JPS60202543A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS60202543A
JPS60202543A JP5871384A JP5871384A JPS60202543A JP S60202543 A JPS60202543 A JP S60202543A JP 5871384 A JP5871384 A JP 5871384A JP 5871384 A JP5871384 A JP 5871384A JP S60202543 A JPS60202543 A JP S60202543A
Authority
JP
Japan
Prior art keywords
materials
target
ferromagnetic
magnetic
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5871384A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5871384A priority Critical patent/JPS60202543A/en
Publication of JPS60202543A publication Critical patent/JPS60202543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To produce a magnetic recording medium at a high speed with a magnetron sputtering process by using a target where ferromagnetic materials and other materials are arrayed flatly and alternately. CONSTITUTION:A ferromagnetic thin film is formed on a supporter with a magnetron sputtering process which makes use of the glow discharge that catches scattered secondary electrons by a line of magnetic force. In this case, a target is used. This target is obtained by arraying ferromagnetic materials 10 and other materials 11 of flat plate types alternately on a target holder 9. Thus the magnetic fields which catch the secondary electrons produced by a magnet group 12 are not affected by the materials 11 at all. This increases the effective magnetic fluxes. In such constitution, the sputtering fields are studied for both materials 10 and 11. Then the smaller conditions are selected for the materials 11 to increase the area occupied by the materials 11. As a result, the effective magnetic flux is increased further.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強磁性薄膜を磁気記録層とする磁気記録媒体の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium using a ferromagnetic thin film as a magnetic recording layer.

従来例の構成とその問題点 ビデオ記録、コンピュータデータ記録などに用いる磁気
記録媒体においては記録容量の大容量化。
Conventional configurations and their problems Magnetic recording media used for video recording, computer data recording, etc. have increased recording capacity.

機器の小型化を達成するため記録密度の向上が強く望ま
れておシ、支持体上に強磁性金属薄膜2強磁性酸化物薄
膜などを磁気記録層とする磁気テープ、磁気ディスクな
どの磁気記録媒体の開発が進んできている。
In order to achieve miniaturization of equipment, there is a strong desire to improve recording density, and magnetic recording such as magnetic tapes and magnetic disks in which the magnetic recording layer is a ferromagnetic metal thin film, ferromagnetic oxide thin film, etc. on a support. Media development is progressing.

強磁性薄膜の形成方法は、電子ビーム蒸着法。The ferromagnetic thin film is formed using electron beam evaporation.

イオンブレーティング法、スパッタリング法、無電解メ
ッキ法等があげられるが、近年短波長になる程自己減磁
損失が小さくなることで、記録密度の向上を一段と進め
るものとして注目される。CO−Or系の合金薄膜は、
支持体面に垂直に磁化されて利用される垂直磁化膜で、
結晶配向性の良好なほどディジタル記録での高密度化に
適するとされ、かかる薄膜を得るには、スパッタリング
法が適していることが確かめられている。
Examples include ion blating methods, sputtering methods, electroless plating methods, etc., but in recent years they have attracted attention as methods that will further improve recording density because the shorter the wavelength, the smaller the self-demagnetization loss. The CO-Or alloy thin film is
A perpendicular magnetization film that is used by being magnetized perpendicular to the support surface.
It is said that the better the crystal orientation, the more suitable it is for high-density digital recording, and it has been confirmed that sputtering is suitable for obtaining such thin films.

しかし、スパッタリング法は膜形成速度が小さいことが
欠点で、特に磁力線による散乱二次電子を捕獲するタイ
プのグロー放電を利用したいわゆる高速マグネトロンス
ノ(ツタが有効に利用できないため1強磁性材料のスノ
(ツタ速度は例えばCUなとの常磁性材料の1/100
以下で改良が望まれている。
However, the drawback of the sputtering method is that the film formation rate is slow, and in particular, the so-called high-speed magnetron solar cell, which uses a type of glow discharge that captures secondary electrons scattered by magnetic field lines (because the sputtering method cannot be used effectively, (The creeping speed is 1/100 of that of paramagnetic materials such as CU, for example.
The following improvements are desired.

