JPS60204833A - Manufacture of "sendust(r)" plate having superior magnetic characteristic - Google Patents
Manufacture of "sendust(r)" plate having superior magnetic characteristicInfo
- Publication number
- JPS60204833A JPS60204833A JP59061949A JP6194984A JPS60204833A JP S60204833 A JPS60204833 A JP S60204833A JP 59061949 A JP59061949 A JP 59061949A JP 6194984 A JP6194984 A JP 6194984A JP S60204833 A JPS60204833 A JP S60204833A
- Authority
- JP
- Japan
- Prior art keywords
- sendust
- rolling
- hot
- less
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、磁気特性の優れたセンダスト板材の製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a sendust plate with excellent magnetic properties.
〈産業上の利用分野〉
近年、粉末冶金技術等の著しい進歩や電子機器類の広範
囲な普及にともない、磁気ヘッド材や磁気シールド材と
して用いられるセンダストC5t−At−Fe系合金)
が、難加工材であるKもかかわらずその需要を大幅に伸
ばす様相を見せている。<Industrial Application Fields> In recent years, with the remarkable progress in powder metallurgy technology and the wide spread of electronic devices, Sendust C5t-At-Fe alloys are used as magnetic head materials and magnetic shielding materials.
However, despite K being a difficult-to-process material, demand for it appears to be increasing significantly.
〈従来技術〉
ところで、上記センダストは、極めて高い透磁率や固有
抵抗を有するなど磁気特性の優nた材料ではあるが、−
面、非常に脆い材料でもあp、%に4.5%以上(以下
、成分割合を表わすチは重量%とする)のSit含むセ
ンダストはその傾向が著しいので、殆んどは焼結晶とさ
れるか、或いは直接所望肉厚の製品に鋳込まnて利用さ
れるのみで、大型部材としての利用の道が閉ざさnてい
るのが現状であった。<Prior art> By the way, although the Sendust mentioned above is a material with excellent magnetic properties such as extremely high magnetic permeability and specific resistance, -
However, even though it is a very brittle material, sendust containing 4.5% or more of Sit (hereinafter, % by weight) has a remarkable tendency to do so, so most of it is considered to be sintered crystals. At present, they are used only by being cast or directly cast into products with a desired wall thickness, and the possibility of using them as large-sized parts is currently closed.
しかしながら、センダストの有する優れた磁気特性の故
K、早くからその塑性加工の可能性を追求した多くの研
究が続けらnてもいたのである。However, because of Sendust's excellent magnetic properties, many studies were conducted from an early stage to explore its plastic working potential.
そして、これらの研究は、実用的なセンダスト部材製造
の殆んど唯一の手段となっている粉末冶金法の採用で必
然的に生ずる問題点を回避しようとの意味からも、大き
な注目を集めていた。なぜなら、粉末冶金法で製造さn
たセンダスト焼結部材は、わずかではあるが粉体製造工
程でどうしても粉体表面が酸化さnてしまうことから、
センダスト自身の有する優れた磁気特性を発揮すること
ができなかったからである。These studies have also attracted a great deal of attention in the sense that they aim to avoid the problems that inevitably arise with the adoption of powder metallurgy, which is almost the only means of producing practical sendust parts. Ta. Because it is manufactured using powder metallurgy
Sendust sintered parts inevitably undergo some oxidation on the powder surface during the powder manufacturing process, so
This is because Sendust itself could not exhibit its excellent magnetic properties.
このような状況の下にあって、最近、
「脆くて圧延が不可能であるとされているセンダストで
あっても、S1含有量の比較的低いものを選んで高温の
極く狭い温度域にて圧延を行えば、不安定ながら何とか
圧延材を得ることが′可能である」
という報告や、或いは、
「圧延では、実用に供することのできない極めて靭性の
悪いセンダスト板しか得られないが、隅を添加するとと
もに、高温域で、かつ実用範囲よシもかなり遅い歪速度
で圧延を行うと、やはり不安定ながら靭性の比較的良い
センダスト板を製造できる」
等の報告もなさnたが、いずれの方法にしてもセンダス
ト圧延板の多量生産は側底無理であり、しかも圧延途中
で何回も素材の再加熱が必要である等、工業的規模にて
センダスト板材を製造するには多くの問題を抱えている
ものであった。Under these circumstances, recently, ``Even though sendust is said to be brittle and impossible to roll, it is possible to select one with a relatively low S1 content and heat it in an extremely narrow temperature range at high temperatures.'' There are reports stating, ``If rolling is carried out, it is possible to somehow obtain a rolled material, although unstable,'' or ``Rolling only yields a sendust plate with extremely poor toughness, which cannot be used for practical use, but the corner There have been no reports that if the steel is added and rolled at a high temperature range and at a strain rate that is considerably lower than in the practical range, it is possible to produce sendust plates that are unstable but have relatively good toughness. Even with this method, mass production of Sendust rolled plates is impossible, and there are many problems in manufacturing Sendust plates on an industrial scale, such as the need to reheat the material many times during rolling. It was something that I was dealing with.
