JPS60201918A - Device for mixing gas with liquid - Google Patents

Device for mixing gas with liquid

Info

Publication number
JPS60201918A
JPS60201918A JP59059044A JP5904484A JPS60201918A JP S60201918 A JPS60201918 A JP S60201918A JP 59059044 A JP59059044 A JP 59059044A JP 5904484 A JP5904484 A JP 5904484A JP S60201918 A JPS60201918 A JP S60201918A
Authority
JP
Japan
Prior art keywords
gas
liquid
mixing ratio
cylinder
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59059044A
Other languages
Japanese (ja)
Other versions
JPH0144134B2 (en
Inventor
Sumio Sato
佐藤 澄夫
Motoki Kiyozawa
清沢 基紀
Kunio Naganami
長南 国男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
AGC Inc
Original Assignee
Niigata Engineering Co Ltd
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd, Asahi Glass Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP59059044A priority Critical patent/JPS60201918A/en
Publication of JPS60201918A publication Critical patent/JPS60201918A/en
Publication of JPH0144134B2 publication Critical patent/JPH0144134B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7615Mixers with stream-impingement mixing head characterised by arrangements for controlling, measuring or regulating, e.g. for feeding or proportioning the components
    • B29B7/7621Mixers with stream-impingement mixing head characterised by arrangements for controlling, measuring or regulating, e.g. for feeding or proportioning the components involving introducing a gas or another component in at least one of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7404Mixing devices specially adapted for foamable substances
    • B29B7/7409Mixing devices specially adapted for foamable substances with supply of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/748Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7485Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components
    • B29B7/749Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components with stirring means for the individual components before they are mixed together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7615Mixers with stream-impingement mixing head characterised by arrangements for controlling, measuring or regulating, e.g. for feeding or proportioning the components
    • B29B7/7626Mixers with stream-impingement mixing head characterised by arrangements for controlling, measuring or regulating, e.g. for feeding or proportioning the components using measuring chambers of piston or plunger type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/02Analysing materials by measuring the pressure or volume of a gas or vapour by absorption, adsorption, or combustion of components and measurement of the change in pressure or volume of the remainder

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Accessories For Mixers (AREA)

Abstract

PURPOSE:To obtain the desired mixing ratio of gas at a high speed in a device for mixing gas with plastic liquid component etc. by controlling a gas flow rate changing means through a measurement controller according to the mixing ratio of gas with liquid. CONSTITUTION:Liquid in a tank 10 is circulated by reciprocation of the piston 21 of a cylinder device 14 due to an actuator 22 through a flow passage 11 to mix gas by the 1st, 2nd gas blow-in device 15, 35. This gas mixing ratio is obtained on the basis of the data from an encoder 42 and a pressure sensor 43 at the arithmetic section 45 of a controller 44 and compared with the set valve of a memory section 46. When the gas mixing ratio is lower than the specified mixing ratio, gas is blown in from both the 1st and the 2nd gas blow-in device 15, 35 and when it reaches the set value the gas blow-in device 35 stops 13 and is mixed by the device 13 only. In this method the gas mixing ratio is elevated swiftly up to the desired air mixing ratio and can be accomplished at a high accuracy.

Description

【発明の詳細な説明】 本発明は、プラスチック液状成分等の液体に気体を混入
する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for incorporating a gas into a liquid such as a plastic liquid component.

互いに反応する少なくとも二種以上のプラスチック液状
成分(液体)を衝突混合させ、成形品を製造する反応射
出成形においては、成形品内部の発泡組織を緻密にし、
物性および外観を良くして商品価値を高める目的から、
プラスチック液状成分中に空気(気体)を微細な気泡と
して混入することが行なわれている。そして、従来にお
いては、プラスチック液状成分の流路に、プラスチック
液状成分を循環させる液体ポンプと、上記流く路を流れ
るプラスチック液状成分に空気を混入させる気体吹込み
装置と、上記流路を流れるプラスチック液状成分中の空
気含有量を測定する気体含有量測定装置とが設けられて
いるが、構成が複雑となり、操作が煩雑であるという欠
点があった。
In reaction injection molding, in which a molded product is produced by colliding and mixing at least two plastic liquid components (liquids) that react with each other, the foam structure inside the molded product is made dense,
For the purpose of increasing product value by improving physical properties and appearance,
Air (gas) is mixed into plastic liquid components as fine bubbles. Conventionally, a liquid pump that circulates the plastic liquid component through the plastic liquid component flow path, a gas blowing device that mixes air into the plastic liquid component that flows through the flow path, and a plastic liquid component that flows through the flow path. Although a gas content measuring device for measuring the air content in the liquid component is provided, it has the disadvantage that the configuration is complicated and the operation is complicated.