第1図は、磁気記録媒体をマグネトロンスノ(ツタで製
造する場合の要部構成図であるが、冷却キャン1に沿っ
て高分子等からなる支持体2は、送り出し軸3から巻取
り軸4へ移動する間に、所定の磁気特性、膜厚を有する
強磁性薄膜を付与される。スパッタ蒸発源を模式的に示
したが、スノくツタ材であるターゲット6の下部に磁力
線の発生のための磁石6が配されて、磁力線7は、図で
N極からS極へ向うのであるが、ターゲット6が強磁性
材料で構成された場合は、ターゲット6によシ磁力線7
が蓮へいされたかたちになシ、漏えいして、散乱二次電
子(ターゲットから放出されるものである)を捕獲する
役目をする磁力線は大幅に減少する。
FIG. 1 is a diagram showing the main parts of a magnetic recording medium manufactured using a magnetron. A ferromagnetic thin film having predetermined magnetic properties and film thickness is applied while moving to the target.The sputter evaporation source is schematically shown, but due to the generation of magnetic lines of force under the target 6, which is made of vine wood, magnet 6 is arranged, and the lines of magnetic force 7 are directed from the N pole to the S pole in the figure. However, if the target 6 is made of a ferromagnetic material, the lines of magnetic force 7 are directed by the target 6.
When the electrons are blown away, the magnetic field lines that leak out and serve to capture the scattered secondary electrons (those emitted by the target) are greatly reduced.

そのため、高速化するのにグロー放電音強くすると二次
電子が捕獲されずに支持体に向い、支持体に熱的ダメー
ジを与え、支持体としてポリエチレンテレフタレートを
用いると、たちまち溶けてしまい磁気記録媒体の製造が
出来なくなるし、逆に熱的ダメージのない範囲で製造す
る場合は、グロー放電が強くできないので、例えばco
 −ar(Or18重量%)’io、1μm矢印ムの方
向矢印−ゲットの長さが12.5 (mのもので形成す
るとすると、支持体の移動速度はQ、3m/min 程
度と極めて遅くなってしまう。8は磁石6の冷却板であ
り機能的には、磁石6の保持と、磁路を兼ねるものであ
る。
Therefore, if the glow discharge sound is made stronger to increase the speed, the secondary electrons will not be captured and will be directed towards the support, causing thermal damage to the support.If polyethylene terephthalate is used as the support, it will melt immediately and the magnetic recording medium will On the other hand, when manufacturing without thermal damage, glow discharge cannot be strong, so for example, CO
-ar (Or18% by weight)'io, 1 μm direction arrow - If the length of the target is 12.5 (m), the moving speed of the support will be extremely slow, about Q, 3 m/min. Reference numeral 8 designates a cooling plate for the magnet 6, which functions to hold the magnet 6 and serve as a magnetic path.

尚グロー放電の発生のための電界印加、放電ガスの導入
等は公知の範囲で用いられている。
Incidentally, the application of an electric field, the introduction of a discharge gas, etc. for generating glow discharge are used within a known range.

現状ではグロー放電を強くして、高速化を図るには、支
持体にポリイミド等の耐熱性の高い、高価なフィルムを
用いざるを得ないし、例えかかるフィルムを用いても1
m/l1lifl の移動速度に高めるのが限度であっ
た。
Currently, in order to strengthen the glow discharge and speed it up, it is necessary to use a highly heat-resistant and expensive film such as polyimide as the support, and even if such a film is used,
The limit was to increase the movement speed to m/l1lifl.

発明の目的 本発明は、スパッタ法により磁気記録媒体を高速で生産
できる磁気記録媒体の製Pr″#法を提供することを目
的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for manufacturing magnetic recording media that can produce magnetic recording media at high speed by sputtering.

発明の構成 本発明は出力線によシ散乱二次電子を捕獲するグロー放
電を利用したマグネトロンスパッタ法により支持体上に
強磁性薄膜を形成する際に強磁性材料ムと、強磁性でな
い材料Bを平面的に交互に配列したターゲットを用いる
ことを特徴とする磁気記録媒体の製造方法である。
Structure of the Invention The present invention uses a ferromagnetic material (B) and a non-ferromagnetic material (B) when forming a ferromagnetic thin film on a support by magnetron sputtering using a glow discharge that captures secondary electrons scattered by an output line. This method of manufacturing a magnetic recording medium is characterized by using a target in which targets are alternately arranged in a plane.

なお、この実施態様として前記磁力線の発生源に近い側
に平板状の強磁性でない材料Bを、遠い側に隙間をあけ
て複数本の強磁性の線状材料ムを配列したターゲットを
用いることを特徴とする磁気記録媒体の製造方法である
。さらに前記複数本の強磁性の線状材料ムに通電し、こ
れにより磁場を付加した状態でスパッタリングを行うこ
とを特徴とする磁気記録媒体の製造方法であり、極めて
高速でのスパッタリングによる磁気記録媒体の製造を可
能にするものである。
In this embodiment, a target is used in which a flat non-ferromagnetic material B is arranged on the side closer to the source of the magnetic lines of force, and a plurality of ferromagnetic linear materials are arranged with gaps on the far side. This is a method for manufacturing a magnetic recording medium. The method of manufacturing a magnetic recording medium is further characterized in that the plurality of ferromagnetic linear materials are energized to perform sputtering in a state where a magnetic field is applied. This makes it possible to manufacture

