JPS6132418A - Heating device - Google Patents

Heating device

Info

Publication number
JPS6132418A
JPS6132418A JP15288584A JP15288584A JPS6132418A JP S6132418 A JPS6132418 A JP S6132418A JP 15288584 A JP15288584 A JP 15288584A JP 15288584 A JP15288584 A JP 15288584A JP S6132418 A JPS6132418 A JP S6132418A
Authority
JP
Japan
Prior art keywords
microwave
heating
heated
wafer
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15288584A
Other languages
Japanese (ja)
Inventor
Haruo Amada
春男 天田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15288584A priority Critical patent/JPS6132418A/en
Publication of JPS6132418A publication Critical patent/JPS6132418A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the device which heats only the object to be heated uniformly and effectively with high accuracy by heating the object only with the microwave with holding the object by pins or the like whose contact area are small and controlling a distribution of the microwave electric field strength based on the information on temperatures of plural points. CONSTITUTION:A semiconductor wafer 3 is set on a crystal pin stage 2 in a processing chamber 1 and the condition such as heating temperature value (a temperature difference) and heating time of point A12, point B13 on the wafer 3 are preset as the information on the heating conditions in the comprehensive control part 18. A stage motor 4 is driven to rotate a wafer 3 and a microwave 6 is generated from a microwave generator 5 to heat the wafer 3. The temperatures of the points A and B are measured by temperature measuring parts 14 and 15 and a microwave output is controlled. At the same time, a linear pulse motor 9 is driven to move a reflection end 10 to the right and left. Annealing is done by heating for the predetermined time while controlling a microwave strength (a standing wave).

Description

【発明の詳細な説明】 〔技術分野〕 本発明は加熱処理技術に関するもので、たとえば半導体
装置の製造における半導体ウエノ・の加熱処理および反
応を伴う加熱処理に利用して有効な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a heat treatment technique, and relates to a technique effective for use in, for example, heat treatment of semiconductor wafers and heat treatment accompanied by reactions in the manufacture of semiconductor devices.

〔背景技術〕[Background technology]

周知のように、半導体装置を製造する場合には結晶成長
処理をはじめ、不純物拡散処理、結晶アニール処理、パ
シベーション膜生成処理、ホトレジストベーキング処理
等8種々の形で、加熱処理または反応を伴う加熱処理が
行なわれている。
As is well known, when manufacturing semiconductor devices, heat treatment or heat treatment accompanied by reaction is performed in eight different ways, including crystal growth treatment, impurity diffusion treatment, crystal annealing treatment, passivation film generation treatment, and photoresist baking treatment. is being carried out.

従来、これらの加熱方式はたとえば1983年11月1
5日付工業調査会発行の電子材料別冊57頁以降に記載
されているようにヒータおよび赤外線等種々の加熱方式
が考案されている。
Conventionally, these heating methods were developed, for example, on November 1, 1983.
Various heating methods such as heaters and infrared rays have been devised, as described in the Electronic Materials Special Issue published by the Industrial Research Council on page 57 onwards.

ヒータ加熱方式の場合、加熱雰囲気中に治具等で被加熱
物を支持し、加熱するか、被加熱物をヒータブロック等
の加熱源に直接接地させて加熱する方法がある。
In the case of the heater heating method, there are methods in which the object to be heated is supported by a jig or the like in a heating atmosphere and heated, or the object to be heated is directly grounded to a heating source such as a heater block.

上述方法で被加熱物精度良く加熱するには、被加熱物以
外の炉壁、被加熱物支持治具、ヒータブロック等も同様
に精度良く加熱しなければならなく、精度良い加熱が難
しい。
In order to accurately heat the object to be heated using the above-described method, the furnace wall, object support jig, heater block, etc. other than the object to be heated must also be heated accurately, and accurate heating is difficult.

また、上述方法では極めて加熱効率が悪く、処理時間が
長(、自動化した場合装置が大形化する。
In addition, the above-mentioned method has extremely low heating efficiency, takes a long processing time (and if automated, the equipment becomes large.

