JPS59148125A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS59148125A
JPS59148125A JP58023050A JP2305083A JPS59148125A JP S59148125 A JPS59148125 A JP S59148125A JP 58023050 A JP58023050 A JP 58023050A JP 2305083 A JP2305083 A JP 2305083A JP S59148125 A JPS59148125 A JP S59148125A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
magnetic recording
recording medium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58023050A
Other languages
Japanese (ja)
Inventor
Masahiko Naoe
直江 正彦
Shozo Ishibashi
正三 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP58023050A priority Critical patent/JPS59148125A/en
Priority to EP84101074A priority patent/EP0116881A3/en
Publication of JPS59148125A publication Critical patent/JPS59148125A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium which is suitable for vertical magnetic recording at a high density and has excellent mechanical strength and chemical stability by forming a magnetic layer of a continuous magnetic layer consisting essentially of an iron oxide having a specific characteristic. CONSTITUTION:A magnetic field perpendicular to the surface of targets T1, T2 in a vacuum vessel 1 of a sputtering device is formed to form plasma of a high density between the targets T1 and T2, thus forming a continuous magnetic layer 10 on a substrate 6. Fe (contg. 1 atom% Co) is used for the target material and Ar+O2 for the gas to be introduced to form a magnetic layer having >=0.5% the ratio of the residual magnetization in the direction perpendicular to the plane of the layer 10 with respect to the residual magnetization in the direction within the plane of said layer and 100Angstrom -5mum layer thickness. The particles are oriented in the direction perpendicular to the surface of the magnetic layer and the magnetic recording medium which is suitable for vertical magnetic recording at a high density and has excellent mechanical strength and chemical stability, etc. is obtd.

Description

【発明の詳細な説明】 1、産業上の利用分野 本発明は磁気テープ、磁気ディスク等の磁気記録媒体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1. Industrial Application Field The present invention relates to magnetic recording media such as magnetic tapes and magnetic disks.

2、従来技術 従来、この種の磁気記録媒体は、ビデオ、オーディオ、
ディジタル等の各種電気信号の記録に幅広く利用されて
いる。これらは、基体上に被着形成された磁性層(磁気
記録層)の面内長手方向における磁化を用いる方式とし
て発達してきた。ところが、近年、磁気記録の高密度化
に伴ない、面内長手方向の磁化を用いる記録方式では、
記録信号が短波長になるにつれ、媒体内の反磁界が増し
て残留磁化の減衰と回転が生じ、再生出力が著しく減少
する。このため、記録波長をサブミクロン以下にするこ
とは極めて困難である。
2. Prior Art Conventionally, this type of magnetic recording medium has been used for video, audio,
It is widely used for recording various electrical signals such as digital ones. These have been developed as a system that uses magnetization in the in-plane longitudinal direction of a magnetic layer (magnetic recording layer) formed on a substrate. However, in recent years, with the increase in the density of magnetic recording, recording methods that use magnetization in the longitudinal direction of the plane,
As the recording signal becomes shorter in wavelength, the demagnetizing field within the medium increases, causing attenuation and rotation of the residual magnetization, resulting in a significant reduction in the reproduction output. For this reason, it is extremely difficult to reduce the recording wavelength to submicron or less.

一方、磁気記録媒体の磁性層の厚さ方向の磁化(いわゆ
る垂直磁化)を用いる垂直磁化記録方式が、最近になっ
て提案されている(例えば、「日経エレクトロニクスJ
I978年8月7日号No。
On the other hand, a perpendicular magnetization recording method that uses magnetization in the thickness direction of the magnetic layer of a magnetic recording medium (so-called perpendicular magnetization) has recently been proposed (for example, "Nikkei Electronics J.
August 7, 1978 issue No.

192)。この記録方式によれば、記録波長が短くなる
に伴なって媒体内の残留磁化に作用する反磁界が減少す
るので、高密度化にとって好ましい特性を有し、本質的
に高密度記録に適した方式であると考えられる。
192). According to this recording method, as the recording wavelength becomes shorter, the demagnetizing field that acts on the residual magnetization in the medium decreases, so it has favorable characteristics for increasing density, and is essentially suitable for high-density recording. This is considered to be a method.

ところで、このような垂直記録を能率良く行なうには、
磁気記録媒体の記録層が垂直方向(磁性層の厚さ方向)
に磁化容易軸を有していなければならない。こうした磁
気記録媒体としては、基体(支持体)上に、磁性粉末と
バインダーとを主成分とする磁性塗料を塗布し、磁性層
の垂直方向に磁化容易軸が向くように配向させた塗布型
の媒体が知られている。この塗布型媒体には、Co、F
ego、r−Fe205、Co添加Fe50.Co添添
加−F e205、六方晶フェライト(例えばバリウム
フェライト)、MnB1等が磁性粉末として用いられて
いる(特開昭52−46803号、同53−67406
号、同52−78403号、同55−86103号、同
52−78403号、同54−87202号各公報)。
By the way, in order to perform this kind of perpendicular recording efficiently,
The recording layer of the magnetic recording medium is perpendicular (thickness direction of the magnetic layer)
It must have an axis of easy magnetization. Such a magnetic recording medium is a coated type in which a magnetic coating mainly composed of magnetic powder and a binder is coated on a substrate (support), and the axis of easy magnetization is oriented in the perpendicular direction of the magnetic layer. medium is known. This coated media includes Co, F
ego, r-Fe205, Co-added Fe50. Co-added -F e205, hexagonal ferrite (e.g. barium ferrite), MnB1, etc. are used as magnetic powders (JP-A-52-46803, JP-A-53-67406).
No. 52-78403, No. 55-86103, No. 52-78403, and No. 54-87202).