実施例の説明 以下図面に沿って実施例を説明する。ターゲットに改良
の特徴点があるので、その部分についてくわしく説明す
る。第2図は本発明の展性に用い 、でターゲットホル
ダー9の上に平板状の強磁性材 二うレルスパッタリン
グ用のターゲット構成の一例料ム1oと1強磁性材料以
外の材料B11を交互に接着配列して成るものである。
DESCRIPTION OF EMBODIMENTS An embodiment will be described below with reference to the drawings. There are some features of the target that need to be improved, so I will explain those parts in detail. FIG. 2 shows an example of a target structure for two-well sputtering using a flat plate-shaped ferromagnetic material on a target holder 9, which is used for the malleability of the present invention. It is made by adhesively arranging it.

磁石群12により発生する二次電子捕獲磁界は、材料B
11には ゛全く影響を受けないので、有効な磁束が増
大する。
The secondary electron capturing magnetic field generated by the magnet group 12 is generated by the material B.
11 is not affected at all, so the effective magnetic flux increases.

この構成で、材料ムと材料Bに対するスパッタイールド
を検討して材料Bのスパッタイールドの方がより小さい
条件を選択することで、材料Bの占める面積比率を大き
くすれば有効磁束は更に大きくできるものである。13
は冷却板である。
With this configuration, the effective magnetic flux can be further increased by examining the sputter yield for material B and selecting a condition where the sputter yield for material B is smaller, and by increasing the area ratio occupied by material B. It is. 13
is a cooling plate.

第3図は、強磁性材料ム1oと強磁性材料でない材料B
11が、線状材料で構成された例で、第2図の平板状の
材料配列よりも、漏えい磁界をより大きくできるのが特
徴である。このことは、よりスパッタリングの高速化に
有効に作用する。
Figure 3 shows a ferromagnetic material M1o and a non-ferromagnetic material B.
Reference numeral 11 is an example in which the material is made of a linear material, which is characterized in that the leakage magnetic field can be made larger than in the flat material arrangement shown in FIG. This effectively works to speed up sputtering.

第4図は強磁性材料ム11を線状材料として。FIG. 4 shows the ferromagnetic material 11 as a linear material.

平板状の強磁性でない材料B10から離して基板2側に
近い側へ配置してターゲットを構成した例で、14は強
磁性でない材料のスパッタ原子、16は強磁性の材料の
スパッタ原子を模式的に示したもので、16は薄膜の堆
積状況をモデル的に示したものである。
This is an example in which the target is arranged away from the flat non-ferromagnetic material B10 and closer to the substrate 2 side, where 14 is a schematic representation of sputtered atoms of a non-ferromagnetic material, and 16 is a schematic representation of sputtered atoms of a ferromagnetic material. 16 is a model showing the state of thin film deposition.

第4図のターゲットは、強磁性材料ム11を絶縁して5
例えば直流電流を通電して、線の周辺に磁界を発生させ
るよう構成することで、更に高速スパッタが可能になる
ものである。いずれのターゲット構成でも従来の全面が
強磁性合金ターゲットを用いるよりも、ターゲットが実
効的に非磁性に近いので漏えい磁界が2倍から26倍の
大きさにすることができ、前述したように支持体に向う
散乱二次電子を有効にとらえることができるので。
The target in FIG.
For example, by configuring the wire to generate a magnetic field around the wire by passing a direct current, even higher speed sputtering becomes possible. In either target configuration, the leakage magnetic field can be made 2 to 26 times larger than when using a conventional all-ferromagnetic alloy target because the target is effectively non-magnetic. This is because it can effectively capture secondary electrons scattered towards the body.

グロー放電を大幅に強くでき、従って、高速スパッタリ
ング法により支持体上に強磁性薄膜の形成ができるのヤ
ある。更に具体的実施例について詳しく説明する。
The glow discharge can be made much stronger, and therefore a ferromagnetic thin film can be formed on the support by a high speed sputtering method. Further, specific examples will be explained in detail.

