JPS59148120A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS59148120A
JPS59148120A JP58023041A JP2304183A JPS59148120A JP S59148120 A JPS59148120 A JP S59148120A JP 58023041 A JP58023041 A JP 58023041A JP 2304183 A JP2304183 A JP 2304183A JP S59148120 A JPS59148120 A JP S59148120A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
magnetic layer
layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58023041A
Other languages
Japanese (ja)
Inventor
Masahiko Naoe
直江 正彦
Shozo Ishibashi
正三 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP58023041A priority Critical patent/JPS59148120A/en
Publication of JPS59148120A publication Critical patent/JPS59148120A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide

Abstract

PURPOSE:To obtain a magnetic recording medium which is suitable for vertical magnetic recording at a high density and has excellent mechanical strength, chemical stability, etc. by forming a magnetic layer of a granular material consisting essentially of an iron oxide having a prescribed magnetizing characteristic. CONSTITUTION:A magnetic field is formed in the direction perpendicular to the surface of targets T1, T2 in a vacuum vessel 1 of a sputtering device to form high density plasma. The target material is deposited as a magnetic material on a substrate 6. A continuous magnetic layer 10 in which small grain lumps consisting essentially of an iron oxide are joined to the target material in the state in contact with the grain boundary is formed on the substrate 6 by using Fe (contg. 1atom% Co) and Ar+O2 for the gas to be introduced. The ratio of the residual magnetization in the direction perpendicular to the plane of the layer 10 with respect to the residual magnetization in the direction within the plane of said layer is made >=0.5. The magnetic recording medium in which the small grain boundaries are arranged in the direction perpendicular to the plane of the layer 10 and which is suitable for vertical magnetic recording at a high density and has excellent mechanical strength, chemical stability, etc. is thus obtd.

Description

【発明の詳細な説明】 ■、産業上の利用分野 本発明は磁気テープ、磁気ディスク等の磁気記録媒体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to magnetic recording media such as magnetic tapes and magnetic disks.

2、従来技術 従来、この種の磁気記録媒体は、ビデオ、オーディオ、
ディジタル等の各種電気信号の記録に幅広く利用されて
いる。これらは、基体上に被着形成された磁性層(磁気
記録層)の面内長手方向における磁化を用いる方式とし
て発達してきた。ところが、近年、磁気記録の高密度化
に伴ない、面内長手方向の磁化を用いる記録方式では、
記録信号が短波長になるにつれ、媒体内の反磁界が増し
て残留磁化の減衰と回転が生じ、再生出力が著しく減少
する。このため、記録波長をサブミクロン以下にするこ
とは極めて困難である。
2. Prior Art Conventionally, this type of magnetic recording medium has been used for video, audio,
It is widely used for recording various electrical signals such as digital ones. These have been developed as a system that uses magnetization in the in-plane longitudinal direction of a magnetic layer (magnetic recording layer) formed on a substrate. However, in recent years, with the increase in the density of magnetic recording, recording methods that use magnetization in the longitudinal direction of the plane,
As the recording signal becomes shorter in wavelength, the demagnetizing field within the medium increases, causing attenuation and rotation of the residual magnetization, resulting in a significant reduction in the reproduction output. For this reason, it is extremely difficult to reduce the recording wavelength to submicron or less.

一方、磁気記録媒体の磁性層の厚さ方向の磁化(いわゆ
る垂直磁化)を用いる垂直磁化記録方式が、最近になっ
て提案されている(例えば、[日経エレクトロニクスJ
 1978年8月7日号No。
On the other hand, a perpendicular magnetization recording method that uses magnetization in the thickness direction of the magnetic layer of a magnetic recording medium (so-called perpendicular magnetization) has recently been proposed (for example, [Nikkei Electronics J
August 7, 1978 issue No.

192)。この記録方式によれば、記録波長が短くなる
に伴なって媒体内の残留磁化に作用する反磁界が減少す
るので、高密度化にとって好ましい特性を有し、本質的
に高密度記録に適した方式であると考えられる。
192). According to this recording method, as the recording wavelength becomes shorter, the demagnetizing field that acts on the residual magnetization in the medium decreases, so it has favorable characteristics for increasing density, and is essentially suitable for high-density recording. This is considered to be a method.

