JPS6020447B2 - Method for manufacturing low carbon aluminum killed steel with excellent nitrate stress corrosion cracking resistance - Google Patents

Method for manufacturing low carbon aluminum killed steel with excellent nitrate stress corrosion cracking resistance

Info

Publication number
JPS6020447B2
JPS6020447B2 JP4914181A JP4914181A JPS6020447B2 JP S6020447 B2 JPS6020447 B2 JP S6020447B2 JP 4914181 A JP4914181 A JP 4914181A JP 4914181 A JP4914181 A JP 4914181A JP S6020447 B2 JPS6020447 B2 JP S6020447B2
Authority
JP
Japan
Prior art keywords
stress corrosion
corrosion cracking
steel
cracking resistance
low carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4914181A
Other languages
Japanese (ja)
Other versions
JPS57164919A (en
Inventor
和夫 山中
正倫 小若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4914181A priority Critical patent/JPS6020447B2/en
Publication of JPS57164919A publication Critical patent/JPS57164919A/en
Publication of JPS6020447B2 publication Critical patent/JPS6020447B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 この発明は、耐硝酸塩応力腐食割れ性にすぐれた低炭素
アルミキルド鋼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing low carbon aluminum killed steel with excellent nitrate stress corrosion cracking resistance.

熱風炉や高温加熱炉などの鉄皮の溶接部付近に割れを生
じることがある。この割れについて、原因を調査したと
ころ、鉄皮内側に高温下での空気やガスの分解によって
発生したNO戊が硝酸塩となって凝結し鉄皮がいわゆる
硝酸塩応力腐食環境に晒されて応力腐食割れを起こすと
ころに原因があると判明した。したがって、上記高温炉
の鉄皮材料には、耐硝酸塩応力腐食割れ性が必要とされ
る。従来この種の高温炉の鉄皮材料としては、一般にセ
ミキルドの中炭素鋼が使用されていたが、この鋼は熱延
のままや焼ならし処理材では応力腐食割れ感受性が高く
、硝酸塩応力腐食環境下での使用により比較的容易に割
れが入る懸念がある。
Cracks may occur near the welded parts of the steel shell of hot blast stoves and high-temperature heating furnaces. When we investigated the cause of this cracking, we found that NO2 generated by the decomposition of air and gas at high temperatures condenses on the inside of the steel shell as nitrates, and the steel shell is exposed to a so-called nitrate stress corrosion environment, causing stress corrosion cracking. It turns out that there is a cause that causes this. Therefore, the steel skin material for the high temperature furnace is required to have nitrate stress corrosion cracking resistance. Conventionally, semi-killed medium carbon steel has been generally used as the skin material for this type of high-temperature furnace, but this steel is highly susceptible to stress corrosion cracking in hot-rolled or normalized materials, and is prone to nitrate stress corrosion. There is a concern that it may crack relatively easily when used in an environmental environment.

本発明は、この硝酸塩応力腐食割れに対する抵抗性がき
わめて高く、高温炉鉄皮に使用して割れ発生を効果的に
防止できる鋼の製造方法の提供を目的とするものである
。応力腐食割れについて、環境や付加応力の外的要因、
それに鋼自身の金属組織や合金成分によって割れ発生の
頻度の変わってくることは、一般に知られるところであ
る。
The object of the present invention is to provide a method for producing steel that has extremely high resistance to nitrate stress corrosion cracking and can be used in high-temperature furnace shells to effectively prevent cracking. Regarding stress corrosion cracking, external factors such as environment and added stress,
Furthermore, it is generally known that the frequency of cracking varies depending on the metal structure and alloy composition of the steel itself.

本発明者らは、鋼の金属組織と構成成分の、とくに硝酸
塩環境下での耐応力腐食割れ性に対する影響について、
詳細に実験、検討を行なった。
The present inventors investigated the effects of the metallographic structure and constituent components of steel on stress corrosion cracking resistance, especially in a nitrate environment.
We conducted detailed experiments and studies.

