JPS59148123A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS59148123A
JPS59148123A JP58023044A JP2304483A JPS59148123A JP S59148123 A JPS59148123 A JP S59148123A JP 58023044 A JP58023044 A JP 58023044A JP 2304483 A JP2304483 A JP 2304483A JP S59148123 A JPS59148123 A JP S59148123A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
substrate
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58023044A
Other languages
Japanese (ja)
Inventor
Masahiko Naoe
直江 正彦
Shozo Ishibashi
正三 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP58023044A priority Critical patent/JPS59148123A/en
Publication of JPS59148123A publication Critical patent/JPS59148123A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide

Abstract

PURPOSE:To obtain a magnetic recording medium which is suitable for vertical magnetic recording at a high density, has excellent mechanical strength and chemical stability and has a large SN ratio by forming a magnetic layer of a continuous magnetic layer consisting essentially of an iron oxide having a prescribed characteristic. CONSTITUTION:A magnetic field perpendicular to the surface of targets T1, T2 in a vacuum vessel 1 of a sputtering device is formed to form plasma of a high density between the targets T1 and T2, thus forming a continuous magnetic layer 10 on a substrate 6. Fe (contg. 1 atom% Co) is used for the target material and Ar+O2 for the gas to be introduced to form a magnetic layer 10 having >=0.5% the ratio of the residual magnetization in the direction perpendicular to the plane of the layer 10 with respect to the residual magnetization in the direction within the plane of said layer and 0.2mum<R<=2mum surface roughness R. The magnetic layer which is suitable for vertical magnetic recording at a high density, has excellent mechanical strength and chemical stability, etc. and has good running property and a large SN ratio is thus obtd.

Description

【発明の詳細な説明】 1、産業上の利用分野 本発明は磁気テープ、磁気ディスク等の磁気記録媒体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1. Industrial Application Field The present invention relates to magnetic recording media such as magnetic tapes and magnetic disks.

26従来技術 従来、この種の磁気記録媒体は、ビデオ、オーディオ、
ディジタル等の各種電気信号の記録に幅広く利用されて
いる。これらは、基体上に被着形成された磁性層(磁気
記録層)の面内長手方向における磁化を用いる方式とし
て発達してきた。ところが、近年、磁気記録の高密度化
に伴ない、面内長手方向の磁化を用いる記録方式では、
記録信号が短波長になるにつれ、媒体内の反磁界が増し
て残留磁化の減衰と回転が生じ、再生出力が著しく減少
する。このため、記録波長をサブミクロン以下にするこ
とは極めて困難である。
26 Prior Art Conventionally, this type of magnetic recording medium has been used for video, audio,
It is widely used for recording various electrical signals such as digital ones. These have been developed as a system that uses magnetization in the in-plane longitudinal direction of a magnetic layer (magnetic recording layer) formed on a substrate. However, in recent years, with the increase in the density of magnetic recording, recording methods that use magnetization in the longitudinal direction of the plane,
As the recording signal becomes shorter in wavelength, the demagnetizing field within the medium increases, causing attenuation and rotation of the residual magnetization, resulting in a significant reduction in the reproduction output. For this reason, it is extremely difficult to reduce the recording wavelength to submicron or less.

一方、磁気記録媒体の磁性層の厚さ方向の磁化(いわゆ
る垂直磁化)を用いる垂直磁化記録方式が、最近になっ
て提案されている(例えば、[日経エレクトロニクスJ
1978年8月7日号No。
On the other hand, a perpendicular magnetization recording method that uses magnetization in the thickness direction of the magnetic layer of a magnetic recording medium (so-called perpendicular magnetization) has recently been proposed (for example, [Nikkei Electronics J
August 7, 1978 issue No.

192)。この記録方式によれば、記録波長が短くなる
に伴なって媒体内の残留磁化に作用する反磁界が減少す
るので、高密度化にとって好ましい特性を有し、本質的
に高密度記録に適した方式であると考えられる。
192). According to this recording method, as the recording wavelength becomes shorter, the demagnetizing field that acts on the residual magnetization in the medium decreases, so it has favorable characteristics for increasing density, and is essentially suitable for high-density recording. This is considered to be a method.

