JPS60202633A - Thermal cathode and its manufacture - Google Patents

Thermal cathode and its manufacture

Info

Publication number
JPS60202633A
JPS60202633A JP59057220A JP5722084A JPS60202633A JP S60202633 A JPS60202633 A JP S60202633A JP 59057220 A JP59057220 A JP 59057220A JP 5722084 A JP5722084 A JP 5722084A JP S60202633 A JPS60202633 A JP S60202633A
Authority
JP
Japan
Prior art keywords
filament
thermal cathode
life
wire rod
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59057220A
Other languages
Japanese (ja)
Inventor
Sakae Kimura
木村 栄
Yoshiaki Ouchi
義昭 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59057220A priority Critical patent/JPS60202633A/en
Publication of JPS60202633A publication Critical patent/JPS60202633A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes

Abstract

PURPOSE:To prevent deformation of a thermal cathode during its life by forming said thermal cathode with a filament which is a molybdenum alloy wire rod containing lanthanum oxide and platinum, and its crystal grain being immensely extended in the filament drawing direction in the aspect ratio not less than 3. CONSTITUTION:A sintered material of Mo containing La2O3 is made into a wire rod by a drawing process for making a V-shaped filament 1 or a filament coil 3 while being given heat treatment in the temperature range from 1,700-2,200 deg.C in a hydrogen gas flow followed by platinum plating and heat cementing in a benzene-hydrogen mixed gas flow for forming a thermal cathode. Accordingly, the crystal grain of a wire rod can be immensely extended in the drawing direction in the aspect ratio substantially not less than 3 when being drawn in the vertical direction, thus being able to suppress crystal grain growth during its life while removing life deterioration due to deformation, thus obtaining the thermal cathode having a stable emission property.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は熱陰極およびその製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a hot cathode and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来使用されてきたトリャを含有するタングステン合金
からなる熱陰極、いわゆるトリクンカソードと同類の酸
化ランタン含有のタングステン合金からなる高融点の熱
陰極が特開昭50−39868号公報などにより提案さ
れている。
A high melting point hot cathode made of a tungsten alloy containing lanthanum oxide, which is similar to the so-called tricune cathode, has been proposed in Japanese Patent Application Laid-Open No. 50-39868. There is.

この公報によれば従来のトリタンカソードよりも120
℃乃至250℃程度低い温度でトリタンカソードと同等
の熱電子放射電流(以下エミッションと対する)を得る
ことができるとされている。
According to this publication, 120% more than the conventional tritan cathode
It is said that it is possible to obtain thermionic emission current (hereinafter referred to as emission) equivalent to that of a tritanium cathode at a temperature about 250°C lower.

また、別の特開昭第51−91659号公報には、ラン
タンのフィラメント表面への拡散を助長しエミッション
特性を改善するために白金、パラジウム、ロジウム、ル
テニウムなどのメッキ層をフィラメント表面に施す改良
技術が示されている。
In addition, another Japanese Patent Application Publication No. 51-91659 discloses an improvement in which a plating layer of platinum, palladium, rhodium, ruthenium, etc. is applied to the filament surface in order to promote the diffusion of lanthanum to the filament surface and improve emission characteristics. The technique is shown.

更に、別の特開昭第54−146951号公報には上述
の白金などのメッキ層の内側に拡散抑制層ともいうべき
レニウム等からなる層を別個に設けて熱陰極の長寿命化
を計る技術も提案されている。
Furthermore, another Japanese Unexamined Patent Publication No. 54-146951 discloses a technique for prolonging the life of the hot cathode by separately providing a layer made of rhenium or the like, which can be called a diffusion suppression layer, inside the above-mentioned plated layer of platinum or the like. has also been proposed.

しかるに、これら公報に示されている技術のうち、特開
昭第50−39868号公報に示されている熱陰極を試
作実験したところ、従来のトリタンカソードに比較して
エミッション特性が安定しないという問題点を有するこ
とが判明した。またこのエミッション特性を改善するた
め、表面に白金などのメッキ層を設けた特開間第51−
91659号公報に示されている熱陰極を試作実験した
ところ、フィラメントを熱陰極として寿命試験中に自重
による垂下(サグと称される)が大きく、また特開昭5
1−91659号に示されている熱陰極を試作実験した
ところ、サグが大で、変形が大きく、細線コイル状の熱
陰極には適用することが困難であるという結果が得られ
た。
However, among the technologies disclosed in these publications, when we experimented with the hot cathode disclosed in Japanese Patent Application Laid-Open No. 50-39868, we found that the emission characteristics were not stable compared to the conventional tritanium cathode. It turned out to have points. In addition, in order to improve this emission characteristic, a plating layer such as platinum was provided on the surface of the JP-A No. 51-
When we experimented with the hot cathode disclosed in Publication No. 91659, we found that during a life test using a filament as a hot cathode, it sagged significantly due to its own weight (referred to as sag).
When we experimented with the hot cathode shown in No. 1-91659, we found that it had a large sag and large deformation, making it difficult to apply it to a hot cathode in the form of a thin wire coil.