〈発明の目的〉
本発明者等は、上述のような観点から、格別に特殊な処
理や条件を要することのない簡単な工程の熱間圧延によ
って、磁気特性の優れたセンダスト板材を工業的規模で
量産し得る方法を見出すべく、長年にわたって試行錯誤
を繰り返しながら研究を重ねた結果、以下に示さnる如
き知見1に得るに至ったのである。<Purpose of the Invention> From the above-mentioned viewpoint, the present inventors have developed sendust plate material with excellent magnetic properties on an industrial scale by hot rolling, a simple process that does not require any special treatment or conditions. As a result of many years of repeated research through trial and error in order to find a method for mass production, we have come to the knowledge 1 shown below.
く知見事項〉
極めて脆い合金であるセンダストに適量のV7i:添加
すると、磁気特性に影響を与えることなくその熱間加工
性が大幅に向上し、通常の熱間圧延におけると同程度の
歪速度で圧延しても割nが殆んど発生しなくなる上、更
に適量のNbを添加すると圧延材の靭性も改善されるの
で、熱間圧延の際の加熱温度、圧下率、仕上げ後の冷却
速度にさえ注意すntf、磁気特性に優nるとともに、
実用に十分供し得る程度の良好な靭性を備えたセンダス
ト板材を、工業的規模で能率良く量産し得ること。Findings> When an appropriate amount of V7i is added to sendust, an extremely brittle alloy, its hot workability is greatly improved without affecting its magnetic properties, and it can be applied at the same strain rate as in normal hot rolling. In addition to almost no cracking occurring during rolling, adding an appropriate amount of Nb also improves the toughness of the rolled material, so the heating temperature, rolling reduction rate, and cooling rate after finishing during hot rolling can be Be careful even when using NTF, as well as superior magnetic properties.
To efficiently mass-produce sendust plate material having good toughness sufficient for practical use on an industrial scale.
即ち、磁気特性の優れた良靭性センダスト板材の熱間圧
延にて多量生産するためKは、■ 合金中への適量の■
添加。That is, in order to mass-produce high-toughness sendust plates with excellent magnetic properties by hot rolling, K is added to the alloy in an appropriate amount.
Addition.
■ 合金中への適量の励添加。■ Appropriate amount of addition to the alloy.
■ 圧延温度の確保と圧下蓋の制限。■ Ensuring the rolling temperature and limiting the rolling lid.
[株] 圧延後の徐冷
の4つが重要な技術的ポイントとなっており、これらが
組合わさnてはじめて上記七ノダスト熱延板材の量産が
可能となることを見出したのである。[Co., Ltd.] There are four important technical points, slow cooling after rolling, and we have discovered that mass production of the above-mentioned Nanodust hot-rolled sheet material is only possible when these are combined.
以下、前記知見事項を更に細部にわたって説明する。The above findings will be explained in more detail below.
■ 合金中への■の添加
鋼(センダスト)中に微量含有されているC及びNの量
よりも化学量論的に多量のvl添加すると、鋼は軟化す
る傾向を見せるようになったのである。■ Addition of ■ to the alloy When VL was added in a stoichiometrically larger amount than the trace amounts of C and N contained in the steel (sendust), the steel began to show a tendency to soften. .
この現象は、■原子が鉄中に固溶するのに好都合な寸法
因子を持っていることに加えて炭窒化物を形成しやすい
ものでもあるので、固溶した■原子のまわシに局所的5
にC,N雰囲気が形成されることとなり、これによって
、可動転位に対するノ4’イエルスポテンシャルを高め
ると言う固溶C,N原子の悪影響が除かれることに起因
するものと考えられる。念を押すようであるが、この場
合、■は炭窒化物として析出していると百9よりは、固
溶してそのまわりにC或いはNの雰囲気を形成している
と考えらnるのである。This phenomenon is caused by the fact that in addition to the fact that the atoms have favorable size factors for solid solution in iron, they also tend to form carbonitrides. 5
This is thought to be due to the fact that a C, N atmosphere is formed, thereby eliminating the negative influence of the solid solution C, N atoms, which increases the 4' Eels potential for mobile dislocations. As a reminder, in this case, it is more likely that ■ is precipitated as a carbonitride, but rather that it forms a solid solution and forms a C or N atmosphere around it. be.