第1図に示したのと類似の装置で垂直磁化膜を高分子基
板上に作成した。直径50(mの円筒状キャンの直下に
12cIrLの位置に、ターゲットホルダー(銅板厚み
乙5mm)の上面がくるように配置した。磁石は、ター
ゲットを配さない場合のターゲットホルダ上面から6鋼
離れた面での最大磁束密度が2600(ガウス)になる
ようなアルニコ磁石を用いた。
A perpendicularly magnetized film was formed on a polymer substrate using an apparatus similar to that shown in FIG. The top surface of the target holder (copper plate thickness: 5 mm) was placed at a position of 12 cIrL directly below a cylindrical can with a diameter of 50 m (50 m). An alnico magnet with a maximum magnetic flux density of 2600 (Gauss) on the opposite side was used.

ターゲットは長手方向の長さが3cFrLのコバルト(
厚み1.emm)と、焼結クロム(長さ1cm 、 1
3み2cm)を全長12菌となるよう第2図のように配
置した系を系−(1)とした。
The target is cobalt (with a longitudinal length of 3 cFrL).
Thickness 1. emm) and sintered chromium (length 1cm, 1
A system in which 3 microorganisms (2 cm in diameter) were arranged as shown in FIG. 2 so that there were 12 bacteria in total length was designated as system (1).

又第3図のように、直径2111mのCo線と直径21
IIIIlのW@を配置した。W線2本のCo線を6本
の群で又互配列し長手方向に全体で64本接着固定した
ターゲットを系−〔「〕とした。
Also, as shown in Figure 3, a Co wire with a diameter of 2111 m and a diameter of 21 m
IIIl W@ was placed. A target in which two W wires and two Co wires were alternately arranged in groups of six and fixed with adhesive in the longitudinal direction was used as a system.

第4図のように、T10板(厚み2.6mm)から1.
2(m離して、Co@(直径2mm)を中心間距離4.
6mmで27本絶縁保持し1通電しない場合を系−〔1
〕とし、12ム電流を流した場合を系−(IV)とした
As shown in Figure 4, 1.
2 (m apart, Co@(diameter 2 mm) center distance 4.
The case where 27 wires are insulated with 6mm and 1 is not energized is the system - [1
], and the case where a current of 12 μm was passed was defined as system (IV).

〔実施例−1〕 あらかじめ7X10TOrrまで排気したのち。[Example-1] After exhausting to 7X10 TOrr in advance.

ポリエチレンテレフタレート9.5μmを用いて系〔1
〕から系〔■〕までを用いて、第1表のように垂直磁化
膜0.1μIIを形成した。
System [1] using polyethylene terephthalate 9.5 μm
] to [■] were used to form a perpendicularly magnetized film of 0.1 .mu.II as shown in Table 1.

(以 下金 白) ここで。(Hereinafter referred to as Shimokin White) here.

(1)高周波は13.56MtlZである。(1) The high frequency is 13.56 MtlZ.

(2)Δθ5oはX線回折でのロッキングカーブの半値
幅でこの値が小さい程配向性が良好である。
(2) Δθ5o is the half width of the rocking curve in X-ray diffraction, and the smaller this value, the better the orientation.

〔実施例−2〕 ポリイミド26ム に垂直磁化膜を0.1μm形成した。これを第2表に示
す。
[Example 2] A perpendicular magnetization film with a thickness of 0.1 μm was formed on 26 μm of polyimide. This is shown in Table 2.

(以下金 白) いずれの実施例でも本発明の農法によれば,c。(Hereinafter referred to as gold and white) According to the farming method of the present invention in any of the examples, c.

− cr 、 co−’rl 、 co−w合金ターゲ
ットを用いる従来方法の3倍から4倍の高速スパッタが
可能であり、磁気ディスクの量産に適している。
- It is possible to perform sputtering at a speed three to four times faster than the conventional method using CR, CO-'RL, and CO-W alloy targets, and is suitable for mass production of magnetic disks.

発明の効果 以上のように本発明は、ターゲット前面への漏えい磁束
を大きく出来る構成をとること,更に。
Effects of the Invention As described above, the present invention has a configuration that can increase the leakage magnetic flux to the front surface of the target.

ターゲットの一部で磁界を発生させることにょシC軸配
向性の良好な垂直磁化膜を高速スパッタリング法により
,従来の3倍から4倍の生産性で達成できるものでその
実用的効果は大きい。
By generating a magnetic field in a part of the target and using a high-speed sputtering method to form a perpendicularly magnetized film with good C-axis orientation, this method can achieve productivity three to four times higher than conventional methods, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、スパッタリング法にょシ連続して基板上に強
磁性薄aを形成するのに用いる装置の要部の構成を示す
図.第2図から第4図は1本発明のスパッタリング用の
ターゲットの要部の構成を示す図である。 2・・・・・・基板、e・・川・ターゲットホルダー、
10・・・・・・強磁性材料,11・・・・・・強al
性材料に加える他の材料,12・・・・・・磁石7 第1図 □ □ □ 第2関 12 r’J
FIG. 1 is a diagram showing the configuration of the main parts of an apparatus used to continuously form a ferromagnetic thin film on a substrate by sputtering. FIGS. 2 to 4 are diagrams showing the configuration of the main parts of a sputtering target according to the present invention. 2... Board, e... river/target holder,
10...Ferromagnetic material, 11... Strong Al
Other materials added to the magnetic material, 12... Magnet 7 Figure 1 □ □ □ Second section 12 r'J