ところで、このような垂直記録を能率良く行なうには、
磁気記録媒体の記録層が垂直方向(磁性層の厚さ方向)
に磁化容易軸を有していなければならない。こうした磁
気記録媒体としては、基体(支持体)上に、磁性粉末と
バインダーとを主成分とする磁性塗料を塗布し、磁性層
の垂直方向に磁化容易軸が向くように配向させた塗布型
の媒体が知られている。この塗布型媒体には、Co、F
e30s、γ−Fe20kco添加Fe5011. C
o添加γ−Fe2e5、六方晶フェライト(例えばバリ
ウムフェライト) 、Mn B+等が磁性粉末として用
いられている(特開昭51−46803号、同53−6
7406号、同52−78403号、同55−8610
3号、同52−78403号、同54−87202号各
公報)。しかしながら、これらの塗布型媒体は、磁性層
中に非磁性のバインダーが存在しているために、磁性粉
末の充填密度を高めることには限界があり、従ってS/
N比を充分高くすることができない。しかも、記録され
る信号の大きさは磁性粒子の寸法で制約される等、磁性
塗膜からなる磁性層を有する媒体は垂直磁化記録用とし
ては不適当である。
By the way, in order to perform this kind of perpendicular recording efficiently,
The recording layer of the magnetic recording medium is perpendicular (thickness direction of the magnetic layer)
It must have an axis of easy magnetization. Such a magnetic recording medium is a coated type in which a magnetic coating mainly composed of magnetic powder and a binder is coated on a substrate (support), and the axis of easy magnetization is oriented in the perpendicular direction of the magnetic layer. medium is known. This coated media includes Co, F
e30s, γ-Fe20kco added Fe5011. C
o-added γ-Fe2e5, hexagonal ferrite (e.g. barium ferrite), MnB+, etc. are used as magnetic powders (JP-A-51-46803, JP-A-53-6).
No. 7406, No. 52-78403, No. 55-8610
No. 3, No. 52-78403, No. 54-87202). However, in these coated media, there is a limit to increasing the packing density of magnetic powder due to the presence of a non-magnetic binder in the magnetic layer, and therefore S/
The N ratio cannot be made high enough. Moreover, the magnitude of the recorded signal is limited by the size of the magnetic particles, and thus a medium having a magnetic layer made of a magnetic coating is unsuitable for perpendicular magnetization recording.

そこで、垂直磁化する磁性層を、例えばバインダーを用
いることなく磁性体を支持体上に連続的に被着したもの
で形成した連続薄膜型磁気記録媒体が、高密度記録に適
したものとして注目されている。
Therefore, continuous thin film magnetic recording media, in which a perpendicularly magnetized magnetic layer is formed by continuously depositing a magnetic material on a support without using a binder, are attracting attention as suitable for high-density recording. ing.

この連続薄膜型の垂直磁化記録用記録媒体は、例えば特
公昭57−17282号に開示されているように、コバ
ルトとクロムとの合金膜からなる磁気記録層を有してい
て、特にクロム含有量は5〜25重量%のCo−Cr合
金膜が優れているとしている。また、Co−Cr合金膜
に30重量%以下のロジうムを添加してなる磁性層を有
する磁気記録媒体が特開昭55−111110号公報に
開示され、更にコバルト−バナジウム合金膜(例えば米
国電気電子通信学会:略称T EEE刊行の学会誌“T
ransaction on Magnetism″1
982年第18巻No、6.1116頁)やコバルト−
ルテニウム合金膜(例えば1982年3月開催の第Xa
) 18回東北大通研シンポジウム「垂直磁気記録」論文集
)を用いた磁気記録媒体が知られている。
This continuous thin film type perpendicular magnetization recording medium has a magnetic recording layer made of an alloy film of cobalt and chromium, as disclosed in Japanese Patent Publication No. 57-17282, and has a particularly high chromium content. states that a Co--Cr alloy film containing 5 to 25% by weight is superior. Further, a magnetic recording medium having a magnetic layer formed by adding 30% by weight or less of rhodium to a Co-Cr alloy film is disclosed in JP-A-55-111110, and furthermore, a cobalt-vanadium alloy film (for example, Institute of Electrical and Electronics Communication Engineers: Abbreviation T
transaction on Magnetism″1
982 Vol. 18 No. 6.1116) and cobalt.
Ruthenium alloy film (for example, No. Xa held in March 1982)
) Magnetic recording media using the 18th Tohoku University Research Institute Symposium ``Perpendicular Magnetic Recording'' are known.

このうち、Co−Cr系合金膜は、垂直磁化用として有
望視はされているが、次の如き欠点を有していることが
判明した。
Among these, the Co--Cr alloy film has been shown to be promising for perpendicular magnetization, but it has been found that it has the following drawbacks.

(1)、磁性層の面に垂直に磁化容易軸を配向させるに
は、特に10Torr以上の高真空中で磁性層を作成す
る必要があり、かつ基体の高度な洗浄処理、低スパツタ
速度等の如き条件を要し、垂直配向の制御要因が非常に
複雑となる。
(1) In order to orient the axis of easy magnetization perpendicular to the surface of the magnetic layer, it is necessary to create the magnetic layer in a high vacuum of 10 Torr or more, and it is necessary to use advanced cleaning treatments for the substrate, low sputtering speed, etc. Such conditions are required, and the control factors for vertical alignment become extremely complicated.

(2)、信号の記録、再生においては、磁気記録媒体と
垂直記録/再生用ヘッドとを相対的に摺動させるために
、ヘッドと媒体との間の界面状態が悪く、媒体にきすが
発生し易く、ヘッドも破損等を生じる。
(2) During signal recording and reproduction, since the magnetic recording medium and the perpendicular recording/reproducing head slide relative to each other, the interface between the head and the medium is poor and scratches occur on the medium. This can easily cause damage to the head.

(3)、磁性層が硬いために、可撓性のある基体上に磁
性層を設けた場合に亀裂が入り易い。
(3) Since the magnetic layer is hard, cracks are likely to occur when the magnetic layer is provided on a flexible substrate.

