing crystal damage generated on the surface of the semiconductor wafer 2 using the above-mentioned apparatus will be explained.

被加熱処理物である半導体ウエノ・2をステージ4上に
セットすると、ガス供給部6から不活性ガス5を供給す
る。同時に、ステージ4がモータ21によシ回転される
。回転状態にある半導体ウエノ・2は、マイクロ波発生
部9で発生され、導波管10から処理室l内に案内照射
されたマイクロ波8により加熱される。この加熱は半導
体ウニ/・2以外の各部は電磁気損失の小さい材質で構
成されているため、半導体ウェハ2のみが加熱される。
When the semiconductor wafer 2, which is the object to be heated, is set on the stage 4, an inert gas 5 is supplied from the gas supply section 6. At the same time, the stage 4 is rotated by the motor 21. The semiconductor wafer 2 in a rotating state is heated by the microwave 8 generated by the microwave generator 9 and guided into the processing chamber 1 from the waveguide 10. In this heating, only the semiconductor wafer 2 is heated because each part other than the semiconductor wafer 2 is made of a material with low electromagnetic loss.

さらに、レーザ発振部13から発振されたレーザ光がレ
ーザ照射部15からスポット状のレーザ光12として、
前記半導体ウエノ・2に部分的に照射され、局所集中加
熱され、高温領域16がつくられる。半導体ウェハ2の
表層部に形成された結晶ダメージ3はこの高温領域16
によシアニーリングされる。また、前記レーザ照射部1
5は半導体ウェハ2の半径方向に走査する構造となって
おり、高温領域16の移動によシ、半導体ウエノ・2の
全面の結晶アニーリング方法が可能となる。この際、レ
ーザ照射部15の移動速度を順次調整し、半導体ウェハ
2各部でのレーザ光照射時間を一定にすれば、均一加熱
ができる。
Further, the laser beam oscillated from the laser oscillation unit 13 is outputted from the laser irradiation unit 15 as a spot-shaped laser beam 12,
The semiconductor wafer 2 is partially irradiated and heated locally to create a high temperature region 16. The crystal damage 3 formed on the surface layer of the semiconductor wafer 2 is caused by this high temperature region 16.
cyannealed. Further, the laser irradiation section 1
5 has a structure that scans in the radial direction of the semiconductor wafer 2, and by moving the high temperature region 16, it is possible to perform crystal annealing on the entire surface of the semiconductor wafer 2. At this time, uniform heating can be achieved by sequentially adjusting the moving speed of the laser irradiation section 15 and making the laser beam irradiation time constant for each part of the semiconductor wafer 2.

また全体制御部19はlf計測部18からのウェハ温度
情報に応じ、マイクロ波発生部9から照射するマイクロ
波8強度の制御、レーザ発振部13から発振さizるレ
ーザ光12強度の制御、ならびにガス供給部6から供給
される不活性ガス5の供給量の制御等を行ない、高温領
域16を精度よく制御し、高品タノ1なアニーリング処
理が可能である。
Further, the overall control section 19 controls the intensity of the microwave 8 irradiated from the microwave generation section 9, the intensity of the laser beam 12 oscillated from the laser oscillation section 13, according to the wafer temperature information from the lf measurement section 18, By controlling the supply amount of the inert gas 5 supplied from the gas supply section 6, etc., the high temperature region 16 can be controlled with high precision, and high-quality annealing processing can be performed.

〔実施例2〕 第2図は本発明を半導体装置製造における半導体ウェハ
の表面に保獲膜を生成させる例を示す要部断面図である
[Embodiment 2] FIG. 2 is a cross-sectional view of essential parts showing an example of the present invention in which a retention film is generated on the surface of a semiconductor wafer in manufacturing a semiconductor device.

この装置は前記実施例1と同様にマイクロ波を反射する
材質で構成された処理室24を有しており、中央にマイ
クロ波を通過し、かつ反応物質に耐えうる材質で構成さ
れた反応室25を備えており、反応室25内には被処理
物である半導体ウェハ26がマイクロ波を透過する材質
で構成されたステージ27上に保持されている。
This device has a processing chamber 24 made of a material that reflects microwaves as in Example 1, and a reaction chamber in the center made of a material that can pass microwaves and withstand reactants. In the reaction chamber 25, a semiconductor wafer 26, which is an object to be processed, is held on a stage 27 made of a material that transmits microwaves.