ところで、このような垂直記録を能率良く行なうにLS
I1、磁気記録媒体の記録層が重1u方向(磁性層の厚
さ方向)に磁化容易軸を有していなりればならない。こ
うした磁気記録媒体としては5.基体(支持体)上に、
磁性粉末とバインダーとを主成分とする磁性塗料を塗布
し、磁性層の垂直方向に磁化容易軸が向くように配向さ
せた塗布型の媒体が知られている。この塗布型媒体には
、Co、Fe30I1.、 T  Fe2O3、Co添
加Fe30q、co添添加−Fe2es、六方晶フェラ
イト(例えばバリウムフェライト) 、Mn Bi等が
磁性粉末として用いられている(特開昭52−4680
3号、同53−67406号、同52−L78403号
、同55−86103号、同52−78403号、同5
4−87202号各公報)。しかしながら、これらの塗
布型媒体は、磁性層中に非磁性のバインダーが存在して
いるために、磁性粉末の充填密度を高めることには限界
があり、扉ってS/N比を充分高の大きさは磁性粒子の
寸法で制−される等、4M性塗映からなる磁性層を有す
る媒体は垂直磁化記録用としてLIE不適当である。
By the way, to perform such perpendicular recording efficiently, LS
I1: The recording layer of the magnetic recording medium must have an axis of easy magnetization in the 1u direction (thickness direction of the magnetic layer). As such magnetic recording media, 5. On the base (support),
A coated type medium is known in which a magnetic paint containing magnetic powder and a binder as main components is coated and the magnetic layer is oriented so that its axis of easy magnetization is oriented in the perpendicular direction. This coated medium includes Co, Fe30I1. , T Fe2O3, Co-added Fe30q, Co-added -Fe2es, hexagonal ferrite (e.g. barium ferrite), MnBi, etc. are used as magnetic powders (JP-A-52-4680).
No. 3, No. 53-67406, No. 52-L78403, No. 55-86103, No. 52-78403, No. 5
4-87202). However, since these coated media contain a non-magnetic binder in the magnetic layer, there is a limit to increasing the packing density of magnetic powder, and it is difficult to increase the S/N ratio sufficiently high. Since the size is limited by the dimensions of the magnetic particles, a medium having a magnetic layer made of 4M coating is unsuitable for perpendicular magnetization recording in LIE.

そこで、垂直磁化する磁性層を、例えばバインダーを用
いることなく磁性体を支持体−Fに連続的に被着したも
ので形成した連続薄膜型磁気記録媒体が、高密度記録に
適したものとして注目されている。
Therefore, continuous thin film magnetic recording media, in which a perpendicularly magnetized magnetic layer is formed by continuously depositing a magnetic material on a support -F without using a binder, are attracting attention as suitable for high-density recording. has been done.

この連続薄膜型の垂直磁化記録用記録媒体は、例えば特
公昭57−17282号に開示されているように、コバ
ルトとクロムとの合金膜からなる磁気記録層を有してい
て、特にクロム含有量は5〜25重量%のCo−Cr合
金膜が優れているとしている。また、co−01合金膜
に30重景%以下のロジウムを添加してなる磁性層を有
する磁気記録媒体が特開昭55−111 ]、 10号
公報に開示され、更にコバルI・−バナジウム合金膜(
例えば米国電気電子通信学会:略称I EEE刊行の学
会誌’ Transaction on Magnet
ism″1982年第18巻No、6.1116頁)や
コバルト−ルテニウム合金膜((141えば1982年
3月開催の第(3) 18回東北大通研シンポジウム[垂直磁気記録コ鍮文集
)を用いた磁気記録媒体が知られている。
This continuous thin film type perpendicular magnetization recording medium has a magnetic recording layer made of an alloy film of cobalt and chromium, as disclosed in Japanese Patent Publication No. 57-17282, and has a particularly high chromium content. states that a Co--Cr alloy film containing 5 to 25% by weight is superior. In addition, a magnetic recording medium having a magnetic layer formed by adding rhodium of 30% or less to a co-01 alloy film is disclosed in Japanese Patent Laid-Open No. 111/1983 and No. 10, and furthermore, a cobal I-vanadium alloy film is disclosed. film(
For example, the American Institute of Electrical and Electronics Communication Engineers (abbreviated as IEEE) is an academic journal published by 'Transaction on Magnet'.
ism" 1982 Vol. 18 No. 6.1116) and cobalt-ruthenium alloy films (for example, the (3) 18th Tohoku University Research Symposium [Perpendicular Magnetic Recording Cobra Collection] held in March 1982). Magnetic recording media are known.

このうち、co−Or系合金膜は、垂直磁化用として有
望視はされているが、次の如き欠点を有していることが
判明した。
Among these, the co-Or alloy film has been shown to be promising for perpendicular magnetization, but it has been found that it has the following drawbacks.