(4)、磁気記録媒体としての耐蝕性が充分でなく、従
って表面に保護膜を設ける必要があ(4) る。
(4) The corrosion resistance as a magnetic recording medium is not sufficient, so it is necessary to provide a protective film on the surface.

(5)、原料のコバルトは安定に入手し難く、コストが
高くつく。
(5) Cobalt, a raw material, is difficult to obtain stably and is expensive.

3、発明の目的 本発明者は、上記の如き実情に鑑み、鋭意検討した結果
、高密度の垂直磁気記録に適し、機械的強度や化学的安
定性等に優れ、更に走行性が良く、S/N比の大きい均
一な磁性層を有する磁気記録媒体を得 ることに成功し
たものである。
3. Purpose of the Invention In view of the above-mentioned circumstances, the present inventors have made extensive studies and found that S We succeeded in obtaining a magnetic recording medium having a uniform magnetic layer with a high /N ratio.

4、発明の構成及びその作用効果 即ち、本発明は、基体上に磁性層が設けられている磁気
記録媒体において、前記磁性層が、(a)、酸化鉄を主
成分とする連続磁性層であること。
4. Structure of the invention and its effects, that is, the present invention provides a magnetic recording medium in which a magnetic layer is provided on a substrate, wherein the magnetic layer is (a) a continuous magnetic layer containing iron oxide as a main component. Something.

(b)、磁性層の面内方向での残留磁化(MH)と、磁
性層の面に対し垂直方向での残留磁化(Mv)との比(
Mv /MH)が0.5以上であること。
(b), the ratio of the residual magnetization (MH) in the in-plane direction of the magnetic layer to the residual magnetization (Mv) in the perpendicular direction to the plane of the magnetic layer (
Mv /MH) is 0.5 or more.

を夫々構成として具備し、かつ表面粗さくR)が0.2
μm<R528mの前記基体上に設けられていることを
特徴とする磁気記録媒体に係るものである。
and the surface roughness R) is 0.2.
The present invention relates to a magnetic recording medium characterized in that it is provided on the substrate with μm<R528m.

本発明によれば、磁性層が酸化鉄を主成分としているか
ら、酸化物に由来する特有の優れた特性(即ち機械的強
度及び化学的安定性等)が得られ、従来の合金薄膜に必
要であった表面保護膜は不要となる。この結果、磁気ヘ
ッドと媒体との間隔を小さくし得て高密度記録が可能に
なると共に、材料面からみても低コスト化が可能となる
According to the present invention, since the magnetic layer has iron oxide as its main component, excellent properties unique to oxides (i.e. mechanical strength, chemical stability, etc.) can be obtained, which are necessary for conventional alloy thin films. The surface protective film that was previously used is no longer necessary. As a result, the distance between the magnetic head and the medium can be reduced, making it possible to perform high-density recording, and also to reduce costs in terms of materials.

しかも、酸化鉄を主成分とする磁性層の面内方向と垂直
方向とでの残留磁化比(MV /MH)を0.5以上と
しているので、酸化鉄磁性体の磁気モーメントは面内方
向に対し30度以上垂直方向側へ立ち上っており、垂直
磁化を充分に実現できる構造となっている。上記磁化量
Mν、MHは、例えば試料振動型磁力計(東英工業社製
)で測定可能である。即ち、MV/MHが0,5未満で
あれば垂直磁化に適した磁気モーメントが得られ難い。
Furthermore, since the residual magnetization ratio (MV/MH) between the in-plane direction and the perpendicular direction of the magnetic layer whose main component is iron oxide is set to 0.5 or more, the magnetic moment of the iron oxide magnetic material is in the in-plane direction. On the other hand, it rises in the vertical direction by more than 30 degrees, and has a structure that can sufficiently realize perpendicular magnetization. The magnetization amounts Mv and MH can be measured, for example, with a sample vibrating magnetometer (manufactured by Toei Kogyo Co., Ltd.). That is, if MV/MH is less than 0.5, it is difficult to obtain a magnetic moment suitable for perpendicular magnetization.