一方反応室25内にはガス供給部28から、反応ガス2
9が供給されておシ、反応処理後排気部30から排気ガ
ス38として排気される。一方処理室24内にはマイク
ロ波供給部31から導波管32をへて、マイクロ波33
が供給されている。
On the other hand, a reaction gas 2 is supplied into the reaction chamber 25 from a gas supply section 28.
9 is supplied, and after the reaction treatment is exhausted from the exhaust section 30 as exhaust gas 38. On the other hand, in the processing chamber 24, a microwave 33 is transmitted from a microwave supply section 31 through a waveguide 32.
is supplied.

マイクロ波33は反応室25内にも伝送される。The microwave 33 is also transmitted into the reaction chamber 25 .

一方反応室25外側に、左右、前後に移動可能な磁石対
34がおり、半導体ウェハ26に強磁界35が作用して
いる。
On the other hand, outside the reaction chamber 25, there is a pair of magnets 34 that can move left and right, front and back, and a strong magnetic field 35 acts on the semiconductor wafer 26.

この強磁界35が作用している範囲にマイクロ波33と
反応ガス29が供給されるとマイクロ波33の電子が強
磁界により、スピン運動し、反応ガス29が励起され、
活性化し、反応しやすい状態となる。
When the microwave 33 and the reaction gas 29 are supplied to the area where the strong magnetic field 35 is acting, the electrons of the microwave 33 undergo spin motion due to the strong magnetic field, and the reaction gas 29 is excited.
It is activated and becomes ready to react.

全体制御部36はガス供給部28から供給される反応ガ
ス29の供給量ならびに供給タイミングを制御すると同
時にマイクロ波供給部31から供給されるマイクロ波3
30強度を制御すると同時に磁石対34の位置を制御す
る。
The overall control unit 36 controls the supply amount and supply timing of the reaction gas 29 supplied from the gas supply unit 28, and at the same time controls the microwave 3 supplied from the microwave supply unit 31.
30 strength and simultaneously control the position of the magnet pair 34.

つぎに、前記装置によって半導体ウェハ26表面に保訛
膜37を生成する方法について説明する。
Next, a method for forming the protective film 37 on the surface of the semiconductor wafer 26 using the above-mentioned apparatus will be explained.

被処理物である半導体ウェハ26をステージ27上にセ
ットする。半導体ウェノ・26をステージ上にセットす
ると、マイクロ波33がマイクロ波供給部31より導波
管32を経由し、処理室24内に照射され、反応室25
内にも透過伝送される。
A semiconductor wafer 26, which is an object to be processed, is set on a stage 27. When the semiconductor wafer 26 is set on the stage, the microwave 33 is irradiated into the processing chamber 24 from the microwave supply section 31 via the waveguide 32, and the reaction chamber 25 is irradiated with the microwave 33.
It is also transmitted transparently.

これにより半導体ウェハ26のみが加熱される。As a result, only the semiconductor wafer 26 is heated.

一方、反応ガス29がガス供給部28から反応室25内
に供給され、強磁界35領域でマイクロ波33と強磁界
35によシ活性化され半導体ウェハ26上で反応し、反
応物質生成物である保護膜37を形成する。
On the other hand, a reaction gas 29 is supplied into the reaction chamber 25 from the gas supply section 28, is activated by the microwave 33 and the strong magnetic field 35 in the region of the strong magnetic field 35, reacts on the semiconductor wafer 26, and becomes a reactant product. A certain protective film 37 is formed.

反応室25内壁およびステージ27表面はマイクロ波透
過によって半導体ウェハ26の表面に比較して極めて低
温であり、かつ、反応ガス29に対して不活性であυ、
反応ガス29との反応が生ぜず、不用な生成物が生成さ
れない。このことよシ半導体ウェハ26のみの反応が精
度よくかつ高品質に行なわれる。
The inner wall of the reaction chamber 25 and the surface of the stage 27 are extremely low in temperature compared to the surface of the semiconductor wafer 26 due to microwave transmission, and are inert to the reaction gas 29,
No reaction occurs with the reaction gas 29, and no unnecessary products are generated. This allows the reaction of only the semiconductor wafer 26 to be carried out with high precision and high quality.