もつとも、Tl或いは歯にもこのような挙動が期待でき
そうであるが、予想に反して、こnらの元素は寸法因子
的にFe原子に対し大きすぎるので鉄への固溶限が小さ
く、しかも固溶によって硬化を招くものであるため、■
のような効果は全く期待テキないものであった。Of course, this kind of behavior can be expected for Tl or teeth, but contrary to expectations, these elements are too large in terms of size factor compared to Fe atoms, so the solid solubility limit in iron is small. Moreover, since it causes hardening due to solid solution, ■
Such effects were not at all as expected.
■ 合金中への怖添加
センダスト等のような難加工性の鋼材は、同時に非常に
脆いので組織の細粒化を図って靭性を向上させる必要が
あるとの予測の下に、センダスト中に所定量のNbtv
と共に添加したところ、熱間加工温度として比較的高い
温度領域t−要するセンダストではあるが熱間圧延加ニ
ー再結晶後の粒成長カ有効罠抑制され、フェライト粒径
が微細となって常温における靭性が向上し、軽度の冷間
加工が可溶なセンダスト板材が得らnたのである。■ Difficult-to-work steel materials such as sendust are also extremely brittle, so it is necessary to improve toughness by making the structure finer. Quantitative Nbtv
Although sendust requires a relatively high temperature range for hot working, the grain growth after hot rolling and knee recrystallization is effectively suppressed, and the ferrite grain size becomes fine, improving toughness at room temperature. The result is a Sendust plate material that has improved properties and is soluble in mild cold working.
■ 圧延温度の確保と圧下量の制限
適量の■及びNbt添加したセンダストであっても、9
00℃以上の温度でなけれは良好な熱間加工性を示さず
、また900℃以上の温度域では高温になる#ミど熱間
加工性が向上する。従って、正規加工で板材に成形する
場合には、900℃以上で圧gt−終了しないと熱間延
性が不足することとなり、割れを生じてしまう。■ Ensuring the rolling temperature and limiting the amount of rolling reduction Even with an appropriate amount ■ and Sendust with Nbt added
Good hot workability is not exhibited unless the temperature is 00°C or higher, and hot workability is improved at high temperatures in the temperature range of 900°C or higher. Therefore, when forming into a plate material by regular processing, unless the rolling gt is completed at 900° C. or higher, hot ductility will be insufficient and cracks will occur.
そして、このためには、圧延直前の鋳片の温Uが115
0℃以上であることが必要となp、鋳片の直送圧延であ
れ、再加熱圧延であn、圧延直前の温度が1150℃を
下回ると仕上げ温度:900℃以上を確保できず、実用
上所定の板厚にまで圧延することができない。For this purpose, the temperature U of the slab just before rolling must be 115
Whether it is direct rolling or reheat rolling of slabs, if the temperature immediately before rolling is below 1150°C, it will not be possible to ensure a finishing temperature of 900°C or higher, which is difficult to achieve in practice. It is not possible to roll the plate to a specified thickness.
また、圧下量は、l ノ?ス当りの圧下量を出来るだけ
低くとnば歪速度が低下することとなって圧延中の割れ
発生の危険が小さくなるが、前記の如き適量のV及びN
b’を添加したセンダストでは、1パス当りの圧下率が
35%を越えて大きくなると割n発生の危険が急激に増
大するエリである。Also, the amount of reduction is l? If the rolling reduction amount during rolling is as low as possible, the strain rate will decrease and the risk of cracking during rolling will be reduced, but if the appropriate amount of V and N as described above is
In sendust to which b' is added, when the reduction rate per pass exceeds 35%, the risk of occurrence of split n increases rapidly.
[株] 圧延後の制御冷却
適量のV及びNbt−添加したセンダス)k鋳造し、そ
の鋳片又は鋼片が1150℃未満にまで温度降下しない
うちに圧延を施すか、或いは前記温度未満にまで温度降
下した場合は115C1℃以上にまで再加熱してから圧
延すれば、その圧延が1パス当りの圧下率=35チ以下
の条件を満たしているときに所望厚の版材を得らnるが
、圧延終了後、得られた板材を急冷すると大きな熱応力
が発生して割れを生じてしまう。また徐冷しすぎても圧
延加工後再結晶−粒成長が生じ、粗大フェライト組織の
ために常温での靭性が劣化する。[Co., Ltd.] Controlled Cooling After Rolling Appropriate amounts of V and Nbt-added sendas) are cast, and rolling is performed before the temperature of the slab or steel slab falls below 1150°C, or until the temperature drops below the above temperature. If the temperature drops, reheating to 115C1℃ or higher before rolling will make it possible to obtain a plate material of the desired thickness when the rolling meets the condition that the rolling reduction rate per pass is 35 inches or less. However, when the obtained plate material is rapidly cooled after rolling, large thermal stress is generated, resulting in cracking. Furthermore, if the steel is cooled too slowly, recrystallization and grain growth will occur after rolling, and the toughness at room temperature will deteriorate due to the coarse ferrite structure.