〔発明の目的〕[Purpose of the invention]

本発明は上述した問題点を解決するためになされたもの
であり、変形による寿命劣化がなく、安定したエミッシ
ョン特性を示す熱陰極およびその製造方法を提供するこ
とを目的としている。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a hot cathode that does not suffer from deterioration in life due to deformation and exhibits stable emission characteristics, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

即ち、本発明は酸化ランタン及び白金属金属を含有する
モリブデン合金の結晶粒が縦横比で実質的に3以上の線
条引抜方向に長大化した長大結晶粒であるフィラメント
からなる熱陰極と、モリブデン合金からなるフィラメン
トを所定形状に成形加工したのち、1700℃以上、 
2200℃以下の加熱を施こして熱陰極とすることを特
徴とする熱陰極の製造方法である。
That is, the present invention provides a hot cathode comprising a filament in which crystal grains of a molybdenum alloy containing lanthanum oxide and platinum metal are elongated in the drawing direction of the filament with an aspect ratio of substantially 3 or more, and a molybdenum alloy. After molding the filament made of the alloy into a predetermined shape,
This is a method for producing a hot cathode, which is characterized in that the hot cathode is produced by heating at 2200° C. or lower.

〔発明の実施例〕[Embodiments of the invention]

本発明は熱陰極の寿命中の変形が、寿命中のフィラメン
ト材料の再結晶及び結晶粒の長大化と密接な関係がある
との知見に基いたものであり、フィラメントを所定形状
に成形加工したのち、熱陰極として使用する前に充分高
い温度で加熱し、予め結晶粒を再結晶化及び長大化させ
ることにより寿命中の結晶粒成長を抑制することにより
動作中の熱陰極の変形を防止しようとする目的でなされ
ている。
The present invention is based on the knowledge that the deformation of a hot cathode during its life is closely related to the recrystallization of the filament material and the elongation of its crystal grains during its life. Later, before using it as a hot cathode, it is heated to a sufficiently high temperature to recrystallize and lengthen the crystal grains in advance, thereby suppressing crystal grain growth during its life and preventing deformation of the hot cathode during operation. It is done for the purpose of

次に実施例により詳細に説明する。Next, a detailed explanation will be given using examples.

〔実施例1〕 La2O3を2wt%含有するMoの焼結材を引抜加工
により直径9.5 amの線材を形成し、次にこの線材
により第1図に示すような一辺50amのV字形フイラ
メン) (1)を作製した。次に水素気流中で1000
℃乃至2000℃の温度範囲で各10分間加熱処理を行
った。次に各温度で前処理したフィラメント(1)に白
金を5μmメッキした後、ベンゼン−水素混合気流中で
加熱浸炭した。次に、このフィラメントの両端を水平配
置された1対の電極に装着し、熱陰極の真空中動作温度
となるように真空中で通電加熱を行った。この時得られ
た自重による垂下特性(サグ特性)と熱処理温度との間
を測定した結果を第2図の折線(2)に示す。
[Example 1] A wire rod with a diameter of 9.5 am was formed by drawing a Mo sintered material containing 2 wt% of La2O3, and then a V-shaped filament with a side of 50 am as shown in Fig. 1 was made using this wire rod. (1) was produced. Then 1000 in a hydrogen stream
Heat treatment was performed for 10 minutes each in a temperature range of .degree. C. to 2000.degree. Next, the filament (1) pretreated at each temperature was plated with platinum to a thickness of 5 μm, and then heated and carburized in a benzene-hydrogen mixed gas flow. Next, both ends of this filament were attached to a pair of horizontally arranged electrodes, and electrical heating was performed in vacuum to reach the vacuum operating temperature of the hot cathode. The broken line (2) in FIG. 2 shows the results of measuring the relationship between the drooping characteristics (sag characteristics) due to the weight obtained at this time and the heat treatment temperature.

なお垂下特性とは次のようにして評価される。Note that the drooping characteristic is evaluated as follows.

即ち、溶断電流の60%の電流を線材に通電して第1図
に示す■字形フィラメント(1)を形成し次に溶断電流
の80%の電流を一定時間通電したときの頂部(1□)
の開きを測定し、これを全く変形しない場合と比較し1
00分率表示によりサグ値として示されるものである。
That is, a current of 60% of the fusing current is applied to the wire to form the ■-shaped filament (1) shown in Figure 1, and then a current of 80% of the fusing current is applied for a certain period of time to form the top (1□).
Measure the difference between the two and compare it with the case where there is no deformation.1
It is shown as a sag value by 00 minutes display.