しかしながら、これらの塗布型媒体は、磁性層中に非磁
性のバインダーが存在しているために、磁性粉末の充填
密度を高めることには限界があり、従ってS/N比を充
分高塗膜からなる磁性層を有する媒体は垂直磁化記録用
としては不適当である。
However, in these coated media, there is a limit to increasing the packing density of magnetic powder due to the presence of a non-magnetic binder in the magnetic layer, and therefore it is difficult to increase the S/N ratio from a sufficiently high coating film. A medium having such a magnetic layer is unsuitable for perpendicular magnetization recording.

そこで、垂直磁化する磁性層を、例えばバインダーを用
いることなく磁性体を支持体−ヒに連続的に被着したも
ので形成した連続薄膜型磁気記録媒体が、高密度記録に
適したものとして注目されている。
Therefore, continuous thin film magnetic recording media, in which a perpendicularly magnetized magnetic layer is formed by continuously depositing a magnetic material on a support without using a binder, are attracting attention as suitable for high-density recording. has been done.

この連続薄膜型の垂直磁化記録用記録媒体は、例えば特
公昭57−17282号に開示されているように、コバ
ルトとクロムとの合金膜からなる磁気記録層を有してい
て、特にクロム含有量は5〜25重量%のCo−Cr合
金膜が優れているとしている。また、Co−Cr合金膜
に30重量%以下のロジウムを添加してなる磁性層を有
する磁気記録媒体が特開昭55−111110号公報に
開示され、更にコバルト−バナジウム合金膜(例えば米
国電気電子通信学会:略称I EEE刊行の学会誌” 
Transaction on Magnetism″
1982年第18巻No、6.1116頁)やコバルト
−ルテニウム合金膜(例えば1982年3月開催の第1
8回東北大通研シンポジうム「垂直磁気記録」(3) 論文集)を用いた磁気記録媒体が知られている。
This continuous thin film type perpendicular magnetization recording medium has a magnetic recording layer made of an alloy film of cobalt and chromium, as disclosed in Japanese Patent Publication No. 57-17282, and has a particularly high chromium content. states that a Co--Cr alloy film containing 5 to 25% by weight is superior. Further, a magnetic recording medium having a magnetic layer formed by adding 30% by weight or less of rhodium to a Co-Cr alloy film is disclosed in JP-A-55-111110, and furthermore, a cobalt-vanadium alloy film (for example, Communication Society: Abbreviation IEEE, an academic journal published by
Transaction on Magnetism
1982 Vol. 18 No. 6.1116) and cobalt-ruthenium alloy films (for example,
Magnetic recording media using ``Perpendicular Magnetic Recording'' (3) Proceedings of the 8th Tohoku University Research Institute Symposium are known.

このうち、co−Cr系合金膜は、垂直磁化用として有
望視はされているが、次の如き欠点を有していることが
判明した。
Among these, the co-Cr alloy film has been shown to be promising for perpendicular magnetization, but it has been found that it has the following drawbacks.

(1)、磁性層の面に垂直に磁化容易軸を配向させるに
は、特に1QTorr以上の高真空中で磁性層を作成す
る必要があり、かつ基体の高度な洗浄処理、低スパツタ
速度等の如き条件を要し、垂直配向の制御要因が非常に
複雑となる。
(1) In order to orient the axis of easy magnetization perpendicular to the plane of the magnetic layer, it is necessary to create the magnetic layer in a high vacuum of 1 Q Torr or more, and it is necessary to use advanced cleaning treatments for the substrate, low sputtering speed, etc. Such conditions are required, and the control factors for vertical alignment become extremely complicated.

(2)、信号の記録、再生においては、磁気記録媒体と
垂直記録/再生用ヘッドとを相対的に摺動させるために
、ヘッドと媒体との間の界面状態が悪く、媒体にきずが
発生し易く、ヘッドも破損等を生じる。
(2) During signal recording and reproduction, since the magnetic recording medium and the perpendicular recording/reproducing head slide relative to each other, the interface between the head and the medium is poor and scratches occur on the medium. This can easily cause damage to the head.

(3)、磁性層が硬いために、可撓性のある基体上に磁
性層を設けた場合に亀裂が入り易い。
(3) Since the magnetic layer is hard, cracks are likely to occur when the magnetic layer is provided on a flexible substrate.

(4)、磁気記録媒体としての耐蝕性が充分でなく、従
って表面に保護膜を設ける必要がある。
(4) The corrosion resistance as a magnetic recording medium is insufficient, and therefore a protective film must be provided on the surface.

(4) (5)、原料のコバルトは安定に入手し難く、コストが
高くつく。
(4) (5) Cobalt, a raw material, is difficult to obtain stably and is expensive.

3、発明の目的 本発明者は、上記の如き実情に鑑み、鋭意検討した結果
、高密度の垂直磁気記録に適し、機械的強度や化学的安
定性等に優れた磁気記録媒体を得ることに成功したもの
である。
3. Purpose of the Invention In view of the above-mentioned circumstances, the present inventor has made extensive studies and has determined to obtain a magnetic recording medium that is suitable for high-density perpendicular magnetic recording and has excellent mechanical strength, chemical stability, etc. It was a success.