また、プラスチック液状成分中にガラス繊維等のフィラ
ーが入っている場合には、上記液体ポンプがフィラーの
ためにすぐに摩耗してしまうので、液体ポンプを使用す
る上記従来の装置においては、フィラー入りのプラスチ
ック液状成分は使用できないという欠点があった。
In addition, if the plastic liquid component contains fillers such as glass fibers, the liquid pump will quickly wear out due to the filler, so in the above conventional equipment that uses a liquid pump, the filler is not included. The disadvantage was that plastic liquid components could not be used.

そこで、本出願人は第1図に示すような液体に気体を混
入する装置を案出したく特願昭58−163706号)
。この液体に気体を混入(る装置は、液体タンク1内の
液体を該液体タンク1に接続された液体流路2に通じて
循環させる循環用シリンダ装置3と、上記液体流路2を
流れる液体に気体を混入させる気体吹込み装置4と、上
記シリンダ装置3.のシリンダ3a内の圧力を検出する
圧力検出手段5と、上記シリンダ装置3のピストン31
)の位置を検出する位置検出手段6と、上記圧力検出手
段5ど位置検出手段6の出力を用いて液体内の気体混入
率を演算し、その演算値をあらかじめ決められた設定値
ど比較して、その結果により」二記気体吹込み装置4を
制御する制御装置7とh日ら成るもので、フィラーが入
ったプラスチック液状成分に対しても使用し得るように
するとともに、シリンダ装置3に液体循環機能と気体混
入率測定機能を持たせて、構成を簡略化し操作性を高め
たものである。
Therefore, the present applicant wishes to devise a device for mixing gas into liquid as shown in Fig. 1 (Japanese Patent Application No. 163706/1982).
. The device for mixing gas into this liquid includes a circulation cylinder device 3 that circulates the liquid in a liquid tank 1 through a liquid channel 2 connected to the liquid tank 1, and a circulation cylinder device 3 that circulates the liquid in a liquid tank 1 through a liquid channel 2 connected to the liquid channel 2. a gas blowing device 4 that mixes gas into the cylinder device 3; a pressure detection means 5 that detects the pressure inside the cylinder 3a of the cylinder device 3; and a piston 31 of the cylinder device 3.
), and the output of the pressure detecting means 5 and the position detecting means 6 are used to calculate the gas mixture rate in the liquid, and the calculated value is compared with a predetermined set value. As a result, the controller 7 for controlling the gas blowing device 4 and the controller 7 for controlling the gas blowing device 4 can be used for plastic liquid components containing fillers, and the cylinder device 3 It has a liquid circulation function and a gas entrainment rate measurement function, simplifying the configuration and improving operability.

ところで、従来の装置でも同様であるが、上記装置にあ
っては、液体に混入する気体の流量は、流量調整弁8に
より一定値に設定される。ところが、この設定流量を多
くすると、目標の気1小混入率を正確に達成することが
困難となり、また逆にこの設定流量を少なくすると、目
標の気体混入率の達成精度は上がるが、目標の気体混入
率にj’!t IJるまでに時間がかかってしまうとい
う不満があった。
Incidentally, in the above device, the flow rate of the gas mixed into the liquid is set to a constant value by the flow rate regulating valve 8, although this is also the case with conventional devices. However, when this set flow rate is increased, it becomes difficult to accurately achieve the target gas mixture rate, and conversely, when this set flow rate is decreased, the accuracy of achieving the target gas mixture rate increases, but it becomes difficult to achieve the target gas mixture rate. j' to the gas mixture rate! There was a complaint that it took a long time to complete the IJ.