その結果、次の事実が判明した。すなわち、鋼中Cは、
岡溶限以上の大部分が、パーラィトやセメンタィトとし
て粒界および粒内に析出するが、このパ−ライトやセメ
ンタィトの粒界析出は問題なく、むしろ応力腐食割れの
抵抗にさえなる。ところが、他に固溶して残存するCは
、鋼材の製造・施工(溶接など)段階で受ける種々な熱
履歴によって粒界への偏折を起こし、これは耐硝酸塩応
力腐食割れ性に著しい悪影響を及ぼす。Cと較べると程
度は軽いがNもまた、固溶状態のフリーなものはC同様
有害である。組織的には、硝酸塩応力腐食割れについて
も、結晶粒の細・細と無関係ではなく、紬粒である穣好
ましいと云える。因みに、従来高温炉の鉄皮に使用され
ていたセミキルドの中炭素鋼では、Cは、大部分パーラ
イトやセメンタィトとして析出すると云え、なお固溶状
態で0.03%程度残存し、またセミキルドであるため
結晶粒が粗大になるのは避けられず、そのため硝酸塩環
境での応力腐食割れに対し強い抵抗性は得られないので
ある。本発明は、以上の知見に塞いてなされたものであ
って、C量を下げ、さらに有害な固溶C.NをNb、さ
らにはZrやTiを添加して炭窒化物として固定すると
ともに、AIの添加で紬粒化を図り、もって良好な硝酸
塩応力腐食割れに対する抵抗性を確保しようとするもの
である。
As a result, the following facts were found. In other words, steel medium C is
Most of the amount above the Oka solubility limit precipitates at grain boundaries and within the grains as pearlite and cementite, but this grain boundary precipitation of pearlite and cementite poses no problem and even serves as a resistance to stress corrosion cracking. However, C that remains in solid solution with other substances causes polarization to the grain boundaries due to various thermal histories during the manufacturing and construction (welding, etc.) stages of steel materials, and this has a significant negative effect on nitrate stress corrosion cracking resistance. effect. Although the degree is milder than that of C, N is also harmful if it is free in a solid solution state, just like C. Microstructure-wise, nitrate stress corrosion cracking is not unrelated to the fineness or fineness of the crystal grains, and it can be said that pongee grains are preferable. Incidentally, in semi-killed medium carbon steel conventionally used for the steel shell of high-temperature furnaces, most of the C precipitates as pearlite or cementite, but about 0.03% remains in solid solution; Therefore, it is inevitable that the crystal grains become coarse, and therefore strong resistance to stress corrosion cracking in a nitrate environment cannot be obtained. The present invention has been made in view of the above findings, and aims to reduce the amount of carbon and further reduce the amount of harmful solid dissolved carbon. The idea is to fix N as carbonitride by adding Nb, and furthermore, Zr and Ti, and to make it grainy by adding AI, thereby ensuring good resistance to nitrate stress corrosion cracking.

すなわち本発明は、0.025〜0.07%、Sio.
5%以下、Mno.3〜3.0%、Sol.AI O.
01〜0.10%、Nb(7〜15)×C(%)を含有
し、さらに場合によってはZro.01〜0.50%、
Tio.01〜0.50%の1種または2種を含み、残
部はFeおよび不可避的不純物からなる銅を、Ac3点
(斑0℃)〜1150qoの温度域に加熱し、競ならし
処理を行うことを特徴とする耐硝酸塩応力腐食割れ性に
すぐれた低炭素アルキルド鋼の製造方法を要旨とする。
That is, in the present invention, 0.025 to 0.07%, Sio.
5% or less, Mno. 3-3.0%, Sol. A.I.O.
01 to 0.10%, Nb (7 to 15) x C (%), and in some cases Zro. 01-0.50%,
Tio. Copper containing one or two types of 0.01 to 0.50%, the remainder consisting of Fe and unavoidable impurities, is heated to a temperature range of Ac3 point (0°C) to 1150 qo and subjected to a leveling treatment. The summary of this paper is a method for manufacturing low carbon alkylated steel with excellent nitrate stress corrosion cracking resistance.

以下、本発明における鋼成分並びに熱処理条件の限定理
由を、各要件毎に詳細に述べる。C:耐硝酸塩応力腐食
割れ性に有害な固溶Cを少なくする意味からは、C量は
できるだけ低い方が好ましいが硝酸塩応力腐食割れに有
害な固溶C、Nを固定するためのNbとの関係から0.
025%以上が必要である。
Below, the reasons for limiting the steel composition and heat treatment conditions in the present invention will be described in detail for each requirement. C: From the point of view of reducing solid solution C, which is harmful to nitrate stress corrosion cracking resistance, it is preferable that the amount of C is as low as possible; 0 from the relationship.
0.025% or more is required.