4、発明の構成及びその作用効果 即ち、本発明は、基体上に磁性層が設けられている磁気
記録媒体において、前記磁性層が、(a)、酸化鉄を主
成分とする厚さ100人〜5μmの連続磁性層であるこ
と。
4. Structure of the invention and its effects, that is, the present invention provides a magnetic recording medium in which a magnetic layer is provided on a substrate, in which the magnetic layer (a) has a thickness of 100 mm and is mainly composed of iron oxide. It should be a continuous magnetic layer of ~5 μm.

(b)、磁性層の面内方向での残留磁化(MH)と、磁
性層の面に対し垂直方向での残留磁化(Mv)との比(
MV /MH)が0.5以上であること。
(b), the ratio of the residual magnetization (MH) in the in-plane direction of the magnetic layer to the residual magnetization (Mv) in the perpendicular direction to the plane of the magnetic layer (
MV/MH) is 0.5 or more.

を夫々構成として具備することを精微とする磁気記録媒
体に係るものである。
The present invention relates to a magnetic recording medium that is precisely equipped with the following configurations.

本発明によれば、磁性層が酸化鉄を主成分としているか
ら、酸化物に由来する特有の優れた特性(即ち機械的強
度及び化学的安定性等)が得られ、従来の合金薄膜に必
要であった表面保護膜は不要となる。この結果、磁気ヘ
ッドと媒体との間隔を小さクシ書て高密度記録が可能に
なると共に、材料面からみても低コスト化が可能となる
According to the present invention, since the magnetic layer has iron oxide as its main component, excellent properties unique to oxides (i.e. mechanical strength, chemical stability, etc.) can be obtained, which are necessary for conventional alloy thin films. The surface protective film that was previously used is no longer necessary. As a result, it becomes possible to perform high-density recording by creating a small spacing between the magnetic head and the medium, and it also becomes possible to reduce costs from the viewpoint of materials.

しかも、酸化鉄を主成分とする磁性層の面方向と垂直方
向とでの残留磁化比(Mv /MH)を0゜5以上とし
ているので、酸化鉄磁性体の磁気モーメントは面内方向
に対し30度以上垂直方向側へ立ち上っており、垂直磁
化を充分に実現できる構造となっている。上記残留磁化
量Mv 、 M+−+は、例えば試料振動型磁力針(東
英工業社製)で測定可能である。即ち、MV/MHが0
.5未満であれば垂直磁化に適した磁気モーメントが得
られ難い。
Furthermore, since the residual magnetization ratio (Mv/MH) in the in-plane direction and in the perpendicular direction of the magnetic layer containing iron oxide as the main component is set to 0°5 or more, the magnetic moment of the iron oxide magnetic material is relative to the in-plane direction. It rises in the vertical direction by more than 30 degrees, and has a structure that can fully realize perpendicular magnetization. The residual magnetization amounts Mv and M+-+ can be measured, for example, with a sample vibrating magnetic needle (manufactured by Toei Kogyo Co., Ltd.). That is, MV/MH is 0
.. If it is less than 5, it is difficult to obtain a magnetic moment suitable for perpendicular magnetization.

更に、本発明で重要なことは、上記磁性層の厚みを10
0人〜5μmと特定範囲に設定していることである。従
来の磁化膜においては、本発明の如くに酸化鉄を主成分
とし、垂直磁化用として好適な残留磁化比(Mv /M
H)を有する磁化膜は全く想定されない上に、その厚み
範囲については考察が行なわれていないのが実情であっ
た。しかし、本発明者は酸化鉄系の垂直磁化膜において
は、その厚みが磁化特性を大きく左右する事実をはじめ
て見出し、100人〜5μm(特に200人〜4μm、
更には1000人〜1μm)のときに垂直磁化を充分に
実現できることを確証したのである。
Furthermore, what is important in the present invention is that the thickness of the magnetic layer is 10
It is set within a specific range of 0 to 5 μm. In the conventional magnetized film, as in the present invention, iron oxide is the main component, and the residual magnetization ratio (Mv /M
In reality, a magnetized film having H) is not expected at all, and no consideration has been given to its thickness range. However, the present inventor discovered for the first time that the thickness of iron oxide-based perpendicularly magnetized films greatly affects the magnetization characteristics, and found that the thickness of iron oxide-based perpendicularly magnetized films greatly affects the magnetization characteristics.
Furthermore, it was confirmed that perpendicular magnetization can be sufficiently achieved when the diameter is 1,000 to 1 μm).

なお、本発明の磁性層はスピネル型結晶構造をもつ鉄酸
化物からなっているのが望ましい。
Note that the magnetic layer of the present invention is preferably made of iron oxide having a spinel crystal structure.

本発明による磁性層は、従来の塗布型磁性層とは根本的
に異なり、バインダーを使用せずに酸化鉄(例えばFe
30Il、T−Fe205、又はこれらの中間組成の非
化学量論的組成からなるベルトライド化合物)自体が連
続的に連なった薄膜からなっている。この磁性層におい
ては、鉄と酸素の両元素の総和は磁性層の50重量%以
上であるのがよく、70重量%以上であるのが更に望ま
しい。また、鉄と酸素との比は、酸素の原子数/鉄の原
子数=1〜3であるのがよく、4/3〜2であるのが更
によく、上記に例示した酸化鉄が適当である。
The magnetic layer according to the present invention is fundamentally different from conventional coated magnetic layers in that it does not use a binder and is made of iron oxide (e.g. Fe).
30Il, T-Fe205, or a bertolide compound having a non-stoichiometric composition intermediate thereto) itself consists of a continuous thin film. In this magnetic layer, the sum of both elements iron and oxygen is preferably at least 50% by weight of the magnetic layer, and more preferably at least 70% by weight. In addition, the ratio of iron to oxygen is preferably 1 to 3 (number of oxygen atoms/number of iron atoms), and even more preferably 4/3 to 2, and the iron oxides listed above are suitable. be.