同様に、反応を伴う加熱処理では反応を必要と12ない
被加熱処理物以外で反応を起こし、不要生成物が、被処
理物支持治具や、処理室内壁に生成される。この結果、
反応を伴う加熱処理により、半導体素子を製造する際、
半導体素子を製造する被加熱処理物上に不要生成物が落
下し、製造する半導体素子の品質低下を招(ことがわか
った。
Similarly, in heat treatment that involves a reaction, reactions occur in objects other than the object to be heated, which do not require a reaction, and unnecessary products are generated on the object support jig and on the inner wall of the processing chamber. As a result,
When manufacturing semiconductor elements by heat treatment accompanied by reactions,
It has been found that unnecessary products fall onto the heated objects used to manufacture semiconductor devices, leading to a decline in the quality of the semiconductor devices being manufactured.

同時に処理室内壁に生成された不要生成物の清掃作業等
の付帯作業が増える。
At the same time, incidental work such as cleaning unnecessary products generated on the walls of the processing chamber increases.

一方、赤外線加熱の場合には、赤外線の照射むら等によ
り、温度精度が悪(なり、加熱および反応を伴う加熱処
理における処理精度の低下を招く。
On the other hand, in the case of infrared heating, temperature accuracy becomes poor due to uneven irradiation of infrared rays, etc., resulting in a decrease in processing accuracy in heat treatment involving heating and reaction.

同時に熱エネルギー変換効率が悪いため、加熱消費電力
が大きいことがわかった。
At the same time, it was found that heating power consumption was large due to poor thermal energy conversion efficiency.

〔発明の目的〕[Purpose of the invention]

本発明の目的は被加熱処理物のみを均一に精度良くかつ
、効率的に加熱処理する加熱装置を提供することにある
An object of the present invention is to provide a heating device that uniformly, precisely, and efficiently heats only the object to be heated.

本発明の前記ならびにその他の目的と新規な特徴は本明
細書の記述および添付図面から明らか°になるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば下記の通りである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、被加熱物を加熱する手段として、マイクロ波
等の電磁波を照射し、被加熱物のみを加熱する。
That is, as a means of heating the object to be heated, electromagnetic waves such as microwaves are irradiated to heat only the object to be heated.

均一加熱手段として、被加熱物をビン等の接触面積の少
ない支持台で保持し、回転させながらマイクロ波加熱す
る。
As a uniform heating means, the object to be heated is held on a support stand with a small contact area, such as a bottle, and heated with microwaves while being rotated.

同時に、マイクロ波伝送回路中に位置制御可能なマイク
ロ波反射端を備え、かつ被加熱物上の少なくとも2カ所
の特性計測すなわち温度計測を行ないその温度計測結果
に応じ、マイクロ波反射端の位置制御を行ない、被加熱
物に作用するマイクロ波電界強度(定在波強度)を均等
化し、均一加熱する。
At the same time, a microwave reflecting end whose position can be controlled is provided in the microwave transmission circuit, and characteristics measurement, that is, temperature measurement, of at least two locations on the heated object is performed, and the position of the microwave reflecting end is controlled according to the temperature measurement results. This is done to equalize the microwave electric field strength (standing wave strength) acting on the object to be heated, and to uniformly heat the object.

また、被加熱物を所定温度に精度良く加熱するために上
述温度計測結果に応じ、マイクロ波出力量を制御し、所
定温度に制御する。
Further, in order to accurately heat the object to a predetermined temperature, the microwave output amount is controlled to a predetermined temperature according to the temperature measurement result described above.

なお、本発明では温度計測精度向上手段として、加熱処
理部と温度計測部間に、マイクロ波しゃ断パイプを用い
ている。
In addition, in the present invention, a microwave cutoff pipe is used between the heat treatment section and the temperature measurement section as a means for improving temperature measurement accuracy.

従来、マイクロ波しゃ新方法として、被温度計測物体(
加熱処理物)と温度計測部間にマイクロ波しゃ所用金網
を用いていた。この方法では金網の温度が温度計測の誤
差要因となり、精度良い温度計測ができなかった。
Conventionally, as a new method of microwave insulation, the temperature of the object to be measured (
A microwave shield wire mesh was used between the heat-treated material) and the temperature measurement section. With this method, the temperature of the wire mesh became a cause of error in temperature measurement, making it impossible to accurately measure temperature.