本発明は、液体流路に液体循環装置を設【プるとともに
、液体流路と液体タンクの双方に気体吹込み装置を配設
し、計測制御装置により、液体中の気体混入率に基づい
て上記気体吹込み装置を総括的に制御J−るように構成
して、上記従来の不)曇1を解消したものであり、目標
の気体混入率を迅速にかつ高い精度で達成することので
きる液体に気体を混入する装置を提供することを目的と
する。以下、本発明を図面に基づいて詳細に説明覆る。
In the present invention, a liquid circulation device is installed in the liquid flow path, a gas blowing device is installed in both the liquid flow path and the liquid tank, and a measurement and control device is used to detect the gas mixture rate in the liquid. The above-mentioned gas blowing device is configured to be comprehensively controlled to eliminate the above-mentioned conventional problem 1), and the target gas mixture rate can be achieved quickly and with high precision. The purpose of the present invention is to provide a device for mixing gas into liquid. Hereinafter, the present invention will be explained in detail based on the drawings.

第2図ないし第4図は本発明の一実施例を示すもので、
図中10は高圧反応射出成形機のプラスチック液状成分
(液体)を収容する液体タンクである。この液体タンク
10には、配管より成る液体流路11の両端11a、1
1bが接続され、また内部にはモータ12によって回転
させられる撹拌羽根13が設()られている。上記液体
流路11には、液体タンク10内の液体を該液体流路1
1に通じて循環させる耐摩耗性の高い循環用シリンダ装
置(液体循環装置)14と、該液体流路11を流れる液
体に気体を混入づ′る第1気体吹込み装置15が設りら
れている。すなわち、上記液体タンク10は、常時には
開状態の第1切換弁16を介して、第1、第2三方式切
換弁17.18のα端にそれぞれ接続され、上記第1三
方式切換弁17のβ端に循環用シリンダ装置14のシリ
ンダ19の一端が接続されている。さらに、上記シリン
ダ装置14のシリンダ19の他端は、上記第2三方式切
換弁18のβ端に接続されるどともに、シリンダ19の
内部には、ピストンロッド20の一端に設りられたピス
トン21が摺動自在に嵌装されている。また、上記ピス
トンロッド20の他端にはアクチュエータ22内を摺動
するピストン23が設()られており、アクチュエータ
22の両端に接続された図示しない油圧回路によって、
上記シリンダ装置14のビス]−ン21が第2図におい
て左右に往復動するように構成されている。イして、上
記ピストン21が後進端(第2図において最も左方の位
置)に移動したとぎ、それに連動して上記第1三方式切
換弁17が切換えられで、そのα端とβ端とが相互に連
通されると同時に、上記第2三方式切換弁18も切換え
られC1ぞのβ端とγ端とが相互に連通され、また、」
−記ピストン21が前進端(第2図において最も右方の
位置)に移動したどき、それに連動して、上記第2三方
式切換弁18が切換えられて、ぞのα端どβ端とが相互
に連通されると同時に、上記第に方式切換弁17も切換
えられて、そのβ端とγ端とが相Hに連通されるように
なっている。
Figures 2 to 4 show an embodiment of the present invention,
In the figure, 10 is a liquid tank that accommodates a plastic liquid component (liquid) of a high-pressure reaction injection molding machine. This liquid tank 10 has both ends 11a and 1 of a liquid flow path 11 made of piping.
1b is connected, and a stirring blade 13 rotated by a motor 12 is provided inside. The liquid in the liquid tank 10 is transferred to the liquid flow path 11.
A highly wear-resistant circulation cylinder device (liquid circulation device) 14 that circulates through the liquid flow path 11 and a first gas blowing device 15 that mixes gas into the liquid flowing through the liquid flow path 11 are provided. There is. That is, the liquid tank 10 is connected to the α ends of the first and second three-way switching valves 17 and 18, respectively, via the first switching valve 16, which is normally open. One end of the cylinder 19 of the circulation cylinder device 14 is connected to the β end of the cylinder 19 . Further, the other end of the cylinder 19 of the cylinder device 14 is connected to the β end of the second three-way switching valve 18, and inside the cylinder 19 is a piston provided at one end of a piston rod 20. 21 is slidably fitted. A piston 23 that slides within the actuator 22 is installed at the other end of the piston rod 20, and is operated by a hydraulic circuit (not shown) connected to both ends of the actuator 22.
The screw cylinder 21 of the cylinder device 14 is configured to reciprocate from side to side in FIG. 2. Then, when the piston 21 moves to the reverse end (the leftmost position in FIG. 2), the first three-way switching valve 17 is switched to the α end and the β end. At the same time, the second and third type switching valves 18 are also switched so that the β and γ ends of C1 are communicated with each other, and
- When the piston 21 moves to the forward end (the rightmost position in FIG. 2), the second and third type switching valve 18 is switched in conjunction with the movement, so that the α end and the β end are switched. At the same time as they are communicated with each other, the mode switching valve 17 is also switched so that its β and γ ends are communicated with phase H.