(7) 磁性を発現し、磁気記録媒体として用いられる酸つF 
e504、γ−Fe20う、これらのベルトライド化合
物及びその誘導体;さらに六方晶型の結晶構造を持つB
aフェライト、Srフェライト、pbフェライト及びそ
の誘導体;さらにガーネット構造を持つ希土類ガーネッ
ト型フェライトがある。前記した酸化物の中で、そのも
ののもつ磁気特性の一つである飽和磁化は、αFeze
5では2 Gauss、Baフェライト、Srフェライ
ト、pbフェライトでは夫々350Gauss 、希土
類ガーネットフェライトでは140Gaussであるの
に対し、例えばスピネル構造をもつ酸化鉄であるFeう
o4は480Gaussと大きい。このことは記録した
信号を再生する場合、残留磁束密度の大きさ、即ち、再
生出力に大きな影響を与える。よって、本発明に係る磁
性膜は、スピネル構造をもつ鉄酸化物であることが望ま
しい。
(7) Oxidized F that exhibits magnetism and is used as a magnetic recording medium
e504, γ-Fe20, these bertholed compounds and their derivatives; and B with a hexagonal crystal structure.
There are a-ferrite, Sr-ferrite, pb-ferrite and their derivatives; and rare earth garnet-type ferrite having a garnet structure. Among the oxides mentioned above, saturation magnetization, which is one of their magnetic properties, is αFeze.
2 Gauss for 5, 350 Gauss for Ba ferrite, Sr ferrite, and PB ferrite, and 140 Gauss for rare earth garnet ferrite. For example, FeO4, which is iron oxide with a spinel structure, has a large value of 480 Gauss. This greatly affects the magnitude of the residual magnetic flux density, that is, the reproduction output when reproducing a recorded signal. Therefore, the magnetic film according to the present invention is preferably an iron oxide having a spinel structure.

但、磁性層には、鉄及び酸素以外の金属又はその(8) 酸化物、或いは非金属、半金属又はその化合物等を添加
し、これによって磁性層の磁気特性(例えば保磁力、飽
和磁化量、残留磁化量)及びその結晶性、結晶の特定軸
方向への配向性の向上環を図ることができる!こうした
添加元素又は化合物としてはA7!、Co % C’o
 −Mn 、 Zn % Co ’ −Zn、Li  
、、Cr 、、Ti  、、Li−Cr、Mg、Mg−
Ni  、Mn  −Zn  、、Ni  、N1−A
R,、Ni  −Zn 、Cu 、、Cu −Mn 、
、Cu −Zn 、V等が挙げられるが、希土類元素以
外であることが望ましい。
However, metals other than iron and oxygen or their (8) oxides, nonmetals, semimetals, or compounds thereof are added to the magnetic layer, thereby improving the magnetic properties of the magnetic layer (e.g. coercive force, saturation magnetization amount). , residual magnetization), its crystallinity, and the orientation of the crystal in a specific axis direction! These additive elements or compounds include A7! ,Co%C'o
-Mn, Zn% Co' -Zn, Li
,,Cr,,Ti,,Li-Cr,Mg,Mg-
Ni, Mn-Zn, Ni, N1-A
R,, Ni-Zn, Cu,, Cu-Mn,
, Cu-Zn, V, etc., but it is preferable to use other than rare earth elements.

また、本発明の磁気記録媒体に使用可能な基体材料は、
磁性材料が被着可能なものであれば種々のものが採用可
能である。例えば、ポリエチレンテレフタレート、ポリ
塩化ビニル、三酢酸セルロース、ポリカーボネート、ポ
リイミド、ポリアミド、ポリメチルメタクリレートの如
きプラスチックス、ガラス等のセラミックス等が使用可
能である。基体の形状はシート、カード、ディスク、ド
ラムの他、長尺テープ状でもよい。
Further, base materials that can be used in the magnetic recording medium of the present invention include:
Various materials can be used as long as magnetic materials can be attached thereto. For example, plastics such as polyethylene terephthalate, polyvinyl chloride, cellulose triacetate, polycarbonate, polyimide, polyamide, and polymethyl methacrylate, and ceramics such as glass can be used. The shape of the substrate may be a sheet, a card, a disk, a drum, or a long tape.

この磁気記録媒体を作成するには、基体を固定板に密着
支持し、或いは基体を走行させつつ磁性材料を被着させ
ることができる。このためには、真空ポンプ等の真空排
気系に接続した処理室内で、磁性材料のターゲットをス
パッタするか、或いは磁性材料の蒸発源から同材料を蒸
発させ、基体上に被着するスパッタ法、蒸着法等が通用
可能である。
To produce this magnetic recording medium, the substrate can be closely supported on a fixed plate, or the magnetic material can be applied while the substrate is running. For this purpose, a sputtering method is used in which a magnetic material target is sputtered in a processing chamber connected to an evacuation system such as a vacuum pump, or the material is evaporated from a magnetic material evaporation source and deposited on the substrate. Vapor deposition methods etc. can be used.

いずれの場合も、磁性層を構成する元素を飛翔させて、
基体上にその連続薄膜を形成する。
In either case, the elements constituting the magnetic layer are made to fly,
A continuous thin film is formed on the substrate.

5、実施例 以下、本発明の磁気記録媒体を図面参照下に更に詳細に
説明する。
5. Examples The magnetic recording medium of the present invention will be explained in more detail below with reference to the drawings.