更に、本発明で重要なことは、上記磁性層が表面粗さく
R)が0.2μm<9528mの基体上に設けられるこ
とである。従来の磁化膜においては、本発明の如くに酸
化鉄を主成分とし、垂直磁化用として好適な残留磁化比
(Mν/Ms)を有する磁化膜は全く想定されない上に
、こうした磁化膜が設けられる基体の表面粗さについて
良好な再生特性との関連において考察が行なわれていな
いのが実情であった。本発明者が鋭意検討を加えた結果
、磁性層を設けるべき基体表面は適度な粗さを有してい
なければならず、その粗さ範囲を0.2μm < 95
28mとずべきであることをはじめて見出したのである
。即ち、R≦0.2μmでは、表面が平滑すぎてその上
に設ける磁性層の表面も過度に平滑となる、このために
滑り性が劣化して走行性が不良となり、走行むら等によ
るいわゆる“鳴き”が生じてしまうからである。また、
R>2μmでは、あまりに表面が相すぎ、このために均
一な磁性層を形成し難く、かつノイズレベルが高くてS
/N比が小となってしまうのである。この場合、基体表
面が粗すぎて磁性層の厚みが不均一となり、磁気特性、
特に保磁力(He )と、上述の(7) 残留磁化比(MV /M)l )とにばらつきが生じる
から、垂直磁化用としてきわめて不適当である。
Furthermore, what is important in the present invention is that the magnetic layer is provided on a substrate with a surface roughness R) of 0.2 μm<9528 m. In the conventional magnetized film, a magnetized film containing iron oxide as a main component and having a residual magnetization ratio (Mv/Ms) suitable for perpendicular magnetization as in the present invention is not expected at all, and such a magnetized film is provided. The reality is that no consideration has been given to the surface roughness of the substrate in relation to good reproduction characteristics. As a result of intensive studies by the present inventor, the surface of the substrate on which the magnetic layer is to be provided must have an appropriate roughness, and the roughness range is set to 0.2 μm < 95
It was discovered for the first time that the distance should be 28 m. In other words, when R≦0.2 μm, the surface is too smooth and the surface of the magnetic layer provided thereon is also excessively smooth, resulting in poor slipperiness and poor running properties, resulting in so-called "" This is because "squealing" may occur. Also,
When R > 2 μm, the surfaces are too similar, making it difficult to form a uniform magnetic layer, and the noise level is high, making S
/N ratio becomes small. In this case, the substrate surface is too rough and the thickness of the magnetic layer becomes uneven, resulting in poor magnetic properties.
In particular, since variations occur in the coercive force (He) and the above-mentioned (7) remanent magnetization ratio (MV/M)l), it is extremely unsuitable for perpendicular magnetization.

従って、基体の表面粗さくR)は0.2μm < 95
28mとするのが必須不可欠であり、この範囲に設定し
てはじめて、走行性をはじめ、磁気特性を充分満足した
ものにできるのである。
Therefore, the surface roughness R) of the substrate is 0.2 μm < 95
It is essential to set the distance to 28 m, and only by setting it within this range can the running performance and magnetic properties be sufficiently satisfied.

なお、本発明における上記「表面粗さ」は、JTSO6
01に規定された「最大高さRmaxJに相当するもの
である。本発明による磁性層は、従来の塗布型磁性層と
は根本的に異なり、バインダーを使用せずに酸化鉄(例
えばFe30Il、 r  Fe2O3、又はこれらの
中間組成の非化学量論的組成からなるベルト′ライド化
合物)自体が連続的に連なった薄膜からなっている。こ
の磁性層においては、鉄と酸素の両元素の総和は磁性層
の50重量%以上であるのがよく、70重量%以上であ
るのが更に望ましい。また、鉄と酸素との比は、酸素の
原子数/鉄の原子数=1〜3であるのがよく、4/3〜
2であるのが更によく、上記に例示した酸化鉄が適当で
ある。但、磁性層には、鉄及び酸素以(8) 外の金属又はその酸化物、或いは非金属、半金属又はそ
の化合物等を添加し、これによって磁性層の磁気特性(
例えば保磁力、飽和磁化量、残留磁化量)及びその結晶
性、結晶の特定軸方向への配向性の向上環を図ることが
できる。こうした添加元素又は化合物としては/l、C
o XCo −Mn 。
In addition, the above-mentioned "surface roughness" in the present invention is JTSO6
The magnetic layer according to the present invention is fundamentally different from conventional coated magnetic layers in that it is made of iron oxide (e.g. Fe30Il, r Fe2O3 (or a belt-ride compound consisting of a non-stoichiometric composition intermediate between these) itself consists of a continuous thin film.In this magnetic layer, the sum of both elements iron and oxygen is magnetic. The content of the layer is preferably 50% by weight or more, and more preferably 70% by weight or more.The ratio of iron to oxygen is preferably 1 to 3 (number of oxygen atoms/number of iron atoms). Well, 4/3 ~
2 is even better, and the iron oxides exemplified above are suitable. However, metals other than iron and oxygen (8) or their oxides, nonmetals, semimetals, or compounds thereof are added to the magnetic layer, thereby changing the magnetic properties of the magnetic layer (
For example, it is possible to improve coercive force, saturation magnetization, residual magnetization), crystallinity, and orientation of crystals in a specific axial direction. Such additive elements or compounds include /l, C
oXCo-Mn.

Zn、Co−Zn、、Li、、CrXTi、、Li −
cr、、Mg、Mg−NisMn−ZnXNt、Ni。
Zn, Co-Zn, , Li, , CrXTi, , Li −
cr, , Mg, Mg-NisMn-ZnXNt, Ni.

N1−Aj!、Ni −Zn 、、 Cu % Cu 
−Mn 、、 Cu−Zn、V等が挙げられるがこの他
の元素及び化合物でもよい。
N1-Aj! ,Ni-Zn,,Cu%Cu
-Mn, Cu-Zn, V, etc., but other elements and compounds may be used.