また、C量が0.07%を越えるとNbをいくら添加し
てもC固定化の完全を期することは不可能なので、CO
.025〜0.07%に限定した。Si:脱酸に必要な
元素であるが、0.5%を上廻ると耐食性に弊害を及ぼ
す。
Furthermore, if the amount of C exceeds 0.07%, it is impossible to ensure complete C fixation no matter how much Nb is added, so CO
.. It was limited to 0.025% to 0.07%. Si: An element necessary for deoxidation, but if it exceeds 0.5%, it will have a negative effect on corrosion resistance.

Mn:強度確保上、少なくとも0.3%以上は必要なる
も、これが3%を越えるとアシキュラーフェラィトタィ
プの変態棚織に変化し、応力腐食割れ感受性を増大させ
る。
Mn: At least 0.3% or more is required to ensure strength, but if it exceeds 3%, it changes to an acicular ferrite type transformed shelf weave, increasing stress corrosion cracking susceptibility.

Sol.AI:脱酸のみならず、結晶粒を微細化する作
用があり、少なくとも0.01%以上の含有は必要であ
る。
Sol. AI: It has the effect of not only deoxidizing but also refining crystal grains, and it is necessary to contain at least 0.01% or more.

しかし0.10%を越えた場合、鋼中の非金属介在物の
量が増し好ましくないので、0.01〜0.10%とし
た。Nb:本発明対象鋼において最も特徴的な成分であ
り、CおよびNを固定するために添加する元素である。
However, if it exceeds 0.10%, the amount of nonmetallic inclusions in the steel increases, which is undesirable, so it is set at 0.01 to 0.10%. Nb: This is the most characteristic component in the steel subject to the present invention, and is an element added to fix C and N.

添加量はC量との関係において決定すべきであって、7
×C(%)未満の添加では、Nbに固定されないCが多
く生じ、これが拡散して粒界に偏析、耐硝酸塩応力腐食
割れ性の不足を来たす。他方、これが15×C(%)に
なると、逆にCやNと結合しないNbが多くなり、これ
がFe2Nbの形で粒界析出を起こして粒界腕化を招く
ことになるから、Nb量としては、(7〜15)×C(
%)とした。Zr、Ti:Nbと同様、炭窒化物形成元
素であり、とくにN固定の作用についてはむしろNbよ
り強力で、Nbと複合添加することによって耐硝酸塩応
力腐食割れ性を高めるのに有効であるが、Zr、Tiの
何れも0.01%以上添加しないと効果がない。
The amount added should be determined in relation to the amount of C, and 7
If less than ×C (%) is added, a large amount of C that is not fixed to Nb is generated, which diffuses and segregates at grain boundaries, resulting in insufficient nitrate stress corrosion cracking resistance. On the other hand, if this becomes 15 × C (%), conversely, there will be more Nb that does not combine with C or N, and this will cause grain boundary precipitation in the form of Fe2Nb, leading to grain boundary arms. is (7-15)×C(
%). Zr, Ti: Like Nb, they are carbonitride-forming elements, and in particular, they have a stronger N fixing effect than Nb, and are effective in increasing nitrate stress corrosion cracking resistance when added in combination with Nb. , Zr, and Ti have no effect unless they are added in an amount of 0.01% or more.

他方、Zr、Tiは何れもコストを考慮して、0.50
%以下とした。熱処理としての競ならしの加熱温度は、
Ae3点、830℃以上でないと暁ならし効果が期待で
きず、1150午○を上廻ると、Nb、Cの析出が少な
く、固綾Cの量が多くとなり、充分な応力腐食割れ性が
得られない。
On the other hand, Zr and Ti are both 0.50 in consideration of cost.
% or less. The competitive heating temperature for heat treatment is
If the Ae3 point is not 830°C or higher, the dawn-leveling effect cannot be expected, and if the temperature exceeds 1150°C, the precipitation of Nb and C will be small and the amount of hard carbon will be large, and sufficient stress corrosion cracking resistance will be obtained. I can't do it.

次に、本発明の実施効果について詳説する。Next, the implementation effects of the present invention will be explained in detail.