本発明で使用する磁性材料を基体上に被着させる手段と
しては、磁性層構成原子を飛翔させる真空蒸着法(電界
蒸着、イオンブレーティング法を含む)、スパッタリン
グ法等があるが、このうち対向ターゲットスパッタ装置
を用いる方法が望ましい。
As means for depositing the magnetic material used in the present invention on the substrate, there are vacuum evaporation methods (including electric field evaporation and ion blating methods) in which the atoms constituting the magnetic layer are made to fly, sputtering methods, etc. A method using a target sputtering device is preferable.

第1図は、対向ターゲットスパッタ装置を示すものであ
る。
FIG. 1 shows a facing target sputtering apparatus.

図面において、1は真空槽、2は真空槽Iを排気する真
空ポンプ等からなる排気系、3は真空槽1内に所定のガ
スを導入してガス圧力を10〜10’Torr程度に設
定するガス導入系である。ターゲット電極は、ターゲッ
トボルダ−4により一対のターゲット弔、川を互いに隔
てて平行に対向配置した対向ターゲット電極として構成
されている。
In the drawing, 1 is a vacuum chamber, 2 is an evacuation system consisting of a vacuum pump etc. for evacuating the vacuum chamber I, and 3 is an exhaust system that introduces a predetermined gas into the vacuum chamber 1 and sets the gas pressure to about 10 to 10'Torr. This is a gas introduction system. The target electrodes are configured as opposed target electrodes arranged in parallel and facing each other with a pair of target boulders 4 separating them from each other.

これらのターゲット間には、磁界発生手段(図示せず)
による磁界が形成される。一方、確性薄膜を形成すべき
基体6は、基体ホルダー5によって、上記対向ターゲッ
ト間の側方に垂直に配置される。
Between these targets is a magnetic field generating means (not shown).
A magnetic field is formed by On the other hand, the substrate 6 on which the thin film is to be formed is placed perpendicularly to the side between the opposing targets by the substrate holder 5.

このように構成されたスパッタ装置において、平行に対
向し合った両ターゲットT1、T2の各表面と垂直方向
に磁界を形成し、この磁界により陰極降下部(即ち、タ
ーゲット’1l−Tz間に発生したプラズマ雰囲気と各
ターゲソl−’11及びT2との間の領域)での電界で
加速されたスパッタガスイオンのターゲット表面に対す
る衝撃で放出されたγ電子をターゲット間の空間にとじ
込め、対向した他方(11) のターゲット方向へ移動させる。他方のターゲット表面
へ移動したγ電子は、その近傍の陰極降下部で反射され
る。こうして、γ電子はターゲットTI −′r!間に
おいて磁界に束縛されながら往復運動を繰返すことにな
る。この往復運動の間に、γ電子は中性の雰囲気ガスと
衝突して雰囲気ガスのイオンと電子とを生成させ、これ
らの生成物がターゲットからのγ電子の放出と雰囲気ガ
スαイオン化を促進させる。従って、ターゲ7 ) ’
TI  Tz間の空間には高密度のプラズマが形成され
、これに伴ってターゲット物質が充分にスパッタされ、
側方の基体6上に磁性材料として堆積してゆくことにな
る。
In the sputtering apparatus configured in this way, a magnetic field is formed in a direction perpendicular to the surfaces of both targets T1 and T2 that face each other in parallel, and this magnetic field generates a magnetic field in the cathode fall area (i.e., between targets '1l and Tz). The γ electrons emitted by the impact of the sputtering gas ions accelerated by the electric field on the target surface in the area between the plasma atmosphere and each of the targets L-'11 and T2 are trapped in the space between the targets, and the Move toward the other target (11). The γ electrons that have moved to the other target surface are reflected at the cathode fall section nearby. Thus, the γ electrons reach the target TI −′r! In between, the reciprocating motion is repeated while being constrained by a magnetic field. During this reciprocating motion, the γ electrons collide with the neutral atmospheric gas to generate ions and electrons of the atmospheric gas, and these products promote the release of γ electrons from the target and α ionization of the atmospheric gas. . Therefore, target 7)'
A high-density plasma is formed in the space between TI and Tz, and the target material is sufficiently sputtered.
The magnetic material will be deposited on the side substrate 6.

この対向ターゲットスパッタ装置は、他の飛翔手段に比
べて、高速スパッタによる高堆積速度の製膜が可能であ
り、また基体がプラズマに直接曝されることがなく、低
い基体温度での製膜が可能である等のことから、垂直磁
化膜を形成するのに有利である。しかも、対向ターゲッ
トスパッタ装置によって飛翔した磁性膜材料の基板への
入射工(12) ネルギーは、通常のスパッタ装置のものよりも小さいの
で、材料が所望の方向へ方向性を以って堆積し易く、垂
直磁化記録に適した構造の膜を得易くなる。
Compared to other flying methods, this facing target sputtering device enables film formation at a high deposition rate through high-speed sputtering, and the substrate is not directly exposed to plasma, allowing film formation at low substrate temperatures. This is advantageous for forming a perpendicularly magnetized film. Moreover, since the incident energy (12) of the magnetic film material ejected onto the substrate by the facing target sputtering device is smaller than that of a normal sputtering device, the material is easily deposited directionally in the desired direction. , it becomes easier to obtain a film with a structure suitable for perpendicular magnetization recording.

次に、上記のスパッタ装置を用いて磁気記録媒体を作成
する具体例を説明する。
Next, a specific example of producing a magnetic recording medium using the above sputtering apparatus will be described.

この作成条件は以下の通りであった。The conditions for this preparation were as follows.