この対策として、マイクロ波しゃ断波長の原理、あるい
はマイクロ波吸収材を利用した方法により、マイクロ波
をしゃ断し、温度計測領域を空間にし、上述誤差要因を
排除し、精度良い温度計測を行なう。
As a countermeasure to this problem, the principle of microwave cutoff wavelength or a method using a microwave absorbing material is used to cut off microwaves, make the temperature measurement area a space, eliminate the above-mentioned error factors, and perform accurate temperature measurement.

〔実施例1〕 第1図は本発明の一実施例による加熱処理装置の要部を
示す断面図であって、半導体素子製造における半導体ウ
ェハのアニーリング装置に適用した例を示す要部断面図
である。すなわち、半導体ウェハにイオンインプランテ
ーションによる不純物打込みを施した場合には牛導体り
エハ表層部に結晶ダメージが発生する。この結晶ダメー
ジ回復手段として、アニーリングを施す必要があり、そ
の実施例である。′ 装置構成から説明すると、加熱処理部となるマイクロ波
を反射する金属製の処理室1には支持台となるマイクロ
波を透過する材質(石英等)製のビンステージ2があり
、表面にダメージ層を有する被加熱物となる半導体ウェ
ハ3がセットされている。ピンステージ3はステージモ
ータSM4により回転される。
[Embodiment 1] FIG. 1 is a sectional view showing the main parts of a heat treatment apparatus according to an embodiment of the present invention, and is a sectional view of the main parts showing an example of application to an annealing apparatus for semiconductor wafers in semiconductor device manufacturing. be. That is, when a semiconductor wafer is implanted with impurities by ion implantation, crystal damage occurs on the surface layer of the conductive wafer. As a means of recovering this crystal damage, it is necessary to perform annealing, and this example is shown below. ' To explain the equipment configuration, there is a metal processing chamber 1 that serves as the heat treatment section that reflects microwaves, and a bin stage 2 that serves as a support and is made of a material that transmits microwaves (such as quartz). A semiconductor wafer 3, which is an object to be heated and has layers, is set. The pin stage 3 is rotated by a stage motor SM4.

一方、マイクロ波発生部MWG5から、iイクロ波6が
発生され、サーキュレータClR7を通り、処理室1内
に伝播される。なお、処理室1には所要のマイクロ波定
在波(入射マイクロ波と反射マイクロ波の合成波)が構
成されるように定在波発生板8がサーキュレータClR
7と処理室1の間に設置されている。
On the other hand, an i-microwave 6 is generated from the microwave generator MWG5 and propagated into the processing chamber 1 through the circulator ClR7. In addition, in the processing chamber 1, a standing wave generating plate 8 is connected to a circulator ClR so that a required microwave standing wave (combined wave of incident microwave and reflected microwave) is formed.
7 and the processing chamber 1.

さらにリニアパルスモータLMP9により位置制御可能
なマイクロ波を反射する電磁波反射端となる反射終端1
0が設けられている。
Furthermore, the reflection terminal 1 serves as an electromagnetic wave reflection end that reflects microwaves whose position can be controlled by a linear pulse motor LMP9.
0 is set.

なお、処理室1で不要となり、反射したマイクロ波はサ
ーキュレータClR7を通り、ダミーロードDRIIK
導ひかれ、熱変換され吸収される。
Note that the microwaves that are no longer needed in the processing chamber 1 and reflected pass through the circulator ClR7 and are transferred to the dummy load DRIIK.
It is guided, converted into heat, and absorbed.

また、半導体ウェハ3上のA点12および8点13の温
度はそれぞれ温度計測部TMAI 4 、温度計測部T
MB15により計測される。なお、処理室lと温度計測
部TMA14および温度計測部TMB15間は円筒導波
管のしゃ断波長の原理を利用したマイクロ波し中断パイ
プA16とマイクロ波しゃ断パイプB17により、マイ
クロ波6がしゃ断され、温度計測経過が空間として構成
されている。
Further, the temperatures at point A 12 and point 8 13 on the semiconductor wafer 3 are determined by the temperature measurement unit TMAI 4 and the temperature measurement unit T, respectively.
Measured by MB15. Note that the microwave 6 is cut off between the processing chamber 1 and the temperature measuring part TMA14 and the temperature measuring part TMB15 by a microwave cutoff pipe A16 and a microwave cutoff pipe B17 that utilize the principle of the cutoff wavelength of a cylindrical waveguide. The temperature measurement progress is structured as a space.