ところが、圧延終了の後、焼もどし或いは焼なましを兼
ねて板材を所定の冷却速度範囲で制御冷却すると、前述
のような不都合が解消されてしまう。However, if the plate material is cooled in a controlled manner within a predetermined cooling rate range for tempering or annealing after completion of rolling, the above-mentioned disadvantages will be resolved.
〈発明の構成〉
この発明は、上記知見に基づいてなさ扛たものでおり、
C: 0.015−以下、Si : 4−5〜12.0
%。<Structure of the Invention> This invention has been made based on the above knowledge, and has the following characteristics: C: 0.015- or less, Si: 4-5 to 12.0
%.
P : 0.050%以下、S:0.010%以下。P: 0.050% or less, S: 0.010% or less.
5ob−At: 2.5〜7.5 % 、 N : 0
.0 O8%以下。5ob-At: 2.5-7.5%, N: 0
.. 0 O8% or less.
0 : 0.008 %以下、V:0.05〜0.50
%。0: 0.008% or less, V: 0.05-0.50
%.
Nb: 0.005〜0.40%、Mn : O−50
、%以下を含有するとともK、残部が実質的KFe″′
Cあり、かつ1150℃以上の温度を有する鋳片又は鋼
片を、1パス当り35%以下の圧下率で熱間圧延し。Nb: 0.005-0.40%, Mn: O-50
, % or less of K, the remainder being substantially KFe'''
A slab or steel slab with C and a temperature of 1150°C or higher is hot rolled at a reduction rate of 35% or less per pass.
続いて300〜b
冷却することにより、磁気特性の優れたセンダスト板材
を工業的規模でコスト安く製造できるようにした点に特
徴含有するものである。By subsequently cooling the material to 300°C, it is possible to produce sendust plate material with excellent magnetic properties at low cost on an industrial scale.
次いで、この発明のセンダスト板材の製造方法において
、鋼の成分組成、及び熱間圧延・冷却条件を前記の如く
に数値限定した理由を説明する。Next, the reason why the composition of the steel and the hot rolling/cooling conditions are numerically limited as described above in the method for producing a sendust plate material of the present invention will be explained.
A、成分組成
(a) C
Cは、その含有量が少なけれは少ないほど好ましい不純
物元素であるが、特にC含有量が0.015%を越える
と、固溶状態でセンダストの熱間延性を低下させる作用
が著しくなる上、熱間圧延終了後の徐冷中にNbC又は
VCt形底・析出してセンダスト板材の靭性を劣化させ
るようにもなることから、C含有量’t−0,015%
以下と定めた。A. Component composition (a) C C is an impurity element that is more preferable if its content is as small as possible, but especially when the C content exceeds 0.015%, the hot ductility of sendust is reduced in a solid solution state. In addition, the C content 't-0,015% also causes NbC or VCt-shaped bottoms to precipitate during slow cooling after hot rolling and deteriorates the toughness of the sendust plate.
It was determined as follows.
Φ) 5t
Slは、センダストの透磁率並びに固有抵抗を高めるの
に有効な元素であり、所望の優れた磁気特性を得るため
には4.5チ以上全含有させる必要があるが、12.0
%を越えて含有させると熱間加工が殆んど不可能となる
ことから、 St含有ii4.5〜工2.0チと定めた
。Φ) 5t Sl is an effective element for increasing the magnetic permeability and specific resistance of sendust, and in order to obtain the desired excellent magnetic properties, it is necessary to have a total content of 4.5 or more, but 12.0
Since hot working becomes almost impossible if the St content exceeds 4.5% to 2.0%.
(c) P
Pは、o、o s oチを越えない程度の量で含有さn
ているとむしろ透磁率を若干高める作用を有した元素で
あるが、o、o s oチを越えて含有させると靭性を
劣化させてその後の冷間加工を全く不可能にすることか
ら、P含有量t: 0.050%以下と定めた。(c) P P is contained in an amount not exceeding o, o s o.
In fact, P is an element that has the effect of slightly increasing magnetic permeability, but if it is contained in excess of o, o so, it deteriorates toughness and makes subsequent cold working completely impossible. Content t: Set at 0.050% or less.
(d)S
Sは、センダストの熱間延性を劣化させるのでその含有
量が低いほど好ましい不純物元素であるが、経済性との
兼ね合いから、S含有量を0.010−以下と定めた。(d) S S is an impurity element that deteriorates the hot ductility of sendust, so the lower its content is, the more preferable it is. However, in consideration of economic efficiency, the S content was set at 0.010- or less.