ターゲツト材  鉄(Coを1原子%含有)基体   
   ガラス 対向ターゲット間隔  100mm スパッタ空間の磁界  1400e ターゲツト形状    100mm直経の円盤(5n+
m厚) 基体とターゲット端との間隔  30n+n+真空槽内
の背圧    10Torr 導入ガス       Ar+02 導入ガス圧      4 x 10Torrスパツタ
投入電力   420W このようにして第2図に示す如く、ベースフィルム6上
に酸化鉄系の磁性層10を有する磁気記録媒体が得られ
た。この媒体について、磁性層の特性評価は、X線マイ
クロアナライザ(XMA)による組成の同定、X線回折
法による酸化鉄の状態、試料振動型磁力針による磁気特
性によって行なった。得られた磁気記録媒体の特性は次
の如くであった。
Target material Iron (contains 1 atomic% Co) base
Glass-facing target spacing 100mm Magnetic field in sputtering space 1400e Target shape 100mm diameter disc (5n+
m thickness) Distance between substrate and target end 30n+n+back pressure in vacuum chamber 10Torr Introduced gas Ar+02 Introduced gas pressure 4 x 10Torr Sputter input power 420W In this way, as shown in FIG. A magnetic recording medium having a magnetic layer 10 was obtained. Regarding this medium, the characteristics of the magnetic layer were evaluated by identifying the composition using an X-ray microanalyzer (XMA), the state of iron oxide using an X-ray diffraction method, and the magnetic properties using a sample vibrating magnetic needle. The characteristics of the obtained magnetic recording medium were as follows.

まず、面内方向での残留磁化W (MH)と面に垂直方
向での残留磁化量(Mv)との比はMv/MH≧0.5
であった。即ち、第3図に例示するように、破線で示す
面内方向での磁化時のヒステリシス曲線と、実線で示す
垂直方向での磁化時のヒステリシス曲線とが夫々得られ
たが、印加磁界がゼロのときの各残留磁化量をMH、M
vとした。
First, the ratio between the residual magnetization W (MH) in the in-plane direction and the residual magnetization amount (Mv) in the direction perpendicular to the plane is Mv/MH≧0.5.
Met. That is, as illustrated in FIG. 3, a hysteresis curve during magnetization in the in-plane direction shown by the broken line and a hysteresis curve during magnetization in the perpendicular direction shown by the solid line were obtained, but when the applied magnetic field is zero The amount of residual magnetization when MH, M
v.

これによれば、前者のヒステリシス曲線は後者のヒステ
リシス曲線よりも小さく、Mv ≧0.5M+となって
いることが明らかであり、垂直磁化にとって好適な磁性
層が形成されていることが分る。
According to this, it is clear that the former hysteresis curve is smaller than the latter hysteresis curve, and Mv≧0.5M+, indicating that a magnetic layer suitable for perpendicular magnetization is formed.

これは、酸化鉄系の磁性層においては驚くべき事実であ
る。
This is a surprising fact for iron oxide-based magnetic layers.

また、この磁気記録媒体の組成をXMA (X線マイク
ロアナライザ;日立製作所型rX−556jKEVEX
−7000型)で測定したところ、Feが主ピークであ
り、COが少量台まれていることが分った。更に、酸化
鉄の状態を調べるために、X線回折装置(日本電子社製
1nX−IOR/1:CuKα管球使用)を用いて測定
したところ、下記表に示すように、磁性層が酸化鉄を主
成分とするものであることが分った。しかも、この磁性
層は、面内方向に対して垂直方向に秩序型しい構造を有
していることが電子顕微鏡で観察された。
In addition, the composition of this magnetic recording medium was measured using an XMA (X-ray microanalyzer; Hitachi model rX-556jKEVEX).
-7000 model), it was found that Fe was the main peak, with a small amount of CO present. Furthermore, in order to investigate the state of iron oxide, measurements were performed using an X-ray diffraction device (1nX-IOR/1 manufactured by JEOL Ltd. using a CuKα tube), and as shown in the table below, the magnetic layer was found to be iron oxide. It was found that the main component is Furthermore, it was observed using an electron microscope that this magnetic layer had an ordered structure in the direction perpendicular to the in-plane direction.

(10) 上記した磁性層につき、更に検討を加えた結果、その厚
みによって、得られる磁性層の膜構造が変化することが
判明した。
(10) As a result of further studies on the above-mentioned magnetic layer, it was found that the film structure of the resulting magnetic layer changes depending on its thickness.

即ち、磁性層の厚さく膜厚)tが100人未満と薄すぎ
る場合には、第4図(a)に示すように、基板6上には
不連続な島状の粒子N11しか形成されないことが分っ
た。これでは、垂直磁化膜としては全く不適当である。
That is, if the magnetic layer thickness (film thickness) t is too thin, less than 100, only discontinuous island-like particles N11 are formed on the substrate 6, as shown in FIG. 4(a). I understand. This is completely inappropriate as a perpendicular magnetization film.

例えば、酸化鉄において、その格子を構成する格子定数
は次の通りである。
For example, in iron oxide, the lattice constants constituting the lattice are as follows.