全体制御部CPU18では、温度計測部TMA14およ
び温度計測部TMB15により計測された半導体ウェハ
3上のA点12と8点13の温度情報と外部から設定さ
れた加熱条件情報19とを比較演算し、その結果、マイ
クロ波反射端10をリニアパルスモータLPM9により
駆動させ、上述A点14と8点15の温度差を少な(す
る一方。
The overall control unit CPU18 compares and calculates the temperature information of the A point 12 and the 8 point 13 on the semiconductor wafer 3 measured by the temperature measuring unit TMA14 and the temperature measuring unit TMB15 with the heating condition information 19 set from the outside, As a result, the microwave reflecting end 10 is driven by the linear pulse motor LPM9, thereby reducing the temperature difference between the above-mentioned points A 14 and 8 points 15.

マイクロ波発生部MWG5から発生するマイクロ波出力
量を制御し、所定温度で所定時間加熱制御する。また、
全体制御部CPU18では加熱条件情報19に従い、ス
テージモータSM4を駆動させる。
The amount of microwave output generated from the microwave generator MWG5 is controlled to perform heating control at a predetermined temperature for a predetermined time. Also,
The overall control unit CPU 18 drives the stage motor SM4 according to the heating condition information 19.

次にこの装置によって半導体ウェノ・3上に形成された
結晶ダメージ層をアニーリングする方法について説明す
る。
Next, a method of annealing the crystal damaged layer formed on the semiconductor wafer 3 using this apparatus will be explained.

ビンステージ2上に表面に結晶ダメージ層を有する半導
体ウェハ3をセットし、全体制御部CPU18に加熱条
件情報19として、ステージモータSM4回転数、半導
体ウェハ3上のA点12゜8点13の加熱温度値(温度
差)並びに加熱時間等の条件を設定し、始動させる。
A semiconductor wafer 3 having a crystal damaged layer on the surface is set on the bin stage 2, and the heating condition information 19 is sent to the overall control unit CPU 18, and the number of revolutions of the stage motor SM4 is set to the heating point 13 of point A 12° and point 8 of the semiconductor wafer 3. Set conditions such as temperature value (temperature difference) and heating time, and start.

ステージモータSM4が駆動し、半導体ウェノ・3が所
定回転数に達すると、マイクロ波発生部MWG5からマ
イクロ波6が発生し、半導体ウエノ・3が加熱されはじ
める。
When the stage motor SM4 is driven and the semiconductor wafer 3 reaches a predetermined rotational speed, the microwave generator MWG5 generates microwaves 6, and the semiconductor wafer 3 begins to be heated.

半導体ウェハ3上のA点12と8点13は常に温度計測
部TMA14と温度計測部TMB15により、温度計測
されており、この2点の温度値並びに温度差が加熱条件
情報19に合致するようにマイクロ波発生部MWG5か
ら発生するマイクロ波出力量を制御すると同時に、リニ
アパルスモータLPM9を駆動させ、反射終端10を左
右動させなから、半導体ウェハ3に作用するマイクロ波
強度(定在波)を制御しながら所定時間加熱する。
The temperatures of point A 12 and point 8 13 on the semiconductor wafer 3 are always measured by the temperature measurement unit TMA14 and temperature measurement unit TMB15, and the temperature values and temperature difference between these two points match the heating condition information 19. At the same time as controlling the amount of microwave output generated from the microwave generator MWG5, the linear pulse motor LPM9 is driven to move the reflective terminal 10 left and right, thereby controlling the microwave intensity (standing wave) acting on the semiconductor wafer 3. Heating is controlled for a predetermined period of time.

このことにより、半導体ウェノ・3を均一かつ精度良く
加熱し、品質の高いアニーリング処理を行なう。
As a result, the semiconductor wafer 3 is heated uniformly and accurately, and a high-quality annealing process is performed.