(a) sot、ht
sot、Atは、Stと同様、センダストの透磁率並び
に固有抵抗を高める重要な成分であるが、その含有量が
2.5−未満では所望の磁気特性を実現することができ
ず、−万7.5−を越えて含有させるとセンダストの熱
間加工が不可能になることがら、tsoL、AL含有量
t−2,5〜7.5%と定めた。(a) sot, ht Sot and At, like St, are important components that increase the magnetic permeability and specific resistance of sendust, but if their content is less than 2.5-, it is difficult to achieve the desired magnetic properties. If the content exceeds -7.5%, hot processing of sendust becomes impossible, so the tsoL and AL content was set at t-2.5 to 7.5%.
(f) N
Nは、鋼中で各種の窒化物を形成し、結晶粒界に析出し
て脆化の原因となるので少なければ少ないほど好ましい
不純物元素であるが、経済性との兼ね合いから、N含有
量’1o、ooas以下と定めた。(f) N N is an impurity element that forms various nitrides in steel and precipitates at grain boundaries and causes embrittlement, so the smaller the amount, the better. The N content was determined to be below '1o, ooas.
億) 0
0も、鋼中にて各種の酸化物を形成し、磁気特性を劣化
するとともに熱間延性をも低下させるので、可及的に低
減するのが好ましい不純物元素であるが、やはり経済性
との兼ね合いから、O含有量をo、o o s%以下と
定めた。00 is also an impurity element that should be reduced as much as possible because it forms various oxides in steel, deteriorating magnetic properties and reducing hot ductility. In consideration of performance, the O content was determined to be less than o, o s%.
(ト)) ■
■は、先にも述べたように、不純物として混入するC及
びNの害を除いてセンダストの熱間延性を顕著に向上さ
せる重要な元素であり、その添加は本発明の骨子をなす
ものであるが、■含*’tが0.05%未満では熱間加
工性向上作用に所望の効果が得られず、一方0.80%
を越えて含有させると、かえってVの悪影響が出て熱間
延性を低1するようになることから、■含有量’Th0
.05〜O,S O係と定めたが、特に、0.2%以上
程度のV添加が好ましい。(G)) As mentioned above, ■■ is an important element that significantly improves the hot ductility of sendust by eliminating the harmful effects of C and N mixed in as impurities, and its addition is an important element that significantly improves the hot ductility of sendust. The main point is that ■ If the content is less than 0.05%, the desired effect on improving hot workability cannot be obtained;
If the content exceeds V, the adverse effect of V will occur and the hot ductility will be lowered by 1.
.. 05 to O, SO, it is particularly preferable to add V in an amount of about 0.2% or more.
(i) Nb
Nbは、鋼のミクロ組織の細粒化に有効な元素であり、
特KVとともにo、o o s%以上を含有させること
でセンダストのフェライト粒を細粒化して冷間加工性を
高める作用を発揮するが、0.40 %を越えて含有さ
せるとセンダストが硬化して熱間延性の著しい劣化を来
たすようKなることがら。(i) Nb Nb is an element effective in refining the microstructure of steel,
By containing o, o o s% or more together with special KV, it has the effect of refining the ferrite grains of sendust and improving cold workability, but if it is contained in excess of 0.40%, sendust will harden. K may cause a significant deterioration of hot ductility.
島含有量を0.005〜0.40チと定めた。The island content was determined to be 0.005 to 0.40 inches.
(j) Mn 廊は、センダスト中のSkMnSとして固定し。(j) Mn Corridor is fixed as SkMnS in Sendust.
熱間延性を向上させる好ましい元素であシ、その含有量
が微量であっても顕著な効果を得られるものであるが、
o、s o s を越えて含有させるとセンダストの透
磁率を低下するようになって高透磁率鋼としての意義を
低くすることがら、胤含有量を0.50チ以下と定めた
。It is a preferable element that improves hot ductility, and even if its content is small, a remarkable effect can be obtained.
If the content exceeds 0.0, s o s , the magnetic permeability of sendust will decrease and its significance as a high magnetic permeability steel will be diminished, so the seed content was set at 0.50 or less.
なお、通常、鋼中には0.1〜0.2チ程度の庵が不純
物として混入するが、施含有量がこの程度、或いはこの
値よりも低くても良好な熱間延性向上作用が発揮される
ので、実際上、廊の積極的な添加は必すしも必要ではな
い。Normally, about 0.1 to 0.2 inches of iron is mixed into steel as an impurity, but even if the applied content is at this level or lower than this value, a good effect of improving hot ductility is exerted. Therefore, in practice, active addition of corridors is not necessarily necessary.