〔実施例2〕 実施例1と同様に作成された直径Q、8tnwの線材を
第3図に示すコイル径12朋、コイル部長さ57−のフ
ィラメントコイル(3)に製作した。次に水素気流中で
1000℃乃至2000℃の温度範囲で各10分加熱処
理を行なった。次に各温度で前処理したフィラメントコ
イル(3)に白金を5μmメンキした後、ベンゼン−水
素混合気流で加熱浸炭した。次にこのフィラメントコイ
ル(3)の両端を1対の電極に装着し、熱陰極の真空中
動作温度となる1800にとなるよう真空中で3分間O
N、3分間OFFの通電加熱を行った。この0N−OF
F通電加熱の回数に対するフィラメントコイル(3)の
径方向の変形量は第4図の曲線群(4) 、 (5) 
、 (6) 、 (7)のようになった。但し曲線(4
)は1300℃、曲線(5)は1500℃、曲線(6)
は1700℃、曲線(7)は1900℃の前処理温度を
行ったものである。
[Example 2] A wire with a diameter Q and 8 tnw produced in the same manner as in Example 1 was fabricated into a filament coil (3) with a coil diameter of 12 mm and a coil length of 57 mm as shown in FIG. Next, heat treatment was performed in a hydrogen stream at a temperature range of 1000°C to 2000°C for 10 minutes each. Next, the filament coil (3) pretreated at each temperature was coated with platinum to a thickness of 5 μm, and then heated and carburized in a benzene-hydrogen mixed gas flow. Next, both ends of this filament coil (3) were attached to a pair of electrodes, and they were heated under vacuum for 3 minutes to reach 1800℃, which is the vacuum operating temperature of the hot cathode.
Electrical heating was performed with N and OFF for 3 minutes. This 0N-OF
The amount of radial deformation of the filament coil (3) with respect to the number of times of energization heating is shown by the curve group (4) and (5) in Fig. 4.
, (6) and (7). However, the curve (4
) is 1300℃, curve (5) is 1500℃, curve (6)
The pretreatment temperature was 1700°C, and the curve (7) was 1900°C.

この第4図から明らかなように1700℃以上で前処理
加熱を行なうと極めて変形量が抑えられることがわかり
、これは実施例1のサグ量試験結果と良く一致している
ことがわかる。
As is clear from FIG. 4, it can be seen that the amount of deformation can be extremely suppressed by performing pretreatment heating at 1700° C. or higher, and this is found to be in good agreement with the sag amount test results of Example 1.

これら実施例1,2の結果を基にして線材の断面組織を
光学顕微鏡で観察したところ、変形しにくい1700’
C以上で前処理加熱された線材の結晶粒は引抜き方向を
縦方向とすると縦横比で実質的に3以上の引抜き方向に
長大化した結晶粒からなることが判明した。
When the cross-sectional structure of the wire was observed using an optical microscope based on the results of Examples 1 and 2, it was found that 1700'
It has been found that the crystal grains of the wire pre-heated at C or above consist of crystal grains that are elongated in the drawing direction and have an aspect ratio of substantially 3 or more when the drawing direction is the longitudinal direction.

以上、実施例で明らかにされたように酸化ランタン及び
白金属金属を含有するモリブデン合金フィラメントにお
いて前処理としての熱処理加熱を1700℃以上で実施
すれば動作中変形量の少ない熱陰極を得ることができる
。なお前処理としての熱処理温度の上限は2200℃で
あった。これ以上温度を上げるとフィラメント表面のラ
ンタン温度が低くなり、動作開始しても充分なエミッシ
ョンが得られなくなってしまうからである。更に前記し
た実施例では白金を使用したが、これは他の白金属金属
でもよいことは説明するもない。
As clarified in the examples above, if heat treatment is performed at 1700°C or higher as a pretreatment on a molybdenum alloy filament containing lanthanum oxide and platinum metal, a hot cathode with less deformation during operation can be obtained. can. The upper limit of the heat treatment temperature as pre-treatment was 2200°C. This is because if the temperature is increased beyond this level, the lanthanum temperature on the filament surface will drop, making it impossible to obtain sufficient emissions even after the operation starts. Furthermore, although platinum was used in the above-described embodiments, it is needless to say that other platinum metals may also be used.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば、長寿命であり、安定した
エミッション特性を示し、かつ形状の変形が極めて少な
い熱陰極を提供できる。
As described above, according to the present invention, it is possible to provide a hot cathode that has a long life, exhibits stable emission characteristics, and has extremely little deformation in shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサグ試験用のフィラメント形状を示す側面図、
第2図は前処理温度に対するサグ値の関係を示すグラフ
、第3図は繰り返し加熱用フィラメントコイル形状を示
す側面図、第4図は繰り返し加熱に対する前処理温度に
対するフィラメントコイル形状の変形量を示す曲線群で
ある。 1・−・V字型フィラメント 3・・・フイ1′ラメン
トコイル代理人 弁理士 井 上 −男
Figure 1 is a side view showing the filament shape for the sag test.
Figure 2 is a graph showing the relationship between the sag value and the pretreatment temperature, Figure 3 is a side view showing the shape of the filament coil for repeated heating, and Figure 4 shows the amount of deformation of the filament coil shape with respect to the pretreatment temperature for repeated heating. It is a group of curves. 1 - V-shaped filament 3... Fi 1' Lament coil Agent Patent attorney Inoue -Male