格子定数a (人) F es On      8.390  (A37M
カード7−322による)T  Fe2058.350
  (〃4−0755  〃)a−Fezes    
5.43  (〃6−0502  〃)Co O・Fe
20s 8.33  (〃3−0864  〃)このデ
ータから判断すると、厚さ100人未満の酸化鉄屑は酸
化鉄の格子が約12層未満しか積層されていない状態で
あり、このために上記の如くに膜構造が不連続となって
しまうのである。
Lattice constant a (person) F es On 8.390 (A37M
According to card 7-322) T Fe2058.350
(〃4-0755 〃) a-Fezes
5.43 (〃6-0502〃)CoO・Fe
20s 8.33 (〃3-0864〃) Judging from this data, iron oxide scrap with a thickness of less than 100 mm has less than about 12 layers of iron oxide lattice, which is why the above As a result, the film structure becomes discontinuous.

ところが、酸化鉄系の磁性層の厚さを本発明で(16) 12が基板6の面に対しほぼ垂直方向に並んで(即ち垂
直方向に磁化容易軸をもって)付着し合った垂直磁化に
好適な連続膜となることが分ったのである。
However, in the present invention, the thickness of the iron oxide magnetic layer (16) is suitable for perpendicular magnetization in which the magnetic layers 12 are attached to each other in a direction substantially perpendicular to the surface of the substrate 6 (that is, with the axis of easy magnetization in the perpendicular direction). It was found that a continuous film can be formed.

これは、磁性層の厚さが適切な範囲にあるために、磁性
材料の堆積時に粒子が方向性を以って規則的に積層され
てゆくからであると考えられる。
This is considered to be because the thickness of the magnetic layer is within an appropriate range, so that the particles are regularly stacked in a directional manner during deposition of the magnetic material.

しかし、磁性層の厚さはあまりに大きくすると今度は致
命的な欠陥が生じ、5μmを越えた場合に第4図(c)
に示すように、本来の柱状小粒塊12が堆積した後にそ
の上には配向性の乱れた(即ち磁化容易軸が垂直方向か
ら大幅に外れた)小粒塊13が堆積するだけとなる。こ
れは、磁性層が厚すぎるために、必要以」−の厚さを越
えた後に堆積しようとする粒子が横方向(即ち層の面内
方向拡散し易くなり、これによって結晶格子の積層方向
に乱れが生じ、磁性層に垂直方向に磁化容易軸をもたせ
ることが実質的に不可能となるからである。
However, if the thickness of the magnetic layer becomes too large, fatal defects will occur, and if the thickness exceeds 5 μm, as shown in Figure 4 (c).
As shown in FIG. 2, after the original columnar small agglomerates 12 are deposited, only small agglomerates 13 with disordered orientation (that is, the axis of easy magnetization is significantly deviated from the vertical direction) are deposited thereon. This is because the magnetic layer is too thick, and particles that attempt to deposit after exceeding the required thickness tend to diffuse laterally (i.e., in the plane of the layer), which causes them to move in the stacking direction of the crystal lattice. This is because disturbance occurs and it becomes virtually impossible to provide the magnetic layer with an axis of easy magnetization in the perpendicular direction.

次に、膜厚tを種々に変化させ、各膜厚の酸化鉄系の磁
性層を有する磁気記録媒体を夫々作成し、各磁気特性を
東亜工業社製の試料振動型磁力針(VSM−33型)で
測定したところ、第5図の如き結果が得られた。なお、
膜厚はランクテーラホブソン社製の触針式膜厚計(クリ
ステツブ)で測定したが、膜厚が薄い場合(100人程
度のもの)においては磁力針の感度が不充分であったた
め、10枚程度の試料を積み重ねて測定した。第5図か
ら明らかなように、磁気記録媒体の垂直磁化特性を示す
MV/M)Iは、磁性層の膜厚tによって変化し、特に
1.6”pm (100人)未満では0.5より小さく
なり易く、また厚すぎて5μmを越えても0.5より小
さくなり易いことが分る。しかし、膜厚tを100人〜
5μmの範囲に設定すれば、Mν/Msが0.5以上、
特に膜厚tが200人〜4μmのときには1.0以上と
なり、垂直磁化膜として充分に使用できることが理解さ
れる。この場合、膜厚tを1000人〜1μmとすれば
最も垂101 直磁化特性に優れた膜が得られることが分る。
Next, magnetic recording media having iron oxide magnetic layers of various thicknesses were created by varying the film thickness t, and each magnetic property was measured using a sample vibrating magnetic needle (VSM-33 manufactured by Toa Kogyo Co., Ltd.). The results shown in FIG. 5 were obtained. In addition,
The film thickness was measured using a stylus-type film thickness meter (Kristetsubu) made by Rank Taylor Hobson, but when the film thickness was thin (approximately 100 people), the sensitivity of the magnetic needle was insufficient, so 10 sheets were measured. Measurements were made by stacking several samples. As is clear from FIG. 5, MV/M)I, which indicates the perpendicular magnetization characteristic of a magnetic recording medium, changes depending on the film thickness t of the magnetic layer, and is particularly 0.5 when the thickness is less than 1.6"pm (100 people). It can be seen that even if it is too thick and exceeds 5 μm, it tends to become smaller than 0.5.However, if the film thickness t is 100 μm or more,
If set in the range of 5 μm, Mν/Ms is 0.5 or more,
In particular, when the film thickness t is 200 to 4 μm, it becomes 1.0 or more, and it is understood that it can be used satisfactorily as a perpendicular magnetization film. In this case, it can be seen that if the film thickness t is set to 1000 to 1 μm, a film with the best vertical 101 direct magnetization characteristics can be obtained.