(I)、磁性層の面に垂直に磁化容易軸を配向させるに
は、特に10”Torr以−トの高真空中で磁性層を作
成する必要があり、かつ基体の高度な洗浄処理、低スパ
ツタ速度等の如き条件を要し、垂直配向の制御要因が非
常に複雑となる。
(I) In order to orient the axis of easy magnetization perpendicular to the plane of the magnetic layer, it is necessary to create the magnetic layer in a high vacuum of 10” Torr or higher, and the substrate must be subjected to advanced cleaning treatment and low Conditions such as sputtering speed are required, and the control factors for vertical alignment become very complicated.

(2)、信号の記録、再生においては、磁気記録媒体と
垂直記録/再生用ヘッドとを相対的に摺動させるために
、ヘッドと媒体との間の界面状態が悪く、媒体にきすが
発生し易く、ヘッドも破損等を生じる。
(2) During signal recording and reproduction, since the magnetic recording medium and the perpendicular recording/reproducing head slide relative to each other, the interface between the head and the medium is poor and scratches occur on the medium. This can easily cause damage to the head.

(3)、磁性層が硬いために、可撓性のある基体上に磁
性層を設けた場合に亀裂が入り易い。
(3) Since the magnetic layer is hard, cracks are likely to occur when the magnetic layer is provided on a flexible substrate.

(4)、磁気記録媒体点しての耐蝕性が充分でなく、従
って表面に保護膜を設ける必要があ(4) る。
(4) The corrosion resistance of the magnetic recording medium is not sufficient, so it is necessary to provide a protective film on the surface.

(5)、原料のコバルトは安定に入手し難く、コストが
高くつく。
(5) Cobalt, a raw material, is difficult to obtain stably and is expensive.

3、発明の目的 本発明者は、−F記の如き実情に鑑み、鋭意検討した結
果、高密度の垂直磁気記録に適し、機械的強度や化学的
安定性等に優れた磁気記録媒体を得ることに成功したも
のである。
3. Purpose of the invention In view of the actual situation as described in -F, the inventor has made extensive studies and has obtained a magnetic recording medium that is suitable for high-density perpendicular magnetic recording and has excellent mechanical strength, chemical stability, etc. It was extremely successful.

4、発明の構成及びその作用効果 即ち、本発明は、基体上に磁性層が設けられている磁気
記録媒体において、前記磁性層が、(a)、酸化鉄を主
成分とする多数の小粒塊が夫々粒界を有した状態で互い
に接合し合うことによって、連続磁性層を形成している
こと。
4. Structure of the invention and its effects, that is, the present invention provides a magnetic recording medium in which a magnetic layer is provided on a substrate, in which the magnetic layer comprises (a) a large number of small particles mainly composed of iron oxide; A continuous magnetic layer is formed by bonding each other with grain boundaries.

(b)、磁性層の面内方向での残留磁化(M+−+)と
、磁性層の面に対し垂直方向での残留磁化(Mv )と
の比(Mv /MH)が0.5以−トであること。
(b) The ratio (Mv/MH) of the residual magnetization in the in-plane direction of the magnetic layer (M+-+) to the residual magnetization (Mv) in the direction perpendicular to the plane of the magnetic layer is 0.5 or more. Be a good person.

を夫々構成として具備することを特徴とする磁気記録媒
体に係るものである。
The present invention relates to a magnetic recording medium characterized by having the following configurations.

本発明によれば、磁性層が酸化鉄を主成分としているか
ら、酸化物に由来する特有の優れた特性(即ち機械的強
度及び化学的安定性等)が得られ、従来の合金薄膜に必
要であった表面保護膜は不要となる。この結果、磁気ヘ
ッドと媒体との間隔を小さくし得て高密度記録が可能に
なると共に、材料面からみても低コスト化が可能となる
According to the present invention, since the magnetic layer has iron oxide as its main component, excellent properties unique to oxides (i.e. mechanical strength, chemical stability, etc.) can be obtained, which are necessary for conventional alloy thin films. The surface protective film that was previously used is no longer necessary. As a result, the distance between the magnetic head and the medium can be reduced, making it possible to perform high-density recording, and also to reduce costs in terms of materials.

しかも、酸化鉄を主成分とする磁性層の面方向と垂直方
向とでの残留磁化比(MV /M?l )を0゜5以−
ヒとしているので、酸化鉄磁性体の磁気モーメントは面
内方向に対し30度以上垂直方向側へ立ち上っており、
垂直磁化を充分に実現できる構造となっている。上記磁
化量Mv 、 M+は、例えば試料振動型磁力計(東英
工業社製)で測定可能である。
Furthermore, the residual magnetization ratio (MV/M?l) in the in-plane direction and the perpendicular direction of the magnetic layer containing iron oxide as the main component is 0°5 or more.
Since the iron oxide magnetic material has a high temperature, the magnetic moment of the iron oxide magnetic material rises more than 30 degrees perpendicular to the in-plane direction.
It has a structure that can fully realize perpendicular magnetization. The magnetization amounts Mv and M+ can be measured, for example, with a sample vibrating magnetometer (manufactured by Toei Kogyo Co., Ltd.).