Claims (2)

【特許請求の範囲】[Claims] (1)酸化ランタン及び白金属金属を含有するモリブデ
ン合金線条の結晶粒が、縦横比で実質的に3以上の線条
引抜方向に長大化した長大結晶粒であるフィラメントか
らなる熱陰極。
(1) A hot cathode comprising a filament in which crystal grains of a molybdenum alloy wire containing lanthanum oxide and platinum metal are elongated crystal grains that are elongated in the drawing direction of the wire with an aspect ratio of substantially 3 or more.
(2)酸化ランタン及び白金属金属を含有するモリブデ
ン合金からなるフィラメントを所定形状に成形加工した
のち、1700℃以上、2200℃以下の加熱処理を施
し、前記モリブデン合金の結晶粒を縦横比で実質的に3
以上の線条引抜方向に長大化した長大結晶粒とすること
を特徴とする熱陰極の製造方法。
(2) After forming a filament made of a molybdenum alloy containing lanthanum oxide and platinum metal into a predetermined shape, heat treatment is performed at a temperature of 1700°C or higher and 2200°C or lower, so that the crystal grains of the molybdenum alloy are substantially reduced in aspect ratio. target 3
A method for producing a hot cathode characterized by forming long crystal grains that are elongated in the direction in which the filament is drawn.
JP59057220A 1984-03-27 1984-03-27 Thermal cathode and its manufacture Pending JPS60202633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59057220A JPS60202633A (en) 1984-03-27 1984-03-27 Thermal cathode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057220A JPS60202633A (en) 1984-03-27 1984-03-27 Thermal cathode and its manufacture

Publications (1)

Publication Number Publication Date
JPS60202633A true JPS60202633A (en) 1985-10-14

Family

ID=13049442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057220A Pending JPS60202633A (en) 1984-03-27 1984-03-27 Thermal cathode and its manufacture

Country Status (1)

Country Link
JP (1) JPS60202633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018865C2 (en) * 2000-08-31 2004-01-08 New Japan Radio Co Ltd Cathode and method for its manufacture.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018865C2 (en) * 2000-08-31 2004-01-08 New Japan Radio Co Ltd Cathode and method for its manufacture.

Similar Documents

Publication Publication Date Title
JP5618445B2 (en) High durability Pt wire
JPS60202633A (en) Thermal cathode and its manufacture
JPH07157893A (en) Sn plated wire for electrical contact point and production thereof
JP2001152275A (en) Wire filament for cathode for x-ray tube
EP1335410B1 (en) Tungsten-rhenium filament and method for producing same
US3268305A (en) Composite wire
US1989236A (en) Composite wire
US3212169A (en) Grid electrode structure and manufacturing method therefor
JPH0945257A (en) Shadow mask and its preparation
JP2846038B2 (en) Manufacturing method of metal wire for electron tube
US2308700A (en) Method of treating fabricated tungsten wires or rods
JPH02267249A (en) Vibration-resistant tungsten wire
JPS617536A (en) Oxide cathode structure
JPS60224742A (en) Rhenium-tungsten alloy
JP2009037806A (en) Lead wire and lead member
JP2001158952A (en) Method for heat treatment of platinum based material
JPS58133356A (en) Tungsten material and preparation thereof
US2140367A (en) Thermionic cathode
JP2766081B2 (en) Molybdenum material
US4305188A (en) Method of manufacturing cathode assembly
JPH0565609A (en) High strength tungsten wire
KR100321402B1 (en) Molybdenum silicide based heater which has the glassy surface layer with low oxygen diffusivity
JP2599442B2 (en) Method for producing Pt / Mo clad wire
JPS6115963A (en) Heater coil for vapor deposition of metal back of cathode ray tube
JPS63171861A (en) Tungsten material for vapor deposition and its production