また、本発明の磁気記録媒体に使用可能な基体材料は、
磁性材料が被着可能であって、0.2μm〈9528m
の表面粗さを有しているものであれば種々のものが採用
可能である。例えば、望ましい基体としては、ポリエチ
レンテレフタレート、ポリ塩化ビニル、三酢酸セルロー
ス、ポリカーボネート、ポリイミド、ポリアミド、ポリ
メチルメタクリレートの如きプラスチックス、ガラス等
のセラミックス等からなる基体が使用可能である。
Further, base materials that can be used in the magnetic recording medium of the present invention include:
Magnetic material can be deposited and the thickness is 0.2μm〈9528m
Various materials can be used as long as they have a surface roughness of . For example, preferred substrates include substrates made of plastics such as polyethylene terephthalate, polyvinyl chloride, cellulose triacetate, polycarbonate, polyimide, polyamide, and polymethyl methacrylate, and ceramics such as glass.

或いは金属基体も使用してもよい。基体の形状はシート
、カード、ディスク、ドラムの他、長尺テープ状でもよ
い。基体表面を本発明による粗さ範囲のものとするには
、基体素材面をサンドフィルム付き回転ロール等により
処理すればよい。
Alternatively, metal substrates may also be used. The shape of the substrate may be a sheet, a card, a disk, a drum, or a long tape. In order to bring the surface of the substrate into a roughness range according to the present invention, the surface of the substrate material may be treated with a rotating roll with a sand film or the like.

この磁気記録媒体を作成するには、基体を固定板に密着
支持し、或いは基体を走行させつつ磁性材料を被着させ
ることができる。このためには、真空ポンプ等の真空排
気系に接続した処理室内で、磁性材料のターゲットをス
パッタするか、或いは磁性材料の蒸発源から同材料を蒸
発させ、基体上に被着するスパッタ法、蒸着法等が適用
可能である。
To produce this magnetic recording medium, the substrate can be closely supported on a fixed plate, or the magnetic material can be applied while the substrate is running. For this purpose, a sputtering method is used in which a magnetic material target is sputtered in a processing chamber connected to an evacuation system such as a vacuum pump, or the material is evaporated from a magnetic material evaporation source and deposited on the substrate. Vapor deposition method etc. can be applied.

いずれの場合も、磁性層を構成する元素を飛翔させて、
基体上にその連続薄膜を形成する。なお、この連続薄膜
の形成前に予め、基体表面をイオンボンバード(後記の
スパッタ装置ではAr+にょるボンバード可能)で清浄
化したり、或いはベーキング処理したり、高周波をかけ
て処理しておくとよい。
In either case, the elements constituting the magnetic layer are made to fly,
A continuous thin film is formed on the substrate. Note that, before forming this continuous thin film, the surface of the substrate is preferably cleaned by ion bombardment (Ar + bombardment is possible in the sputtering device described later), or subjected to baking treatment, or treated by applying high frequency.

(11) 5、実施例 以下、本発明の磁気記録媒体を図面参照下に更に詳細に
説明する。
(11) 5. Examples The magnetic recording medium of the present invention will be explained in more detail below with reference to the drawings.

本発明で使用する磁性材料を基体上に被着させる手段と
しては、磁性層構成原子を飛翔させる真空蒸着法(電界
蒸着、イオンブレーティング法を含む。)、スパッタリ
ング法等があるが、このうち対向ターゲットスパッタ装
置を用いる方法が望ましい。
Methods for depositing the magnetic material used in the present invention on the substrate include vacuum evaporation methods (including electric field evaporation and ion blating methods), sputtering methods, etc., in which the atoms constituting the magnetic layer are made to fly. A method using a facing target sputtering device is desirable.

第1図は、対向ターゲットスパッタ装置を示すものであ
る。
FIG. 1 shows a facing target sputtering apparatus.

図面において、1は真空槽、2は真空槽1を排気する真
空ポンプ等からなる排気系、3は真空槽1内に所定のガ
スを導入してガス圧力を10〜1鳩 OTorr程度に設定するガス導入系である。ターゲッ
ト電極は、ターゲットホルダー4により一対のターゲッ
トT1、T2を互いに隔てて平行に対向配置した対向タ
ーゲット電極として構成されている。
In the drawing, 1 is a vacuum chamber, 2 is an exhaust system consisting of a vacuum pump etc. for evacuating the vacuum chamber 1, and 3 is an exhaust system that introduces a predetermined gas into the vacuum chamber 1 and sets the gas pressure to about 10 to 1 O Torr. This is a gas introduction system. The target electrodes are configured as opposed target electrodes in which a pair of targets T1 and T2 are separated from each other by a target holder 4 and arranged to face each other in parallel.

これらのターゲット間には、磁界発生手段(図示せず)
による磁界が形成される。一方、磁性薄膜(12) を形成すべき表面の粗さ0.2μm<R528mの基体
6は、基体ホルダー5によって、上記対向ターゲット間
の側方に垂直に配置される。
Between these targets is a magnetic field generating means (not shown).
A magnetic field is formed by On the other hand, a substrate 6 with a surface roughness of 0.2 μm<R528m on which a magnetic thin film (12) is to be formed is placed by a substrate holder 5 perpendicularly to the side between the opposing targets.