第1表に示す成分の鋼風〜(G)を溶製し、加熱温度1
20ぴ○、圧延仕上げ温度950℃以上で熱間圧延し、
26肌厚の鋼板を得、各鋼板について、a:熱延のまま
か、b:950qo×lh保持後空冷、C:1250o
o×lh保持後空冷、のうち何れかの処理を施して、硝
酸塩応力腐食割れ試験を行なった。試験は、鋼板から圧
延方向に2柵厚×1仇吻中×75助長の板状片を採取し
これをU字状に曲げ5肌拘束する力を付与して試験片と
なし、沸騰60%Ca(N03)2溶液(120℃)に
50脚時間浸債する方法によつた。結果を第2表に示す
Steel wind (G) having the components shown in Table 1 is melted and heated at a temperature of 1
20 pi○, hot rolled at a finishing temperature of 950°C or higher,
A steel plate with a skin thickness of 26 was obtained, and for each steel plate, a: as hot rolled, b: air cooling after holding at 950qo x lh, C: 1250o
A nitrate stress corrosion cracking test was conducted after holding at 0xlh and then air cooling. In the test, a plate-like piece measuring 2 bars thick x 1 thick x 75 thick in the rolling direction was taken from a steel plate, bent into a U-shape and applied with a force of 5 skin restraints to form a test piece. A method was used in which the samples were immersed in N03)2 solution (120°C) for 50 hours. The results are shown in Table 2.

同表において、××:費通割れ発生、×:肉厚の半分以
下の割れが肉眼で容易に認められる、△:割れは入るが
きわめて小さく光学顕微鏡で拡大しないと認知し難い、
0:割れ皆無、をそれぞれ表わす。第1表(wt努) 第2表 上表において、鋼成分、熱処理ともに本発明方法に従っ
た、鋼■〜■で熱処理‘b}のものは全て、割れなしを
記録した。
In the same table, XX: Cracks occur, ×: Cracks of less than half the wall thickness are easily recognized with the naked eye, △: Cracks occur, but they are extremely small and difficult to notice without magnification with an optical microscope.
0: No cracks, respectively. Table 1 (wt Tsutomu) In the upper table of Table 2, no cracking was recorded for all of the steels ■ to ■ that were heat treated 'b} in which both the steel composition and the heat treatment were in accordance with the method of the present invention.

鋼成分が■〜皿でも、熱処理なしの‘a’や熱処理【C
}のものには、割れがみられる。また、鋼成分が(E’
〜(G)で、熱処理なしまたは熱処理【C’と、何れの
点でも本発明の規定から外れるものは勿論のこと、例え
熱処理が‘b’と本発明に基いていても、肝心の鋼成分
が【Eー〜(G)では、割れ発生は防ぎ得ない。以上の
説明から明らかなように本発明の方法は、硝酸塩応力腐
食割れに対しきわめて高い抵抗性を示す材料を製造する
ことが可能であり、したがって本発明は硝酸塩応力腐食
環境に晒される、例えば高温炉鉄皮等の割れ防止対策と
してきわめて有効なものと云うことができる。
Even if the steel composition is ■ ~ plate, 'a' without heat treatment or heat treatment [C
} cracks are visible. Also, the steel composition is (E'
~(G), without heat treatment or heat treatment [C', which is not in accordance with the provisions of the present invention in any respect, and even if the heat treatment is 'b' and is based on the present invention, the essential steel components However, [E--(G)] cannot prevent the occurrence of cracks. As can be seen from the above description, the method of the present invention makes it possible to produce materials that exhibit extremely high resistance to nitrate stress corrosion cracking, and therefore the present invention is suitable for use in materials exposed to nitrate stress corrosion environments, e.g. It can be said to be extremely effective as a measure to prevent cracking of furnace shells, etc.

Claims (1)