アニーリング処理が完了すると、マイクロ波発生部MW
G5からのマイクロ波6がしゃ断され、かつ、リニアパ
ルスモータLPM9およびステージモータ4の回転が停
止される。アニーリング処理された半導体ウェハ3をビ
ンステージ2から取。
When the annealing process is completed, the microwave generator MW
The microwave 6 from G5 is cut off, and the rotation of linear pulse motor LPM9 and stage motor 4 is stopped. The annealed semiconductor wafer 3 is taken from the bin stage 2.

外しアニーリング処理作業が終了する。The removal annealing process is completed.

〔効 果〕〔effect〕

(11本発明は接触面積(放熱)の小さいビン等により
、被加熱物を保持し、マイクロ波のみによる加熱が実現
できる。その上、被加熱物上の複数点の温度情報に基づ
いて、加熱に要するマイクロ波電界強度分布を制御でき
ることから均一かつ高精度な加熱ができる。
(11) The present invention holds the object to be heated using a bottle or the like with a small contact area (heat dissipation), and can realize heating using only microwaves. Since the microwave electric field strength distribution required for heating can be controlled, uniform and highly accurate heating can be achieved.

(21マイクロ波しゃ断パイプにより、温度計測物(被
加熱物)と温度計測部間が空間で構成できることから、
高精度な温度計測が可能となり、高精度な加熱が実現j
る。
(21 Since the microwave cutoff pipe allows a space between the temperature measurement object (heated object) and the temperature measurement section,
Enables highly accurate temperature measurement and achieves highly accurate heating.
Ru.

(3)本発明は(1)項で説明したように、被加熱物お
よび反応物質のみを直接加熱処理もしくは反応処理する
ことから加熱エネルギー容量もしくは反応エネルギー容
量を最小にできる作用から加熱源および反応エネルギー
源の出力を最小にすることができる。
(3) As explained in section (1), the present invention is advantageous in that the heating energy capacity or the reaction energy capacity can be minimized by directly heating or reacting only the object to be heated and the reactant. The output of the energy source can be minimized.

(4)前記(1)および(31項のように加熱対象物の
加熱容量が小さくなるため、短時間に効率的に被加熱物
を加熱することができる。
(4) Since the heating capacity of the object to be heated is reduced as in (1) and (31) above, the object to be heated can be efficiently heated in a short time.

(5)被加熱物はマイクロ波によって加熱される。(5) The object to be heated is heated by microwaves.

この加熱はマイクロ波照射による被加熱物内部に生じる
抵抗損、誘電損等の電磁気損失により発熱するため、被
加熱物内部からの発熱であるため、加熱効率が極めて良
い。
This heating generates heat due to electromagnetic losses such as resistance loss and dielectric loss that occur inside the heated object due to microwave irradiation, so the heating efficiency is extremely high because the heat is generated from inside the heated object.

(6)被処理物を反応物質で反応処理する場合、反応を
必要とする物質のみ加熱処理できることから、従来のよ
うに不要生成物が生成されることが少なく、処理室内壁
や、被処理物表面が不要生成物で汚染されることも少な
い。
(6) When processing the object to be treated with a reactive substance, only the substance that requires the reaction can be heat-treated, so unnecessary products are less likely to be generated than in the past. The surface is less likely to be contaminated with unwanted products.

(力 前記(11、(61項により、均一かつ高精度な
加熱あるいは汚染の少ない反応処理が行なえることから
、品質が良好で安定した信頼性の高い加熱処理が可能と
なる相乗効果を奏する。
(11) (Section 61 above) enables uniform and highly accurate heating or reaction treatment with less contamination, which creates a synergistic effect that enables stable and highly reliable heat treatment with good quality.

以上、本発明を実施例にもとづいて具体的に説明したが
、本発明は上記実施例に限定されるものではな(、その
要旨を逸脱しない範囲で種々の変形が可能であることは
いうまでもない。
Although the present invention has been specifically explained above based on examples, the present invention is not limited to the above-mentioned examples (it goes without saying that various modifications can be made without departing from the gist of the invention). Nor.

また、本発明は高圧雰囲気中、常圧雰囲気中。Further, the present invention can be carried out in a high-pressure atmosphere or in a normal-pressure atmosphere.

低圧雰囲気中、真空中およびマイクロ波を透過する物質
中等で前記処理が可能となり、いずれの場合でも、前記
実施例と同様な効果を得ることかできる。
The above-mentioned treatment can be performed in a low-pressure atmosphere, in a vacuum, or in a substance that transmits microwaves, and in any case, the same effects as in the above embodiment can be obtained.