しかも、磁性層は、酸化鉄を主成分とする多数の小粒塊
が夫々粒界を有し、互いに接合し合って連続した層を形
成しているので、夫々の粒塊において上記磁気モーメン
トによる垂直磁化特性が効果的に生ぜしめられ、垂直磁
気記録及びその保持/7S 能に優れた磁性層を得ることができる。特に、上記小粒
塊は個々に柱状構造又は針状構造からなっているのが望
ましく、またその構造体の長さ方向は磁性層の面内方向
(又は基体の面)に対し斜めに交差していてもよいが、
はぼ垂直になっているのが望ましい。
Moreover, in the magnetic layer, a large number of small grains mainly composed of iron oxide each have grain boundaries and are bonded to each other to form a continuous layer. It is possible to obtain a magnetic layer in which magnetization characteristics are effectively produced and excellent perpendicular magnetic recording and retention/7S performance. In particular, it is preferable that each of the small agglomerates has a columnar structure or a needle-like structure, and the length direction of the structure is oblique to the in-plane direction of the magnetic layer (or the plane of the substrate). You can, but
Ideally, it should be vertical.

本発明による磁性層は上記の如く、酸化鉄を主体とする
小粒塊の連続接合体からなり、垂直磁化が可能な磁化比
を有しているが、こうした酸化鉄系の垂直磁化膜はこれ
まで全く存在していないし、作成不可能であると考えら
れていたのである。
As described above, the magnetic layer according to the present invention is composed of a continuous aggregate of small grains mainly composed of iron oxide, and has a magnetization ratio that allows perpendicular magnetization. It did not exist at all and was thought to be impossible to create.

本発明による磁性層は、従来の塗布型磁性層とは根本的
に異なり、バインダーを使用せずに酸化鉄(例えばFe
5 0B、r  Fe2O3、又はこれらの中間組成の
非化学量論的組成からなるヘルドライド化合物)自体が
連続的に連なった薄膜からなっている。この磁性層にお
いては、鉄と酸素の両元素の総和は磁性層の50重量%
以上であるのがよく、70重量%以上であるのが更に望
ましい。また、鉄と酸素との比は、酸素の原子数/鉄の
原子数−1〜3であるのがよく、4/3〜2であるのが
更によく、上記に例示した酸化鉄が適当である。
The magnetic layer according to the present invention is fundamentally different from conventional coated magnetic layers in that it does not use a binder and is made of iron oxide (e.g. Fe).
5 0 B, r Fe 2 O 3 , or a non-stoichiometric composition intermediate between them) itself consists of a continuous thin film. In this magnetic layer, the sum of both elements iron and oxygen is 50% by weight of the magnetic layer.
It is preferably at least 70% by weight, and more preferably at least 70% by weight. The ratio of iron to oxygen is preferably the number of oxygen atoms/the number of iron atoms - 1 to 3, more preferably 4/3 to 2, and the iron oxides listed above are suitable. be.

但、磁性層には、鉄及び酸素以外の金属又はその酸化物
、或いは非金属、半金属又はその化合物等を添加し、こ
れによって磁性層の磁気特性(例えば保磁力、飽和磁化
量、残留磁化量)及びその結晶性、結晶の特定軸方向へ
の配向性の向上環を図ることができる。こうした添加元
素又は化合物としてはA1.、co、、co−Mn1Z
n、、co−Zn1LiSCrsTi、、Li−CrX
Mg、Mg−Ni 、Mn −Zn 、Ni XNi−
A11Ni −Zn % Cu−、Cu  Mn 、、
Cu  Zn−、V等が挙げられるが、希土類元素以外
であることが望ましい。
However, metals other than iron and oxygen or their oxides, nonmetals, semimetals, or compounds thereof are added to the magnetic layer, thereby improving the magnetic properties of the magnetic layer (e.g. coercive force, saturation magnetization, residual magnetization). amount), its crystallinity, and the orientation of the crystal in a specific axial direction. Examples of such additive elements or compounds include A1. ,co,,co-Mn1Z
n, , co-Zn1LiSCrsTi, , Li-CrX
Mg, Mg-Ni, Mn-Zn, NiXNi-
A11Ni-Zn%Cu-, CuMn,,
Examples include Cu, Zn-, V, etc., but it is preferable to use other than rare earth elements.