こうして膜厚範囲を100人〜5μmに設定してはじめ
て充分な垂直磁化特性が得られるという事実は、本発明
者が鋭意研究を重ねた結果得られた新規で有用な事実で
ある。
The fact that sufficient perpendicular magnetization characteristics can only be obtained by setting the film thickness range to 100 to 5 μm is a new and useful fact obtained as a result of intensive research by the present inventors.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を例示するものであって、第1図は対向タ
ーゲットスパッタ装置の概略断面図、 第2図は磁気記録媒体の断面図、 第3図は磁気記録媒体のヒステリシス曲線図、第4図は
(a)、(b)、(c)は膜厚の異なる各磁性層を有す
る磁気記録媒体の各拡大断面図、 第5図は磁性層の膜厚による垂直磁化特性(MV/MH
)の変化を示すグラフ である。 なお、図面に示された符号において、 1−−−−−−一真空槽 2−−−−−・−排気系 3・−・・−ガス導入系 4.5−・−ホルダー 6−−−−−・−基体 10−−−−−−一磁性層 11・−・−不連続磁性粒子塊 12−・・−柱状小粒環 13−・−・−配向性の乱れた小粒塊 T1、T2−−−−−−・ターゲット である。 代理人 弁理士 逢 坂  宏(他1名)(zO) 追41躬 100人≦L≦51t1rL
The drawings illustrate the present invention, and FIG. 1 is a schematic sectional view of a facing target sputtering apparatus, FIG. 2 is a sectional view of a magnetic recording medium, FIG. 3 is a hysteresis curve diagram of the magnetic recording medium, and FIG. The figures (a), (b), and (c) are enlarged cross-sectional views of magnetic recording media having magnetic layers with different thicknesses, and Figure 5 shows perpendicular magnetization characteristics (MV/MH
) is a graph showing changes in In addition, in the symbols shown in the drawings, 1--------------------------------------------------------------------------------------------------------- an exhaust system 3, an exhaust system 3 and a gas introduction system 4, 5--- holder 6. --- Substrate 10 --- Magnetic layer 11 --- Discontinuous magnetic particle agglomerates 12 --- Columnar small grain rings 13 --- Small grain agglomerates with disordered orientation T1, T2- ------・Target. Agent Patent attorney Hiroshi Aisaka (1 other person) (zO) 100 people ≦L≦51t1rL

Claims (1)

【特許請求の範囲】 1、基体上に磁性層が設けられている磁気記録媒体にお
いて、前記磁性層が、 (a)、酸化鉄を主成分とする厚さ100人〜5μmの
連続磁性層であること。 (b)、磁性層の面内方向での残留磁化(Ml−1)と
、磁性層の面に対し垂直方向での残留磁化(Mv)との
比(MV /MH)が0.5以上であること。 を夫々構成として具備することを特徴とする磁気記録媒
体。
[Claims] 1. A magnetic recording medium in which a magnetic layer is provided on a substrate, wherein the magnetic layer is (a) a continuous magnetic layer containing iron oxide as a main component and having a thickness of 100 to 5 μm. Something. (b) The ratio (MV/MH) of the residual magnetization in the in-plane direction of the magnetic layer (Ml-1) to the residual magnetization (Mv) in the perpendicular direction to the plane of the magnetic layer is 0.5 or more. Something. What is claimed is: 1. A magnetic recording medium comprising:
JP58023050A 1983-02-03 1983-02-15 Magnetic recording medium Pending JPS59148125A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58023050A JPS59148125A (en) 1983-02-15 1983-02-15 Magnetic recording medium
EP84101074A EP0116881A3 (en) 1983-02-03 1984-02-02 Magnetic recording medium and process of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023050A JPS59148125A (en) 1983-02-15 1983-02-15 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS59148125A true JPS59148125A (en) 1984-08-24

Family

ID=12099614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023050A Pending JPS59148125A (en) 1983-02-03 1983-02-15 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59148125A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134706A (en) * 1976-05-06 1977-11-11 Univ Tohoku Vertical magnetic recorder reproducer and system therefor
JPS5434205A (en) * 1977-08-22 1979-03-13 Canon Inc Magnetic recording medium
JPS57158380A (en) * 1981-03-26 1982-09-30 Teijin Ltd Counter target type sputtering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134706A (en) * 1976-05-06 1977-11-11 Univ Tohoku Vertical magnetic recorder reproducer and system therefor
JPS5434205A (en) * 1977-08-22 1979-03-13 Canon Inc Magnetic recording medium
JPS57158380A (en) * 1981-03-26 1982-09-30 Teijin Ltd Counter target type sputtering device

Similar Documents

Publication Publication Date Title
Inagaki et al. Ferrite thin films for high recording density
JPS59148125A (en) Magnetic recording medium
JPS59147422A (en) Formation of magnetic layer
JPH0512765B2 (en)
JPS59144032A (en) Magnetic recording medium
JPS59148120A (en) Magnetic recording medium
JPS59157827A (en) Magnetic recording medium
JPS59148121A (en) Magnetic recording medium
JPS59157828A (en) Magnetic recording medium
JPH0475577B2 (en)
JPS59157833A (en) Magnetic recording medium
JPS59157830A (en) Magnetic recording medium
Naoe et al. A reactive sputtering method for preparation of berthollide type of iron oxide films
JPH0316690B2 (en)
JPS59148124A (en) Magnetic recording medium
JPS59148123A (en) Magnetic recording medium
JPS59148319A (en) Formation of magnetic layer
JPS59148122A (en) Magnetic recording medium
JPH0315260B2 (en)
JPS59157831A (en) Magnetic recording medium
JPS59148318A (en) Formation of magnetic layer
EP0169928A1 (en) Magnetic recording medium
JPS59148317A (en) Formation of magnetic layer
JPH0315248B2 (en)
JPS59157832A (en) Magnetic recording medium