B、熱間圧延・冷却条件
(JL) 熱間圧延条件
この発明の方法で対象とする成分組成の鋼(センダスト
)ハ、900℃以上の温度域で圧処し、しかも1パス当
9の圧下率を35%以下にしないと圧延中に割れを生じ
ることとなる。そして、このような圧延仕上げ温度及び
1パス当りの圧下率で圧延を行って所定の板厚に仕上け
るためKは、実用上、圧延直前の鋳片又は鋼片の保有温
度が1150℃以上でなけf′Lはならないのでおる。B. Hot rolling/cooling conditions (JL) Hot rolling conditions The steel (sendust) with the composition targeted by the method of this invention C is rolled in a temperature range of 900°C or higher, and at a rolling reduction rate of 9 per pass. If it is not 35% or less, cracks will occur during rolling. In order to finish the plate to a specified thickness by rolling at such finishing temperature and rolling reduction rate per pass, K is practically required when the holding temperature of the slab or steel slab immediately before rolling is 1150°C or higher. Otherwise, f'L will not be true.
即ち、圧延直前の鋳片又は鋼片の温度が1150’Ck
下回っていたり、1ノやス当りの圧下率が35%を越え
ると圧延加工中に割れを生じ、センダスト板材を製造で
きなくなる。That is, the temperature of the slab or steel slab just before rolling is 1150'Ck.
If the rolling reduction ratio per slot or slot exceeds 35%, cracks will occur during rolling, making it impossible to manufacture sendust plate material.
もちろん、このような条件の熱間圧延で所定の板厚に仕
上げられないときには、所定板厚になるまで何度でも1
150℃以上に再加熱し900℃以上で熱間圧延を終了
する工程を繰り返すことになるが、そのような場合でも
1ノ母ス当りの圧下率を35−以下としなければならな
いことは当然である。Of course, if it is not possible to finish the plate to the specified thickness by hot rolling under these conditions, rolling may be repeated as many times as necessary until the specified thickness is achieved.
The process of reheating to 150°C or higher and finishing hot rolling at 900°C or higher is repeated, but even in such a case, it is natural that the rolling reduction per one blank must be 35- or less. be.
ところで、この発明の方法で対象とする鋼(センダスト
は、鋳込んだままの鋳造状態では極めて脆く、工業的規
模の大きさの鋼塊を一旦室温まで放冷して冷塊にした後
再加熱圧延する工程全採用すると、その間に発生する熱
応力で脆性破壊を生ずる機会が多くなって安定したセン
ダスト板材の製造ができな(なる恐れがある。特に、2
00℃〜呈温の低温域で発生する熱応力が割れの発生を
招きやすいので、200℃以下の降温には徐冷が必要で
あり、再加熱の際、200℃を越える温度までは極めて
ゆりIした加熱速度を要求される。By the way, the steel targeted by the method of this invention (Sendust) is extremely brittle in the as-cast state. If the entire rolling process is used, there is a risk that brittle fracture will occur due to the thermal stress generated during the rolling process, making it impossible to produce stable sendust plates.
Thermal stress that occurs in the low-temperature range from 00°C to temperature is likely to cause cracks, so slow cooling is necessary to lower the temperature to 200°C or less, and when reheating, it is extremely difficult to cool down to a temperature exceeding 200°C. A certain heating rate is required.
しかし、実操業上、上記低温域を徐冷したりゆっくり加
熱したりすることは製造能率の不利を招き、生産性を大
幅に低下するので、鋳片を鋳込んだ後、1150℃以上
の温度(特に中心温度)以上のままで直接熱間圧延する
か、或いは200℃金越える鋳片温度を確保したまま1
150℃以上に再加熱し、熱間圧延する方法が推奨され
る。However, in actual operation, slow cooling or slow heating in the above low temperature range will disadvantage production efficiency and significantly reduce productivity, so after casting the slab, the temperature above 1150℃ (Especially the center temperature) or directly hot rolling while keeping the slab temperature above 200℃.
A method of reheating to 150° C. or higher and hot rolling is recommended.
(b) 熱間圧延後の冷却条件
熱間圧延終了後300〜30℃/hrの冷却速度範囲で
制御冷却するのは、
■ 熱応力を緩和して5割れ発生の危険を防止する、
■ 熱間延性を向上するために添加したV、及び細粒化
のために添加した歯と、不純物元素として混入したC及
びNとが結合してV (C,N)及びNb(C,N)t
−析出し、センダス)k硬化し脆化全米たすと言う弊害
を抑えるための焼なまし効果を狙う、
■ しかし、あま9冷却速度が遅いと再結晶径粒成長し
、粗大粒のため靭性が劣化する、との理由からである。(b) Cooling conditions after hot rolling Controlled cooling at a cooling rate range of 300 to 30°C/hr after the end of hot rolling is to: ■ Alleviate thermal stress and prevent the risk of 5 cracks; The V added to improve ductility and the teeth added to make grains finer combine with C and N mixed as impurity elements to form V (C,N) and Nb(C,N)t.