また、本発明の磁気記録媒体に使用可能な基体材料は、
磁性材料が被着可能なものであれば種々のものが採用可
能である。例えば、ポリエチレンテレフタレート、ポリ
塩化ビニル、三酢酸セルロース、ポリカーボネート、ポ
リイミド、ポリアミド、ポリメチルメタクリレートの如
きプラスチン(8) クス、ガラス等のセラミックス等が使用可能である。基
体の形状はシート、カード、ディスク、ドラムの他、長
尺テープ状でもよい。
Further, base materials that can be used in the magnetic recording medium of the present invention include:
Various materials can be used as long as magnetic materials can be attached thereto. For example, plastics such as polyethylene terephthalate, polyvinyl chloride, cellulose triacetate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, ceramics such as glass, etc. can be used. The shape of the substrate may be a sheet, a card, a disk, a drum, or a long tape.

この磁気記録媒体を作成するには、基体を固定板に密着
支持し、或いは基体を走行させつつ磁性材料を被着させ
ることができる。このためには、真空ポンプ等の真空排
気系に接続した処理室内で、磁性材料のターゲットをス
パッタするか、或いは磁性材料の蒸発源から同材料を蒸
発させ、基体上に被着するスパッタ法、蒸着法等が適用
可能である。
To produce this magnetic recording medium, the substrate can be closely supported on a fixed plate, or the magnetic material can be applied while the substrate is running. For this purpose, a sputtering method is used in which a magnetic material target is sputtered in a processing chamber connected to an evacuation system such as a vacuum pump, or the material is evaporated from a magnetic material evaporation source and deposited on the substrate. Vapor deposition method etc. can be applied.

いずれの場合も、磁性層を構成する元素を飛翔させて、
基体上にその連続薄膜を形成する。
In either case, the elements constituting the magnetic layer are made to fly,
A continuous thin film is formed on the substrate.

5、実施例 以下、本発明の磁気記録媒体を図面参照下に更に詳細に
説明する。
5. Examples The magnetic recording medium of the present invention will be explained in more detail below with reference to the drawings.

本発明で使用する磁性材料を基体上に被着させる手段と
しては、磁性層構成原子を飛翔させる真空蒸着法(電界
蒸着、イオンブレーティング法を含む)、スパッタリン
グ法等があるが、このうち対向ターゲットスパッタ装置
を用いる方法が望ましい。
As means for depositing the magnetic material used in the present invention on the substrate, there are vacuum evaporation methods (including electric field evaporation and ion blating methods) in which the atoms constituting the magnetic layer are made to fly, sputtering methods, etc. A method using a target sputtering device is preferable.

第1図は、対向ターゲットスパッタ装置を示すものであ
る。
FIG. 1 shows a facing target sputtering apparatus.

図面において、1ば真空槽、2は真空槽1を排気する真
空ポンプ等からなる排気系、3は真空槽1内に所定のガ
スを導入してガス圧力を10〜10’Torr稈度に設
定するガス導入系である。ターゲット電極は、ターゲッ
トホルダー4により一対のターゲラ) T1% T2を
互いに隔てて平行に対向配置した対向ターゲット電極と
して構成されている。
In the drawing, 1 is a vacuum chamber, 2 is an exhaust system consisting of a vacuum pump etc. for evacuating the vacuum chamber 1, and 3 is an exhaust system that introduces a predetermined gas into the vacuum chamber 1 and sets the gas pressure to 10 to 10' Torr. This is a gas introduction system. The target electrodes are configured as opposed target electrodes in which a pair of target electrodes (T1% T2) are arranged facing each other in parallel with each other separated from each other by a target holder 4.

これらのターゲット間には、磁界発生手段(図示せず)
による磁界が形成される。一方、磁性薄膜を形成すべき
基体6ば、基体ホルダー5によって、上記対向ターゲッ
ト間の側方に垂直に配置される。
Between these targets is a magnetic field generating means (not shown).
A magnetic field is formed by On the other hand, the substrate 6 on which the magnetic thin film is to be formed is arranged perpendicularly to the side between the opposing targets by the substrate holder 5.