〔効果〕〔effect〕

(1) 本発明は被処理物および反応物質のみを直接加
熱処理もしくは反応処理することから加熱対象物の加熱
エネルギーもしくは反応対象物の反応エネルギーの容量
を最小にできる作用から加熱源。
(1) The present invention uses a heating source because of the effect that the heating energy of the object to be heated or the capacity of the reaction energy of the reaction object can be minimized because only the object to be treated and the reactant are subjected to direct heat treatment or reaction treatment.

反応エネルギー源の出力を最小にすることができる。The output of the reaction energy source can be minimized.

(2)被加熱処理物はヒータブロック等に直接接触する
ことなく、マイクロ波等の電磁波により自己加熱するこ
とから保持ステージとの接触面積を少なく出来る作用か
ら、被加熱処理物から熱が逃げることなく、被加熱処理
物の均一加熱が維持でき、高精度な加熱が可能となる。
(2) Since the object to be heated is self-heated by electromagnetic waves such as microwaves without coming into direct contact with a heater block, etc., the contact area with the holding stage can be reduced, and heat can escape from the object to be heated. Therefore, uniform heating of the object to be heated can be maintained, and highly accurate heating is possible.

(3)前、記(2)のように、被加熱処理物から熱が逃
げ難いことから、余分な加熱は不要となり、加熱源の出
力低下が可能となる。
(3) As mentioned in (2) above, since it is difficult for heat to escape from the object to be heated, extra heating becomes unnecessary, and the output of the heating source can be reduced.

(4)前記(1)および(2)のように加熱対象物の容
量低下および加熱対象物からの放熱を少なくできること
から、加熱容量が小さくなるため、短時間に効率的に被
処理物を加熱することができる。
(4) As mentioned in (1) and (2) above, since the reduction in the capacity of the object to be heated and the heat radiation from the object can be reduced, the heating capacity is reduced, so the object to be processed can be efficiently heated in a short time. can do.

(5)被処理物はマイクロ波等の電磁波によって加熱さ
れる。この加熱は電磁波の照射による被処理物内に生じ
る抵抗損、誘電損等の電磁気損失によシ発熱するため、
被処理物内部での発熱から加熱効率が極めて良い。さら
に必要部分のみをレーザ光等で集中加熱するため、加熱
効率はさらに向上する。
(5) The object to be processed is heated by electromagnetic waves such as microwaves. This heating generates heat due to electromagnetic losses such as resistance loss and dielectric loss that occur within the workpiece due to electromagnetic wave irradiation.
Heating efficiency is extremely high due to heat generation inside the processed object. Furthermore, heating efficiency is further improved because only the necessary portions are heated intensively using laser light or the like.

(6)被処理物を反応物質で反応処理する場合、反応を
必要とする領域のみを強磁界状態にし、反応物質ならび
にマイクロ波を供給し、反応物質および反応を必要とす
る被処理物領域のみ活性化し、反応させる。このため、
従来のように、不要生成物が発生することも少なく、処
理室内壁や、被加熱処理物の表面を不要生成物で汚染す
ることも少なくなる。
(6) When processing the object to be processed using a reactive substance, place only the region that requires the reaction in a strong magnetic field, supply the reactant and microwave, and only apply the reaction substance and the area of the object that requires the reaction. Activate and react. For this reason,
Unlike conventional methods, unnecessary products are less likely to be generated, and the inner walls of the processing chamber and the surface of the object to be heated are less likely to be contaminated with unnecessary products.

(7)前記実施例1.実施例2では被処理物を1枚ずつ
処理することから、装置構造の簡素化、小型化が可能と
なり、自動処理化、連続処理化も可能となる。
(7) Example 1 above. In the second embodiment, since the objects to be processed are processed one by one, the device structure can be simplified and downsized, and automatic processing and continuous processing are also possible.