- Aiming for an annealing effect to suppress the negative effects of hardening and embrittlement (precipitation, sendas). ■ However, if the cooling rate is slow, recrystallization of grains will occur, and coarse grains will cause toughness. This is because it causes deterioration.
そして、熱間圧延後の冷却速度が300℃/hrt越え
るとセンダスト板材に割れを発生する危険が極めて高く
、かつ30℃/hrよシも冷却速度が遅くなると靭性の
劣化をも招くこととなるので、所望性能のセンダスト板
材を高能率で安定生産することが困MKなるのである。If the cooling rate after hot rolling exceeds 300°C/hr, there is an extremely high risk of cracking in the sendust plate, and if the cooling rate is slower than 30°C/hr, it will also lead to deterioration of toughness. Therefore, it is difficult to stably produce Sendust plate material with desired performance with high efficiency.
次に、この発明を、実施例により比較例と対比しながら
説明する。Next, the present invention will be explained using examples and comparing with comparative examples.
〈実施例〉
まず、真全溶解によって第1表に示さ扛る如き成分組成
の鋼(センダスト)A〜工を溶製し、続いて連続鋳造に
より厚さ二5o■の鋳片を鋳造した。<Example> First, steel (Sendust) A to A having the composition shown in Table 1 was melted by full melting, and then a slab with a thickness of 25 mm was cast by continuous casting.
次いで、これらの鋳片を、第2表に示さ扛るような熱間
圧延・冷却条件で処理し、同じく第2表に示す如き厚さ
のセンダスト板材を製造した。These slabs were then subjected to hot rolling and cooling conditions as shown in Table 2 to produce sendust plates having the thicknesses also shown in Table 2.
得られたセンダスト板材について、割れ発生の状況、及
び磁気特性t−調査し、その結果も、第2表に併せて示
した。The resulting sendust plate material was investigated for crack occurrence and magnetic properties, and the results are also shown in Table 2.
第2表に示される結果からも、本発明の方法によって優
れた磁気特性を有するセンダスト熱延板打金安定して製
造できることが明らかであるのく対して、鋼の成分組成
、或いは熱間圧延・冷却条件が本発明の範囲から外れて
いる比較例では、圧延中又は冷却途中で割れを発生し、
センダスト熱延板を安定して製造できないことがわかる
。From the results shown in Table 2, it is clear that the method of the present invention can stably produce Sendust hot-rolled sheet metal with excellent magnetic properties. - In comparative examples where the cooling conditions were outside the scope of the present invention, cracks occurred during rolling or cooling,
It can be seen that Sendust hot-rolled sheets cannot be stably manufactured.
く総括的な効果〉
上述のよう罠、この発明によれば、実操業上何ら繁雑な
手段を必要としない熱間圧延によって磁気特性等の優れ
たセンダスト板材を工業的規模で量産することが可能と
なり、各種の磁気ヘッド材や磁気シールド材等をコスト
安く提供できる上、大型部材の製造もが可能となるので
、例えは地磁気のシールドが必要な建造物の部材等にも
センダストの用途を拡大し得るなど、産業上極めて有用
な効果がもたらされるのである。Overall effect> As mentioned above, according to the present invention, it is possible to mass produce sendust plates with excellent magnetic properties etc. on an industrial scale by hot rolling which does not require any complicated means in actual operation. As a result, we can provide various magnetic head materials and magnetic shielding materials at low cost, and we can also manufacture large components, so we are expanding the use of Sendust to, for example, components of buildings that require shielding from the geomagnetic field. This brings about extremely useful effects industrially.
出願人 住友金属工業株式会社 代理人 富 1)和 夫 tlか1名Applicant: Sumitomo Metal Industries, Ltd. Agent Tomi 1) Kazuo TL or one person
Claims (1)
2.0 % TP : 0.050%以下、S:0.0
10%以下。 aoL、At: 2.5〜7.5%、 N : 0.0
08%以下。 0 : 0.008チ以下、 V : 0.05〜0.
80チ。 Nb: 0.005〜0.40 ’A 、Mn: 0.
50%以下を含有するとともに、残部が実質的にFeで
あり、かつ1150℃以上の製置を有する鋳片又は鋼片
を、1パス当り35%以下の圧下率で熱間圧延し、続い
て300〜b 冷却することを特徴とする、磁気特性の優れたセンダス
ト板材の製造方法。[Claims] In terms of weight percentage: C: 0.015% or less j+ 81' 4-5 to 1
2.0% TP: 0.050% or less, S: 0.0
Less than 10%. aoL, At: 2.5-7.5%, N: 0.0
08% or less. 0: 0.008 inches or less, V: 0.05 to 0.