このように構成されたスパッタ装置において、平行に対
向し合った両ターゲットT1、T2の各表面と垂直方向
に磁界を形成し、この磁界により陰極降下部(即ち、タ
ーゲノl−T+m間に発生したプラズマ雰囲気と各ター
ゲットT1及びT2との間の領(11) 域)での電界で加速されたスパッタガスイオンのターゲ
ット表面に対する衝撃で放出されたγ電子をターゲット
間の空間にとじ込め、対向した他方のターゲット方向へ
移動させる。他方のターゲット表面へ移動したγ電子は
、その近傍の陰極降下部で反射される。こうして、γ電
子はターゲットT1−T2間において磁界に束縛されな
がら往復運動を繰返すことになる。この往復運動の間に
、γ電子は中性の雰囲気ガスと衝突して雰囲気ガスのイ
オンと電子とを生成させ、これらの生成物がターゲット
からのγ電子の放出と雰囲気ガスのイオン化を促進させ
る。従って、ターゲットTI−=’Th間の空間には高
密度のプラズマが形成され、これに伴ってターゲット物
質が充分にスパッタされ、側方の基体6上に磁性材*」
として堆積してゆくことになる。
In the sputtering apparatus configured in this way, a magnetic field is formed in a direction perpendicular to each surface of the two targets T1 and T2 that face each other in parallel, and this magnetic field generates a cathode falling area (i.e., between the target nodes L and T+m). The γ electrons emitted by the impact of the sputtering gas ions accelerated by the electric field on the target surface in the region (11) between the plasma atmosphere and each target T1 and T2 are trapped in the space between the targets, and the Move towards the other target. The γ electrons that have moved to the other target surface are reflected at the cathode fall section nearby. In this way, the γ electrons repeatedly move back and forth between the targets T1 and T2 while being bound by the magnetic field. During this reciprocating motion, the γ electrons collide with the neutral atmospheric gas to generate ions and electrons of the atmospheric gas, and these products promote the release of γ electrons from the target and the ionization of the atmospheric gas. . Therefore, a high-density plasma is formed in the space between the targets TI-='Th, and accordingly, the target material is sufficiently sputtered, and the magnetic material*' is sputtered onto the side substrate 6.
It will continue to accumulate as a result.

この対向ターゲットスパッタ装置は、他の飛翔手段に比
べて、高速スパッタによる高堆積速度の製膜が可能であ
り、また基体がプラズマに直接曝されることがなく、低
い基体温度での製膜が可能である等のことから、垂直磁
化膜を形成するのに有利である。しかも、対向ターゲッ
トスパッタ装置によって飛翔した磁性膜材料の基板への
入射エネルギーは、通常のスパッタ装置のものよりも小
さいので、材料が所望の方向へ方向性を以って堆積し易
く、垂直磁化記録に通した構造の膜を得易くなる。
Compared to other flying methods, this facing target sputtering device enables film formation at a high deposition rate through high-speed sputtering, and the substrate is not directly exposed to plasma, allowing film formation at low substrate temperatures. This is advantageous for forming a perpendicularly magnetized film. Moreover, since the incident energy of the magnetic film material sputtered onto the substrate by the facing target sputtering device is smaller than that of a normal sputtering device, the material is easily deposited directionally in the desired direction, making it possible to record perpendicular magnetization. It becomes easier to obtain a membrane with a structure that passes through the membrane.

次に、上記のスパッタ装置を用いて磁気記録媒体を作成
する具体例を説明する。
Next, a specific example of producing a magnetic recording medium using the above sputtering apparatus will be described.

この作成条件は以下の通りであった。The conditions for this preparation were as follows.

ターゲツト材  鉄(Coを1原子%含有)基体   
   ガラス 対向ターゲット間隔  100mm スパッタ空間の磁界  1400e ターゲツト形状    100mm直径の円盤(5mm
厚) 基体とターゲット端との間隔  30mm真空槽内の背
圧    10Torr 導入ガス       Ar →−02導入ガス圧  
    4 X 10Torr(12) スパッタ投入電力   420W このようにして第2図に示す如く、ヘースフィルム61
に酸化鉄系の磁性層10を有する磁気記録媒体が得られ
た。この媒体について、磁性層の特性評価は、X線マイ
クロアナリシス(XMA)による組成の同定、X線回折
法による酸化鉄の状態、試料振動型磁力計による磁気特
性によって行なった。得られた磁気記録媒体の特性は次
の如くであった。
Target material Iron (contains 1 atomic% Co) base
Glass-facing target spacing 100mm Magnetic field in sputtering space 1400e Target shape 100mm diameter disk (5mm
Thickness) Distance between substrate and target end 30mm Back pressure in vacuum chamber 10Torr Introduced gas Ar →-02 Introduced gas pressure
4 X 10 Torr (12) Sputter input power 420 W In this way, as shown in FIG.
A magnetic recording medium having an iron oxide-based magnetic layer 10 was obtained. For this medium, the characteristics of the magnetic layer were evaluated by identifying the composition by X-ray microanalysis (XMA), the state of iron oxide by X-ray diffraction, and the magnetic properties by a sample vibrating magnetometer. The characteristics of the obtained magnetic recording medium were as follows.