〔利用分野〕[Application field]

以上の説明では主として、本発明者によってなされた発
明をその背景となった利用分野である半導体装置製造に
おけるアニーリング装置に適用した場合について説明し
たが、これに限定されるものではなく、たとえば半導体
材料や、その他電磁的損失効果のある全ての物質につい
て、結晶成長処理方法、薄膜生成処理方法、熱拡散処理
方法。
In the above explanation, the invention made by the present inventor is mainly applied to an annealing apparatus in semiconductor device manufacturing, which is the background field of application, but the invention is not limited to this. Crystal growth treatment methods, thin film generation treatment methods, and thermal diffusion treatment methods for all substances that have electromagnetic loss effects.

薄膜キュアベーキング処理方法等をはじめ、あらゆる分
野における加熱処理方法や反応を伴う加熱処理に応用す
ることができる。
It can be applied to heat treatment methods and heat treatments involving reactions in all fields, including thin film curing baking treatment methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるアニール処理装置の要部断面図で
ある。 1・・・処理室(処理部又は加熱処理部)、2・・・ビ
ンステージ、3・・・半導体ウエノ・、4・・・ステー
ジモータSM、5・・・マイクロ波発生部MWG、6・
・・マイクロ波、7・・・サーキュレータCIR,8・
・・定在波発生板、9・・・リニアパルスモータLMP
、10・・・反射終端、11・・・ダミー・ロードDR
112・・・A点、13・・・B点、14・・・温度計
測部TMA、15・・・温度計測部TMB、16・・・
マイクロ波しゃ断パイプA  17・・・マイクロ波し
ゃ断B118・・・全体制御部CPU、19・・・加熱
条件情報。
FIG. 1 is a sectional view of a main part of an annealing processing apparatus according to the present invention. DESCRIPTION OF SYMBOLS 1... Processing chamber (processing part or heat processing part), 2... Bin stage, 3... Semiconductor ueno, 4... Stage motor SM, 5... Microwave generation part MWG, 6...
... Microwave, 7... Circulator CIR, 8.
...Standing wave generation plate, 9...Linear pulse motor LMP
, 10...Reflection termination, 11...Dummy load DR
112...Point A, 13...Point B, 14...Temperature measurement section TMA, 15...Temperature measurement section TMB, 16...
Microwave cutoff pipe A 17...Microwave cutoff B118...Overall control unit CPU, 19...Heating condition information.

Claims (1)

【特許請求の範囲】 1、電磁波発生手段から出射した電磁波により、被加熱
物を加熱処理する加熱装置であって、加熱処理部に被加
熱物を支持する支持台と、位置制御可能な電磁波反射端
部と、被加熱物の複数箇所の特性計測を行なう特性計測
部と、前記特性計測部の特性計測情報に基づき前記電磁
波反射端位置及びまたは電磁波発生手段から出射した電
磁波の強度を同時又は独立に制御する制御部と、加熱処
理部と特性計測部間に電磁波しゃ断材を有することを特
徴とする加熱装置。 2、上記支持台は、被処理物をすくなくとも3点又は少
なくとも2本の線又は、終点のない線の中から選ばれた
1つで支持することを特徴とする特許請求の範囲第1項
記載の加熱装置。 3、上記電磁波しゃ断材は、加熱処理部と特性計測部間
にパイプ状に複数設置されていることを特徴とする特許
請求の範囲第一項又は第二項記載の加熱装置。
[Claims] 1. A heating device that heats an object to be heated using electromagnetic waves emitted from an electromagnetic wave generating means, the heating device comprising: a support for supporting the object to be heated in a heating treatment section; and an electromagnetic wave reflection whose position can be controlled. a characteristic measuring unit that measures the characteristics of the end and a plurality of locations of the object to be heated; and a characteristic measuring unit that measures the intensity of the electromagnetic waves emitted from the electromagnetic wave reflection end position and/or the electromagnetic wave generating means simultaneously or independently based on the characteristic measurement information of the characteristic measuring unit. What is claimed is: 1. A heating device comprising: a control section for controlling the temperature; and an electromagnetic wave shielding material between the heat treatment section and the characteristic measurement section. 2. The support stand supports the object to be processed at at least three points, at least two lines, or one line with no end point, as set forth in claim 1. heating device. 3. The heating device according to claim 1 or 2, wherein a plurality of the electromagnetic wave shielding members are installed in a pipe shape between the heat treatment section and the characteristic measurement section.
JP15288584A 1984-07-25 1984-07-25 Heating device Pending JPS6132418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15288584A JPS6132418A (en) 1984-07-25 1984-07-25 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15288584A JPS6132418A (en) 1984-07-25 1984-07-25 Heating device