80 chi. Nb: 0.005-0.40'A, Mn: 0.
A slab or steel slab containing 50% or less, the remainder being substantially Fe, and having a temperature of 1150°C or higher is hot rolled at a reduction rate of 35% or less per pass, and then 300-b A method for producing a sendust plate material with excellent magnetic properties, characterized by cooling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59061949A JPS60204833A (en) | 1984-03-29 | 1984-03-29 | Manufacture of "sendust(r)" plate having superior magnetic characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59061949A JPS60204833A (en) | 1984-03-29 | 1984-03-29 | Manufacture of "sendust(r)" plate having superior magnetic characteristic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60204833A true JPS60204833A (en) | 1985-10-16 |
Family
ID=13185952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59061949A Pending JPS60204833A (en) | 1984-03-29 | 1984-03-29 | Manufacture of "sendust(r)" plate having superior magnetic characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60204833A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999063120A1 (en) * | 1998-05-29 | 1999-12-09 | Sumitomo Special Metals Co., Ltd. | Method for producing high silicon steel, and silicon steel |
FR2836930A1 (en) * | 2002-03-11 | 2003-09-12 | Usinor | HOT ROLLED STEEL WITH HIGH RESISTANCE AND LOW DENSITY |
-
1984
- 1984-03-29 JP JP59061949A patent/JPS60204833A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999063120A1 (en) * | 1998-05-29 | 1999-12-09 | Sumitomo Special Metals Co., Ltd. | Method for producing high silicon steel, and silicon steel |
US6444049B1 (en) | 1998-05-29 | 2002-09-03 | Sumitomo Special Metals Co., Ltd. | Method for producing high silicon steel, and silicon steel |
KR100360533B1 (en) * | 1998-05-29 | 2002-11-13 | 스미토모 도큐슈 긴조쿠 가부시키가이샤 | Method for producing high silicon steel, and silicon steel |
FR2836930A1 (en) * | 2002-03-11 | 2003-09-12 | Usinor | HOT ROLLED STEEL WITH HIGH RESISTANCE AND LOW DENSITY |
WO2003076673A3 (en) * | 2002-03-11 | 2004-04-22 | Usinor | High-resistant, low-density hot laminated sheet steel and method for the production thereof |
US7416615B2 (en) | 2002-03-11 | 2008-08-26 | Usinor | Very-high-strength and low-density, hot-rolled steel sheet and manufacturing process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190144965A1 (en) | Lightweight steel and steel sheet with enhanced elastic modulus, and manufacturing method thereof | |
JPS5887244A (en) | Copper base spinodal alloy strip and manufacture | |
TWI789871B (en) | Manufacturing method of Wostian iron-based stainless steel strip | |
TW201610183A (en) | Cold-rolled ferritic stainless steel sheet | |
JP2004514060A5 (en) | ||
WO1989011549A1 (en) | PRODUCTION OF NON-ORIENTED HIGH-Si STEEL SHEET | |
US3607456A (en) | Deep drawing steel and method of manufacture | |
TWI674324B (en) | Method for manufacturing aluminum-manganese alloy | |
JPS5850299B2 (en) | Manufacturing method for precipitation-strengthened high-strength cold-rolled steel sheets | |
JPH029647B2 (en) | ||
JPS60204833A (en) | Manufacture of "sendust(r)" plate having superior magnetic characteristic | |
JPS6227519A (en) | Manufacture of ultrafine grain hot rolled high tensile steel plate | |
JP3843021B2 (en) | Method for producing thick-walled Al-Mg alloy rolled sheet tempered material excellent in bending workability | |
JPS5919987B2 (en) | Manufacturing method of Al-Mg alloy | |
JPH06504324A (en) | Method for producing electrical steel sheet with oriented particles of high magnetic flux density and excellent magnetic properties | |
JPH0798975B2 (en) | Method for producing Fe-Ni alloy | |
JP7404520B2 (en) | High-strength, extra-thick steel material with excellent cryogenic deformation aging impact toughness in the center and its manufacturing method | |
JP3923485B2 (en) | Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability | |
JPS63176427A (en) | Manufacture of grain-oriented high-silicon steel sheet | |
JPH0665691A (en) | High ni alloy sheet strip excellent in corrosion resistance and its production | |
JPH0236669B2 (en) | ||
JPH0772298B2 (en) | Method for manufacturing hot rolled high strength steel sheet with excellent workability | |
JP2532643B2 (en) | Method for manufacturing high r-value hot rolled steel sheet by thin cast piece | |
JPS634034A (en) | Production of copper alloy and copper alloy plate for electric and electronic parts | |
JPS58221603A (en) | Method for preventing cracking in hot rolling of extra- low carbon steel |