【特許請求の範囲】 1 C0.025〜0.07%、Si0.5%以下、M
n0.3〜3.0%、Sol.Al0.01〜0.10
%、Nb(7〜15)×C%を含有し、残部はFeおよ
び不可避的不純物からなる鋼を、AC_3点〜1150
℃の温度域に加熱し、焼ならし処理を行うことを特徴と
する耐硝酸塩応力腐食割れ性にすぐれた低炭素アルミキ
ルド鋼の製造方法。 2 C0.025〜0.07%、Si0.5%以下、M
n0.3〜3.0%、Sol.Al0.01〜0.10
%、Nb(7〜15)×C%を含有し、さらにZr0.
01〜0.50%、Ti0.01〜0.50%の1種ま
たは2種を含み、残部はFeおよび不可避的不純物から
なる鋼を、Ac_3点〜1150℃の温度域に加熱し、
焼ならし処理を行うことを特徴とする耐硝酸塩応力腐食
割れ性をすぐれた低炭素アルミキルド鋼の製造方法。
[Claims] 1 C0.025 to 0.07%, Si 0.5% or less, M
n0.3-3.0%, Sol. Al0.01~0.10
%, Nb(7-15) x C%, the balance is Fe and unavoidable impurities.
A method for producing low carbon aluminum killed steel with excellent nitrate stress corrosion cracking resistance, which is characterized by heating to a temperature range of °C and performing normalizing treatment. 2 C0.025-0.07%, Si0.5% or less, M
n0.3-3.0%, Sol. Al0.01~0.10
%, Nb(7-15)×C%, and further contains Zr0.
A steel containing one or two of 0.01 to 0.50% and 0.01 to 0.50% of Ti, with the remainder consisting of Fe and unavoidable impurities is heated to a temperature range of Ac_3 point to 1150°C,
A method for producing low carbon aluminum killed steel with excellent nitrate stress corrosion cracking resistance, which comprises performing a normalizing treatment.
JP4914181A 1981-03-31 1981-03-31 Method for manufacturing low carbon aluminum killed steel with excellent nitrate stress corrosion cracking resistance Expired JPS6020447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4914181A JPS6020447B2 (en) 1981-03-31 1981-03-31 Method for manufacturing low carbon aluminum killed steel with excellent nitrate stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4914181A JPS6020447B2 (en) 1981-03-31 1981-03-31 Method for manufacturing low carbon aluminum killed steel with excellent nitrate stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS57164919A JPS57164919A (en) 1982-10-09
JPS6020447B2 true JPS6020447B2 (en) 1985-05-22

Family

ID=12822799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4914181A Expired JPS6020447B2 (en) 1981-03-31 1981-03-31 Method for manufacturing low carbon aluminum killed steel with excellent nitrate stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS6020447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648428U (en) * 1987-07-06 1989-01-18

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181254A (en) * 1984-02-20 1985-09-14 Kawasaki Steel Corp High tension steel having superior resistance to cracking due to hot dip galvanizing
KR100338702B1 (en) * 1997-11-11 2002-09-19 주식회사 포스코 METHOD FOR MANUFACTURING 60kg CLASS COLLED ROLLING STEEL WITH HIGH DUCTILITY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648428U (en) * 1987-07-06 1989-01-18

Also Published As

Publication number Publication date
JPS57164919A (en) 1982-10-09

Similar Documents

Publication Publication Date Title
US4204862A (en) Austenitic heat-resistant steel which forms Al2 O3 film in high-temperature oxidizing atmosphere
CN106536777A (en) Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member
JP2003535973A (en) Cold rolled steel sheet with excellent corrosion resistance to sulfuric acid
JP3152576B2 (en) Method for producing Nb-containing ferrite steel sheet
JPS581012A (en) Production of homogeneous steel
JPH0128817B2 (en)
US5858129A (en) Austenite stainless steel
JPS5942068B2 (en) High manganese non-magnetic steel for cryogenic temperatures
JPH0525945B2 (en)
JPS6145697B2 (en)
JPS6020447B2 (en) Method for manufacturing low carbon aluminum killed steel with excellent nitrate stress corrosion cracking resistance
PL170353B1 (en) High-silicon corrosion resisting austenitic steel
WO2015015735A1 (en) Ferritic stainless steel having excellent weld corrosion resistance
KR850000930B1 (en) Process for the production of ferritic stainless steel sheets or strip
JPS6369950A (en) Nonmagnetic austenitic stainless steel having high hardness
JPS59166655A (en) High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof
JP2682335B2 (en) Manufacturing method of ferritic stainless steel hot rolled strip
JPH0579727B2 (en)
JPH05255812A (en) Austenitic stainless steel for shielding thermal neutron
JPS63105950A (en) Structural steel
JP2000178693A (en) Ferritic stainless steel sheet having high temperature strength at intermittent heating and oxide scale practically free from peeling
JPH021902B2 (en)
JPS5864359A (en) Heat resistant cast steel
JP4465490B2 (en) Precipitation hardened ferritic heat resistant steel
JPH0641685A (en) High mn non-magnetic cold-rolled steel sheet and its production