このように構成されたスパッタ装置において、平行に対
向し合った両ターゲットT1、T2の各表面と垂直方向
に磁界を形成し、この磁界により陰極降下部(即ち、タ
ーゲット毛−T2間に発生したプラズマ雰囲気と各ター
ゲット1及び丑との間の領域)での電界で加速されたス
パッタガスイオンのターゲット表面に対する衝撃で放出
されたγ電子をターゲット間の空間にとじ込め、対向し
た他方のターゲット方向へ移動させる。他方のターゲッ
ト表面へ移動したγ電子は、その近傍の陰極降下部で反
射される。こうして、γ電子はターゲットT1−T2間
において磁界に束縛されながら往復運動を繰返すことに
なる。この往復運動の間に、γ電子は中性の雰囲気ガス
と衝突して雰囲気ガスのイオンと電子とを生成させ、こ
れらの生成物がターゲットからのγ電子の放出と雰囲気
ガスのイオン化を促進させる。従って、ターゲラ)’T
I−’Th間の空間には高密度のプラズマが形成され、
これに伴ってターゲット物質が充分にスパッタされ、側
方の基体6上に磁性材料として堆積してゆくことになる
In the sputtering apparatus configured in this way, a magnetic field is formed in a direction perpendicular to each surface of both targets T1 and T2 that face each other in parallel, and this magnetic field causes a cathode fall area (i.e., a droplet generated between target hairs and T2) to be generated. The γ electrons emitted by the impact of the sputtering gas ions accelerated by the electric field on the target surface in the region between the plasma atmosphere and each target 1 and ox are trapped in the space between the targets, and are directed toward the other opposing target. Move to. The γ electrons that have moved to the other target surface are reflected at the cathode fall section nearby. In this way, the γ electrons repeatedly move back and forth between the targets T1 and T2 while being bound by the magnetic field. During this reciprocating motion, the γ electrons collide with the neutral atmospheric gas to generate ions and electrons of the atmospheric gas, and these products promote the release of γ electrons from the target and the ionization of the atmospheric gas. . Therefore, Targera)'T
A high-density plasma is formed in the space between I and 'Th,
As a result, the target material is sufficiently sputtered and deposited as a magnetic material on the side substrate 6.

この対向ターゲットスパッタ装置は、他の飛翔手段に比
べて、高速スパッタによる高堆積速度の製膜が可能であ
り、また基体がプラズマに直接曝されることがなく、低
い基体温度での製膜が可能である等のことから、垂直磁
化膜を形成するのに有利である。しかも、対向ターゲッ
トスパッタ装置によって飛翔した磁性膜材料の基板への
入射エネルギーは、通常のスパッタ装置のものよりも小
さいので、材料が所望の方向へ方向性を以って堆積し易
く、垂直磁化記録に適した構造の膜を得易くなる。
Compared to other flying methods, this facing target sputtering device enables film formation at a high deposition rate through high-speed sputtering, and the substrate is not directly exposed to plasma, allowing film formation at low substrate temperatures. This is advantageous for forming a perpendicularly magnetized film. Moreover, since the incident energy of the magnetic film material sputtered onto the substrate by the facing target sputtering device is smaller than that of a normal sputtering device, the material is easily deposited directionally in the desired direction, making it possible to record perpendicular magnetization. It becomes easier to obtain a membrane with a structure suitable for

次に、上記のスパッタ装置を用いて磁気記録媒体を作成
する具体例を説明する。
Next, a specific example of producing a magnetic recording medium using the above sputtering apparatus will be described.

この作成条件は以下の通りであった。The conditions for this preparation were as follows.

ターゲツト材  鉄(Coを1原子%含有)基体   
   長尺のポリイミドフィルム(垂直下方へ移動) 対向ターゲット間隔  1001 スパッタ空間の磁界  1400e ターゲツト形状    100IIII11直径の円盤
(5mm厚) 基体とターゲット端との間隔  30IIlffl真空
槽内の背圧    IQTorr 導入ガス       Ar+Oz 導入ガス圧      4 x 10Torrスパツタ
投入電力   420W このようにして第2図に示す如く、ベースフィルム6上
に酸化鉄系の磁性層10を有する磁気記録媒体が得られ
た。この媒体について、磁性層の特性評価は、X線マイ
クロアナライザ(XMA)による組成の同定、X線回折
法による酸化鉄の状態、試料振動型磁力針による磁気特
性によって行なった。得られた磁気記録媒体の特性は次
の如くであった。
Target material Iron (contains 1 atomic% Co) base
Long polyimide film (moves vertically downward) Distance between opposing targets 1001 Magnetic field in sputtering space 1400e Target shape 100III11 diameter disc (5 mm thick) Distance between substrate and target end 30IIffl Back pressure in vacuum chamber IQTorr Introduced gas Ar+Oz Introduced gas Pressure: 4 x 10 Torr Sputtering power: 420 W In this way, as shown in FIG. 2, a magnetic recording medium having an iron oxide magnetic layer 10 on the base film 6 was obtained. Regarding this medium, the characteristics of the magnetic layer were evaluated by identifying the composition using an X-ray microanalyzer (XMA), the state of iron oxide using an X-ray diffraction method, and the magnetic properties using a sample vibrating magnetic needle. The characteristics of the obtained magnetic recording medium were as follows.