まず、面内方向での残留磁化量(MH)と面に垂直方向
での残留磁化量(Mv )との比はMν/MH≧0.5
であった。即ち、第3図に例示するように、破線で示す
面方向での磁化時のヒステリシス曲線と、実線で示す垂
直方向での磁化時のヒステリシス曲線とが夫々得られた
が、印加磁界がゼロのときの各磁化量をMH、、Mvと
した。これによれば、前者のヒステリシス曲線は後者の
ヒステリシス曲線よりも小さく、Mν≧0.5 MH、
となっていることが明らかであり、垂直磁化にとって好
適な磁性層が形成されていることが分る。これは、酸化
鉄系の磁性層においては驚くべき事実である。
First, the ratio of the residual magnetization in the in-plane direction (MH) to the residual magnetization in the perpendicular direction (Mv) is Mν/MH≧0.5
Met. That is, as illustrated in FIG. 3, a hysteresis curve during magnetization in the in-plane direction shown by the broken line and a hysteresis curve during magnetization in the perpendicular direction shown by the solid line were obtained, but when the applied magnetic field is zero, The amount of magnetization at each time was defined as MH, , Mv. According to this, the former hysteresis curve is smaller than the latter hysteresis curve, Mν≧0.5 MH,
It is clear that the magnetic layer is suitable for perpendicular magnetization. This is a surprising fact for iron oxide-based magnetic layers.

また、この磁気記録媒体の組成をXMA (X線マイク
ロアナライザ:日立製作所載rX−556JKEVEX
−7000型)で測定したところ、Feが主ピークであ
り、COが少量含まれていることが分った。更に、酸化
鉄の状態を調べるために、X線回折装置(日本電子社製
rJDχ−10RAj:CuKα管球使用)を用いて測
定したところ、下記表に示すように、磁性層が酸化鉄を
主成分とするものであることが分った。
In addition, the composition of this magnetic recording medium was analyzed using XMA (X-ray microanalyzer: rX-556JKEVEX manufactured by Hitachi, Ltd.).
-7000 model), it was found that Fe was the main peak and a small amount of CO was contained. Furthermore, in order to investigate the state of iron oxide, measurements were performed using an X-ray diffraction device (rJDχ-10RAj manufactured by JEOL Ltd., using a CuKα tube), and as shown in the table below, it was found that the magnetic layer mainly consisted of iron oxide. It turned out that it was an ingredient.

しかも、この磁性層は、面内方向に対して垂直方向にほ
ぼ秩序正しい構造を有していることが電子顕微鏡で観察
された。
Furthermore, it was observed using an electron microscope that this magnetic layer had a substantially ordered structure in the direction perpendicular to the in-plane direction.

即ち、第4図に示す如く、基体6上に形成された磁性N
10は、酸化鉄を主成分とする多数の柱状又は針状の小
粒塊11が夫々粒界12(バウンダリ)を有した状態で
、基体6の面に対し実質的にほぼ垂直方向に配列されな
がら互いに接合若しくは固着し合った構造となっている
ことが分った。
That is, as shown in FIG.
10, a large number of columnar or acicular small grains 11 mainly composed of iron oxide are arranged substantially perpendicularly to the surface of the base 6, each having a grain boundary 12 (boundary). It was found that they had a structure in which they were joined or fixed to each other.

各小粒塊11の短径は平均して100〜200人であり
、かつ厚さ2500人程度0連続した磁性層10が形成
されていた。
The short axis of each small agglomerate 11 was 100 to 200 on average, and a continuous magnetic layer 10 with a thickness of about 2,500 was formed.

こうした柱状又は針状構造の小粒塊からなる磁性層は、
実質的に垂直方向を向いている個々の小粒塊が垂直方向
へ容易かつ充分に磁化される性質を有しているために、
垂直磁化特性に優れたものとなっており、第3図にしめ
した如く所望のヒステリシス曲線の磁化特性を示すので
ある。これに反し、小粒塊間の粒界が不明瞭であったり
、粒径が大きすぎる場合には、水平方向への磁化量が増
(15) えすぎ、第5図に示す如く、Mvが相対的に減少し、M
v /MH<0.5となることが確認された。
A magnetic layer consisting of small grains with a columnar or needle-like structure is
Because individual small agglomerates oriented substantially vertically have the property of being easily and sufficiently magnetized in the vertical direction,
It has excellent perpendicular magnetization characteristics, and exhibits the desired hysteresis curve magnetization characteristics as shown in FIG. On the other hand, if the grain boundaries between small grain agglomerates are unclear or the grain size is too large, the amount of magnetization in the horizontal direction increases too much (15), and as shown in Figure 5, the relative Mv decreases, M
It was confirmed that v/MH<0.5.