Publications (1)

Publication Number Publication Date
JPS6132418A true JPS6132418A (en) 1986-02-15

Family

ID=15550245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15288584A Pending JPS6132418A (en) 1984-07-25 1984-07-25 Heating device

Country Status (1)

Country Link
JP (1) JPS6132418A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519193A (en) * 1992-10-27 1996-05-21 International Business Machines Corporation Method and apparatus for stressing, burning in and reducing leakage current of electronic devices using microwave radiation
JP2009188087A (en) * 2008-02-05 2009-08-20 Hitachi Kokusai Electric Inc Substrate treatment device
WO2014017191A1 (en) * 2012-07-25 2014-01-30 東京エレクトロン株式会社 Microwave heating processing device and processing method
WO2017145261A1 (en) * 2016-02-23 2017-08-31 株式会社日立国際電気 Substrate treatment apparatus, semiconductor device manufacturing method, and computer-readable recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519193A (en) * 1992-10-27 1996-05-21 International Business Machines Corporation Method and apparatus for stressing, burning in and reducing leakage current of electronic devices using microwave radiation
JP2009188087A (en) * 2008-02-05 2009-08-20 Hitachi Kokusai Electric Inc Substrate treatment device
WO2014017191A1 (en) * 2012-07-25 2014-01-30 東京エレクトロン株式会社 Microwave heating processing device and processing method
WO2017145261A1 (en) * 2016-02-23 2017-08-31 株式会社日立国際電気 Substrate treatment apparatus, semiconductor device manufacturing method, and computer-readable recording medium
JPWO2017145261A1 (en) * 2016-02-23 2018-12-13 株式会社Kokusai Electric Substrate processing apparatus, semiconductor device manufacturing method, and computer-readable recording medium
US10943806B2 (en) 2016-02-23 2021-03-09 Kokusai Electric Corporation Substrate processing apparatus, method of manufacturing semiconductor device, and non- transitory computer-readable recording medium

Similar Documents

Publication Publication Date Title
JPS59152618A (en) Thermal treatment and equipment for the same
US4481406A (en) Heater assembly for thermal processing of a semiconductor wafer in a vacuum chamber
EP3329510B1 (en) Rotating substrate laser anneal
JP4641372B2 (en) Apparatus and method for processing ceramics
WO2012148621A2 (en) Apparatus and methods for microwave processing of semiconductor substrates
JP6821788B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP2004526649A5 (en)
US11924952B2 (en) Microwave assisted parallel plate e-field applicator
US20200286757A1 (en) Apparatus for annealing semiconductor integrated circuit wafers
JPS6132418A (en) Heating device
US8802550B2 (en) Heat treatment method for heating substrate by irradiating substrate with flash of light
JPS6143417A (en) Heat treating method and heating device utilizing thereof
JP3443779B2 (en) Heat treatment equipment for semiconductor substrates
JPH07114188B2 (en) Heat treatment method for semiconductor substrate and heat treatment apparatus used therefor
JP2010080537A (en) Substrate treatment apparatus
JP3785650B2 (en) Single wafer heat treatment system
JPS60105195A (en) Heater
JPS61168920A (en) Material treating apparatus
JPS6143425A (en) Heat treating device and heat treating method
CN209981172U (en) Heat treatment system
JPS6352421A (en) Heat treatment method and device for wafer
JPS6143416A (en) Heating device
JPS61168921A (en) Microwave treating apparatus
KR100370857B1 (en) Process for the heat treatment of semiconductor wafers and holding device for the heat treatment thereof
JP3517400B2 (en) Temperature measuring device for etching equipment