(8)前記(21(5)(6)により、均一高精度な加
熱あるいは汚染のない反応処理が行なえることから、品
質の安定した信頼度の高い加熱処理が可能となる相乗効
果を奏する。
(8) Since the above (21(5) and (6)) allow uniform and highly accurate heating or reaction treatment without contamination, a synergistic effect is achieved that enables highly reliable heat treatment with stable quality.

(9)被処理物はマイクロ波によシ、常に比較的高い温
度で加熱されているため、レーザ光の照射により高温領
域が比較的短時間でつくられアニーリング等の時間の短
縮が図れる。
(9) Since the object to be processed is always heated at a relatively high temperature by microwaves, a high temperature region can be created in a relatively short time by laser beam irradiation, and the time required for annealing etc. can be shortened.

以上、本発明者によってなされた発明を実施例にもとづ
いて具体的に説明したが、本発明は上記実施例に限定さ
れるものではなく、その要旨を逸脱しない範囲で種々変
形可能であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained based on examples, the present invention is not limited to the above-mentioned examples, and can be modified in various ways without departing from the gist of the invention. Needless to say.

例えば強磁界の作用方法は本実施例以外にも、回転磁界
として作用させながらマイクロ波を照射し、反応現象の
活性化を図ることも可能となる。
For example, in addition to the method of applying a strong magnetic field to this example, it is also possible to activate a reaction phenomenon by irradiating microwaves while acting as a rotating magnetic field.

この場合は反応効率の向上により、良質の反応および処
理時間の短縮が可能となる効果が追加される。
In this case, the improvement in reaction efficiency has the additional effect of enabling high-quality reaction and shortening of processing time.

また、本発明は高圧雰囲気中、常圧雰四気中。Further, the present invention can be carried out in a high pressure atmosphere or in a normal pressure atmosphere.

低圧雰囲気中、真空中、およびマイクロ波を透過する物
質中等で前記処理が可能となり、いずれの場合でも前記
実施例と同様な効果を得ることができる。
The above-mentioned treatment can be performed in a low-pressure atmosphere, in a vacuum, and in a substance that transmits microwaves, and in any case, the same effects as in the above embodiment can be obtained.

〔利用分野〕[Application field]

以上の説明では、主として、本発明者によってなされた
発明をその背景となった利用分野である半導体装置の製
造における半導体ウェハ表面の結晶ダメージのアニール
処理、および半導体ウェハ表面への保護膜の形成に適用
した場合について説明したが、これに限定されるもので
はなく、たとえば半導体材料や、その低電磁的損失効果
のある全ての物質について結晶成長方法をはじめ、気相
成長方法、不純物拡散処理方法、結晶アニール処理方法
、ドライエツチング処刑方法、現像処理方法、ホトレジ
ストドライ除去処理方法等、種々の加熱処理方法や反応
を伴う加熱処理に応用することができる。
In the above explanation, the invention made by the present inventor will be mainly applied to the application field for which the invention is based, which is the annealing treatment for crystal damage on the surface of a semiconductor wafer in the manufacture of semiconductor devices, and the formation of a protective film on the surface of the semiconductor wafer. Although the case where the application is explained is not limited to this, for example, for semiconductor materials and all substances that have a low electromagnetic loss effect, crystal growth methods, vapor phase growth methods, impurity diffusion treatment methods, It can be applied to various heat treatment methods and heat treatments involving reactions, such as a crystal annealing treatment method, a dry etching method, a development treatment method, and a photoresist dry removal treatment method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の来施例1による加熱処理装置の吸部断
面図、 第2図は本発明の実施例2による反応処理装置の要部断
面図である。
FIG. 1 is a cross-sectional view of a suction part of a heat treatment apparatus according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of a main part of a reaction treatment apparatus according to a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、被処理物全体を加熱する加熱機構と、被処理物の所
望部分を加熱する高温加熱機構と、を有する加熱装置。 2、被処理物全体にマイクロ波を照射させる加熱機構と
、被処理物の所望部分にレーザ光を照射させる高温加熱
機構と、を有することを特徴とする特許請求の@囲第1
項記載の加熱装置。 3、被処理物を支持する支持台は回転可能となシかつ高
温加熱jr!J、宿はレーザ光照射位置を経時的に変化
させるように構成されていることを特徴とする特許請求
の範囲第2項記載の加熱装置。 4、被処理物全体にマイクロ波を照射させる加熱機構と
、被処理物の一部の領域を取り囲む空間を強磁界として
被処理物の部分加熱をする高温加熱機構と、を有する特
許請求の範囲第1項記載の加熱装置。 5、前記強磁界領域は変動制御可能となっていることを
特徴とする特許請求の範囲第4項記載の加 ′熱装置。 6、前記空間には反応物質が存在していることを特徴と
する特許請求の範囲第4項記載の加熱装置。
[Scope of Claims] 1. A heating device that includes a heating mechanism that heats the entire object to be processed and a high-temperature heating mechanism that heats a desired portion of the object. 2. Patent claim @Claim No. 1 characterized by having a heating mechanism that irradiates the entire object to be treated with microwaves, and a high-temperature heating mechanism that irradiates a desired part of the object to be treated with laser light.
Heating device as described in section. 3. The support base that supports the object to be processed is rotatable and can be heated at high temperatures! 3. The heating device according to claim 2, wherein the heating device is configured to change the laser beam irradiation position over time. 4. Claims that include a heating mechanism that irradiates the entire object to be processed with microwaves, and a high-temperature heating mechanism that partially heats the object by applying a strong magnetic field to a space surrounding a part of the object. The heating device according to item 1. 5. The heating device according to claim 4, wherein the strong magnetic field region can be controlled in variation. 6. The heating device according to claim 4, wherein a reactant is present in the space.
JP12766083A 1983-07-15 1983-07-15 Heating apparatus Pending JPS6020508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12766083A JPS6020508A (en) 1983-07-15 1983-07-15 Heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12766083A JPS6020508A (en) 1983-07-15 1983-07-15 Heating apparatus