これでは、目的とする垂直磁化を実現できないことが明
らかである。
It is clear that this makes it impossible to achieve the desired perpendicular magnetization.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を例示するものであって、第1図は対向タ
ーゲットスパッタ装置の概略断面図、 第2図は磁気記録媒体の断面図、 第3図は磁気記録媒体のヒステリシス曲線図、第4図は
磁性層の断面の拡大図、 第5図は本発明に依らない磁性層を有する磁気記録媒体
のヒステリシス曲線図 である。 なお、図面に示された符号において、 ■−・−真空槽 2−一一一〜・−排気系 3−・−−−−−ガス導入系 4.5−・−・−ホルダー 6−−−−−−一基体 (16) 10−一・−磁性層 11−m−・−小粒塊 12−・−粒界 T1、T2・−・−ターゲット である。
The drawings illustrate the present invention, and FIG. 1 is a schematic sectional view of a facing target sputtering apparatus, FIG. 2 is a sectional view of a magnetic recording medium, FIG. 3 is a hysteresis curve diagram of the magnetic recording medium, and FIG. The figure is an enlarged cross-sectional view of the magnetic layer, and FIG. 5 is a hysteresis curve diagram of a magnetic recording medium having a magnetic layer not based on the present invention. In addition, in the symbols shown in the drawings, ■--Vacuum chamber 2-11--Exhaust system 3--Gas introduction system 4.5--Holder 6-- ---One substrate (16) 10-1.-Magnetic layer 11-m.--Small grain agglomerates 12.--Grain boundaries T1, T2.--Target.

Claims (1)

【特許請求の範囲】 1、基体上に磁性層が設けられている磁気記録媒体にお
いて、前記磁性層が、 (a)、酸化鉄を主成分とする多数の小粒塊が夫々粒界
を有した状態で互いに接合し合うことによって、連続磁
性層を形成していること。 (b)、磁性層の面内方向での残留磁化(MH)と、磁
性層の面に対し垂直方向での残留磁化(Mv )との比
(MV /MH)が0.5以上であること。 を夫々構成として具備することを特徴とする磁気記録媒
体。
[Claims] 1. A magnetic recording medium in which a magnetic layer is provided on a substrate, wherein the magnetic layer (a) has a large number of small grains mainly composed of iron oxide, each of which has a grain boundary. A continuous magnetic layer is formed by bonding each other in a state. (b) The ratio (MV/MH) of the residual magnetization (MH) in the in-plane direction of the magnetic layer to the residual magnetization (Mv) in the direction perpendicular to the plane of the magnetic layer is 0.5 or more. . What is claimed is: 1. A magnetic recording medium comprising:
JP58023041A 1983-02-15 1983-02-15 Magnetic recording medium Pending JPS59148120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023041A JPS59148120A (en) 1983-02-15 1983-02-15 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023041A JPS59148120A (en) 1983-02-15 1983-02-15 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS59148120A true JPS59148120A (en) 1984-08-24

Family

ID=12099370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023041A Pending JPS59148120A (en) 1983-02-15 1983-02-15 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59148120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166266A (en) * 1988-12-19 1990-06-26 Kawasaki Steel Corp Alloying furnace having floater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166266A (en) * 1988-12-19 1990-06-26 Kawasaki Steel Corp Alloying furnace having floater

Similar Documents

Publication Publication Date Title
JPS59148120A (en) Magnetic recording medium
JPS59147422A (en) Formation of magnetic layer
JPH0512765B2 (en)
JPS59157828A (en) Magnetic recording medium
JPS59157827A (en) Magnetic recording medium
JPS59157830A (en) Magnetic recording medium
JPS59157833A (en) Magnetic recording medium
JPS59148121A (en) Magnetic recording medium
JPS59148124A (en) Magnetic recording medium
JPH0316690B2 (en)
JPS59148122A (en) Magnetic recording medium
JPH0475577B2 (en)
JPS59144032A (en) Magnetic recording medium
JPS59148125A (en) Magnetic recording medium
JPS59148318A (en) Formation of magnetic layer
JPS59148123A (en) Magnetic recording medium
JPH0315260B2 (en)
JPS59148319A (en) Formation of magnetic layer
JPS59148317A (en) Formation of magnetic layer
JPH0315246B2 (en)
JPS60163233A (en) Magnetic recording medium and its production
JPH0315248B2 (en)
JPH0311531B2 (en)
JPS6224432A (en) Production of magnetic recording medium
JPS59157832A (en) Magnetic recording medium