Claims (3)

【特許請求の範囲】[Claims] (1)磁力線により、散乱二次電子を捕獲するグロー放
電を利用したマグネトロンスパッタ法により支持体上に
強磁性薄膜を形成する際に、強磁性材料と、強磁性でな
い材料を平面的に交互に配列したターゲットを用いるこ
とを特徴とする磁気記録媒体の製造方法。
(1) When forming a ferromagnetic thin film on a support by magnetron sputtering, which uses glow discharge to capture scattered secondary electrons using lines of magnetic force, ferromagnetic and non-ferromagnetic materials are alternately layered in a plane. A method of manufacturing a magnetic recording medium, characterized by using an array of targets.
(2)磁力線の発生源に近い側に平板状の強磁性でない
材料を遠い側に隙間をあけて複数本の線状の強磁性材料
を配列したターゲラトラ用いることを特徴とする特許請
求の範囲第1項記載の磁気記録媒体の製造方法。
(2) A target rattle is used in which a plurality of linear ferromagnetic materials are arranged with a gap between a plate-shaped non-ferromagnetic material on the side closer to the source of the magnetic field lines and a gap on the far side. A method for manufacturing a magnetic recording medium according to item 1.
(3)複数本の線状の強磁性材料に通電し、これにより
磁場を発生させることを特徴とする特許請求の範囲第2
項記載の磁気記録媒体の製造方法。
(3) Claim 2, characterized in that a plurality of linear ferromagnetic materials are energized, thereby generating a magnetic field.
A method for manufacturing a magnetic recording medium as described in .
JP5871384A 1984-03-27 1984-03-27 Production of magnetic recording medium Pending JPS60202543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5871384A JPS60202543A (en) 1984-03-27 1984-03-27 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5871384A JPS60202543A (en) 1984-03-27 1984-03-27 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60202543A true JPS60202543A (en) 1985-10-14

Family

ID=13092130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5871384A Pending JPS60202543A (en) 1984-03-27 1984-03-27 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60202543A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221570A (en) * 1984-04-18 1985-11-06 Sanyo Electric Co Ltd Target electrode for sputtering
WO2012011329A1 (en) * 2010-07-23 2012-01-26 Jx日鉱日石金属株式会社 Magnetic material sputtering target provided with groove in rear face of target

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221570A (en) * 1984-04-18 1985-11-06 Sanyo Electric Co Ltd Target electrode for sputtering
WO2012011329A1 (en) * 2010-07-23 2012-01-26 Jx日鉱日石金属株式会社 Magnetic material sputtering target provided with groove in rear face of target
CN103080369A (en) * 2010-07-23 2013-05-01 吉坤日矿日石金属株式会社 Magnetic material sputtering target provided with groove in rear face of target

Similar Documents

Publication Publication Date Title
White Opportunities in magnetic materials
JPH0411625B2 (en)
EP0093838A2 (en) Perpendicular magnetic recording medium and method for producing the same
EP0015692A1 (en) A process for producing a magnetic recording medium
US5403457A (en) Method for making soft magnetic film
JPS60202543A (en) Production of magnetic recording medium
JPS6367328B2 (en)
JP2613294B2 (en) Thin film formation method
JPS60101721A (en) Formation of barium ferrite layer
JP2595031B2 (en) Manufacturing method of magnetic recording medium
JPS59157828A (en) Magnetic recording medium
JPS6199936A (en) Manufacture of magnetic recording medium
JPS59148120A (en) Magnetic recording medium
JPS6224432A (en) Production of magnetic recording medium
JPS59142736A (en) Magnetic recording medium
JPS61270369A (en) Tripolar sputtering source
JPH02240820A (en) Magnetic recording medium
JPS6235605A (en) Magnetically soft thin film
JPH0512765B2 (en)
JPS63281412A (en) Ferromagnetic thin film and manufacture thereof
JPS59148122A (en) Magnetic recording medium
JPS61220131A (en) Production of vertical magnetic recording medium
JPS61270366A (en) Tripolar sputtering source
JPH09157843A (en) Sputtering device
JPH0357539B2 (en)