Publications (1)

Publication Number Publication Date
JPS6020508A true JPS6020508A (en) 1985-02-01

Family

ID=14965570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12766083A Pending JPS6020508A (en) 1983-07-15 1983-07-15 Heating apparatus

Country Status (1)

Country Link
JP (1) JPS6020508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229924A (en) * 1986-03-31 1987-10-08 Canon Inc Method of reforming semiconductor
EP1148152A2 (en) * 2000-04-21 2001-10-24 Sony Corporation Chemical vapor deposition apparatus
WO2024044030A1 (en) * 2022-08-25 2024-02-29 Applied Materials, Inc. Laser enhanced microwave anneal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229924A (en) * 1986-03-31 1987-10-08 Canon Inc Method of reforming semiconductor
EP1148152A2 (en) * 2000-04-21 2001-10-24 Sony Corporation Chemical vapor deposition apparatus
EP1148152A3 (en) * 2000-04-21 2004-01-07 Sony Corporation Chemical vapor deposition apparatus
WO2024044030A1 (en) * 2022-08-25 2024-02-29 Applied Materials, Inc. Laser enhanced microwave anneal

Similar Documents

Publication Publication Date Title
JPS59152618A (en) Thermal treatment and equipment for the same
JPS6020508A (en) Heating apparatus
US5048163A (en) System for processing semiconductor materials
JPS6143417A (en) Heat treating method and heating device utilizing thereof
JP3195678B2 (en) Energy beam heating device
JP3764763B2 (en) Method and apparatus for modifying ceramics
JP3443779B2 (en) Heat treatment equipment for semiconductor substrates
US5079187A (en) Method for processing semiconductor materials
TWI834157B (en) Processing device and processing method for solid structure
JPS63235480A (en) Device for microwave plasma cvd
JPS61168920A (en) Material treating apparatus
JPH088227A (en) Method and apparatus for manufacturing semiconductor
JPS6143416A (en) Heating device
CN217822666U (en) Processing device for solid structure
JPS6132418A (en) Heating device
JPH02278720A (en) Plasma doping apparatus
JPS6352421A (en) Heat treatment method and device for wafer
JP2602991B2 (en) Diamond surface modification method
JPS6143425A (en) Heat treating device and heat treating method
TWM644718U (en) Processing device for solid structure
JPS6235624A (en) Microwave processor
JPS6154631A (en) Etching process
JPS6143414A (en) Processing device
JPS61168921A (en) Microwave treating apparatus
JPH07326578A (en) Thin film manufacturing device