まず、面内方向での残留磁化量(MH)と面に垂直方向
での残留磁化量(Mv )との比はMν/MH≧0.5
であった。即ち、第3図に例示するように、破線で示す
面内方向での磁化時のヒステリシス曲線と、実線で示す
垂直方向での磁化時のヒステリシス曲線とが夫々得られ
たが、印加磁界がゼロのときの各磁化量をMH、Mvと
した。これによれば、前者のヒステリシス曲線は後者の
ヒステリシス曲線よりも小さく、Mν≧0.5 MHと
なっていることが明らかであり、垂直磁化にとって好適
な磁性層が形成されていることが分る。これは、酸化鉄
系の磁性層においては驚くべき事実である。
First, the ratio of the residual magnetization in the in-plane direction (MH) to the residual magnetization in the perpendicular direction (Mv) is Mν/MH≧0.5
Met. That is, as illustrated in FIG. 3, a hysteresis curve during magnetization in the in-plane direction shown by the broken line and a hysteresis curve during magnetization in the perpendicular direction shown by the solid line were obtained, but when the applied magnetic field is zero The amounts of magnetization at this time were defined as MH and Mv. According to this, it is clear that the former hysteresis curve is smaller than the latter hysteresis curve and Mν≧0.5 MH, indicating that a magnetic layer suitable for perpendicular magnetization is formed. . This is a surprising fact for iron oxide-based magnetic layers.

また、この磁気記録媒体の組成をXMA (X線マイク
ロアナライザ:日立製作所部rX−556JKEVEX
−7000型)で測定したところ、Feが主ピークであ
り、Coが少量台まれていることが分った。更に、酸化
鉄の状態を調べるために、X線回折装置(日本電子社製
rJDX−10RAJ:CuKα管球使用)を用いて測
定したところ、下記表に示すように、磁性層が酸化鉄を
主成分とするものであることが分った。しかも、この磁
性(15) 層は、面内方向に対して垂直方向に秩序正しい構造を有
していることが電子顕微鏡で観察された。
In addition, the composition of this magnetic recording medium was analyzed using XMA (X-ray microanalyzer: Hitachi, Ltd. rX-556JKEVEX).
-7000 model), it was found that Fe was the main peak, with a small amount of Co present. Furthermore, in order to investigate the state of iron oxide, measurements were taken using an X-ray diffraction device (rJDX-10RAJ manufactured by JEOL Ltd., using a CuKα tube), and as shown in the table below, it was found that the magnetic layer mainly consisted of iron oxide. It turned out that it was an ingredient. Furthermore, it was observed using an electron microscope that this magnetic (15) layer had an ordered structure in the direction perpendicular to the in-plane direction.

上記の如くに得られる磁気記録媒体について、基体とし
て各種の表面粗さを有するポリイミドフィルムを使用し
、これらの基体上に厚さ2000人の垂直磁化用のF 
e50J葵(但、保磁力(He)は10000e)を夫
々形成した。
For the magnetic recording medium obtained as described above, polyimide films having various surface roughnesses were used as the substrate, and F for perpendicular magnetization with a thickness of 2000 mm was placed on these substrates.
e50J Aoi (however, the coercive force (He) is 10,000e) was formed.

これらの磁気記録媒体(磁気テープ)を公知のカセット
デツキに装着し、記録、再生を行なった(但、テスト条
件は、室温、65%RH)。
These magnetic recording media (magnetic tapes) were mounted on a known cassette deck, and recording and reproduction were performed (test conditions were room temperature and 65% RH).

(I6) この結果、各磁気テープについて第4図に示す如き結果
が得られた。即ち、基体の表面粗さによってテープ鳴き
発生率が変化するが、特に表面粗さが0.2μmを越え
るとテープ鳴きが急激に減少するので、テープ走行性を
良くするには基体表面粗さを〉0.2μmとすべきこと
が分った。但、表面粗さは必要以上に大きくはできず、
2μmを越えると、磁性層が不均一となってHeやM 
v / MHにばらつきが生じ、かつS/N比が小さく
なる等の欠陥が生じることも確認されたので、その上限
を2μmとすべきである。
(I6) As a result, the results shown in FIG. 4 were obtained for each magnetic tape. In other words, the rate of occurrence of tape squeal changes depending on the surface roughness of the substrate, but especially when the surface roughness exceeds 0.2 μm, tape squeal decreases rapidly. >0.2 μm. However, the surface roughness cannot be made larger than necessary;
If it exceeds 2 μm, the magnetic layer becomes non-uniform and He and M
It has been confirmed that v/MH varies and defects such as a decrease in the S/N ratio occur, so the upper limit should be set at 2 μm.

なお、本発明による上記の表面粗さ範囲では、基体の表
面に適度な凹凸が存在し、個々の凹部内にまず被着した
粒子層が下地(基礎)となって、その上に次の粒子が方
向性を以って(望ましくは基体面に対し垂直方向に)堆
積してゆき、垂直磁化用として好適な柱状の小粒塊群が
成長するものと考えられる。
In addition, in the above-mentioned surface roughness range according to the present invention, there are moderate irregularities on the surface of the substrate, and the particle layer that is first deposited in each concave portion serves as a base (foundation) on which the next particle is deposited. It is thought that the particles are deposited directionally (preferably in the direction perpendicular to the substrate surface), and a columnar group of small grains suitable for perpendicular magnetization grows.

しかも、得られた磁性層は膜圧がほぼ均一となるような
凹凸面が、上記表面粗さ範囲内では充分に得られるので
ある。
Moreover, the resulting magnetic layer has a sufficiently uneven surface with substantially uniform film thickness within the above-mentioned surface roughness range.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を例示するものであって、第1図は対向タ
ーゲットスパッタ装置の概略断面図、 第2図は磁気記録媒体の断面図、 第3図は磁気記録媒体のヒステリシス曲線図、第4図は
基体の表面粗さを変えた場合のテープの鳴き発生率を示
すグラフ である。 なお、図面に示された符号において、 ■−・−一−−−真空槽 2−−−−−−一排気系 3−−−−−−−ガス導入系 4.5−−−−−・−ホルダー 6−・−−−−一基体 10−−−−−−一磁性層 T1、T2−・−−一−−ターゲット である。 代理人 弁理士 逢 坂  宏(他1名)(19) 喚21関 130− 侶41躬 表面米巨ご(μ7TL)
The drawings illustrate the present invention, and FIG. 1 is a schematic sectional view of a facing target sputtering apparatus, FIG. 2 is a sectional view of a magnetic recording medium, FIG. 3 is a hysteresis curve diagram of the magnetic recording medium, and FIG. The figure is a graph showing the occurrence rate of tape squeal when the surface roughness of the substrate is changed. In addition, in the symbols shown in the drawings, ■-・--1--Vacuum chamber 2-------1 Exhaust system 3--Gas introduction system 4.5------- -Holder 6---One base 10---One magnetic layer T1, T2---One target. Agent: Patent attorney Hiroshi Aisaka (19) (19) Kan21 Seki 130- 41 躬面米大igo (μ7TL)

Claims (1)

【特許請求の範囲】 1、基体上に磁性層が設けられている磁気記録媒体にお
いて、前記磁性層が、 〈a)、酸化鉄を主成分とする連続磁性層からなってい
ること。 (b)、磁性層の面内方向での残留磁化(IvL+)と
、磁性層の面に対し垂直方向での残留磁化(Mv)との
比(Mv /Mh )が0.5以上であること。 を夫に構成として具備し、かつ表面粗さくR)が、0.
2μm<352μmの前記基体上に設けられていること
を特徴とする磁気記録媒体。
[Claims] 1. In a magnetic recording medium in which a magnetic layer is provided on a substrate, the magnetic layer: (a) consists of a continuous magnetic layer containing iron oxide as a main component. (b) The ratio (Mv/Mh) of the residual magnetization in the in-plane direction of the magnetic layer (IvL+) to the residual magnetization (Mv) in the direction perpendicular to the plane of the magnetic layer is 0.5 or more. . The structure has a surface roughness R) of 0.
A magnetic recording medium, characterized in that it is provided on the substrate with a diameter of 2 μm<352 μm.
JP58023044A 1983-02-15 1983-02-15 Magnetic recording medium Pending JPS59148123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023044A JPS59148123A (en) 1983-02-15 1983-02-15 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023044A JPS59148123A (en) 1983-02-15 1983-02-15 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS59148123A true JPS59148123A (en) 1984-08-24

Family

ID=12099451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023044A Pending JPS59148123A (en) 1983-02-15 1983-02-15 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59148123A (en)

Similar Documents

Publication Publication Date Title
JPS59148123A (en) Magnetic recording medium
JPS59147422A (en) Formation of magnetic layer
JPS59157833A (en) Magnetic recording medium
JPH0512765B2 (en)
JPS59157828A (en) Magnetic recording medium
JPH0475577B2 (en)
JPS61210521A (en) Production of magnetic disk
JPS59157830A (en) Magnetic recording medium
JPS59148120A (en) Magnetic recording medium
JPS59157827A (en) Magnetic recording medium
JPS59148121A (en) Magnetic recording medium
JPS59157832A (en) Magnetic recording medium
JPS59144032A (en) Magnetic recording medium
JPS59148125A (en) Magnetic recording medium
JPS59148122A (en) Magnetic recording medium
JPH0315244B2 (en)
JPH0316690B2 (en)
JPH0315248B2 (en)
JPS59148319A (en) Formation of magnetic layer
JPH0311531B2 (en)
JPS59157831A (en) Magnetic recording medium
JPS61227222A (en) Magnetic recording medium
JPS6235605A (en) Magnetically soft thin film
JPH0315260B2 (en)
JPS59148318A (en) Formation of magnetic layer