一方、上記第2三方式切換弁18のγ端は、第2切換弁
24を介して上記第1三方式切換弁17のγ端および第
1気体吹込み装置15の一端にそれぞれ接続されており
、第1気体吹込み装置15の他端は、逆止弁25および
常時には開状態の第゛3切換弁26を介して上記液体タ
ンク10に接続されている。
On the other hand, the γ end of the second three-way switching valve 18 is connected to the γ end of the first three-way switching valve 17 and one end of the first gas blowing device 15 via the second switching valve 24. The other end of the first gas blowing device 15 is connected to the liquid tank 10 via a check valve 25 and a third switching valve 26 which is normally open.

上記第1気体吹込み装置15には配管27を介して気体
供給源2Sが接続され、この配管27には、気体供給源
28から順に、気体圧力制御弁29、気体圧力計30、
第1気体流量調整弁31、第1気体流吊iit 32、
第1気体電磁弁33、第1気体逆止弁34が設けられて
いる。また、上記液体タンク10には、該液体タンク1
0内の液体に気体を混入させる第2気体吹込み装置35
が配設されている。この第2気体吹込み装置35は、配
管36を介して上記配管27の気体圧力制御弁29ど気
体圧力計30との間に接続されており、この配管36に
、第2気体吹込み装置35から順に、第2気体逆止弁3
7、第2気体電磁弁38、第2気体流■計39、第2気
体流量調整弁40が備えられている。
A gas supply source 2S is connected to the first gas blowing device 15 through a piping 27, and the piping 27 includes a gas pressure control valve 29, a gas pressure gauge 30, a gas pressure gauge 30,
first gas flow rate adjustment valve 31, first gas flow adjustment valve 32,
A first gas electromagnetic valve 33 and a first gas check valve 34 are provided. Further, the liquid tank 10 includes the liquid tank 1
A second gas blowing device 35 that mixes gas into the liquid in 0
is installed. The second gas blowing device 35 is connected between the gas pressure control valve 29 and the gas pressure gauge 30 of the pipe 27 via a pipe 36. In order from the second gas check valve 3
7. A second gas electromagnetic valve 38, a second gas flow meter 39, and a second gas flow rate adjustment valve 40 are provided.

さらに、−V記ピストンロンド20には、測定子/1.
1が設けられており、この測定子41の一側面に形成さ
れたラック41.8には、上記ピストン20の位置を測
定するためのエンコーダ42のビニオン42aがかみ合
されている。また、上記シリンダ装置14のシリンダ1
9には内部の圧力を検出する圧力センサ43が設りられ
ており、これらエンコーダ42と圧力センサ43とに制
御装置44が付設されている。
Furthermore, the -V piston rond 20 has a measuring element/1.
A pinion 42a of an encoder 42 for measuring the position of the piston 20 is engaged with a rack 41.8 formed on one side of the measuring element 41. Further, the cylinder 1 of the cylinder device 14
9 is provided with a pressure sensor 43 for detecting internal pressure, and a control device 44 is attached to these encoder 42 and pressure sensor 43.

上記制御装置44は、■レコーダ42ど圧力レンサ43
からの出力を用いて液体に対する気体混入率を演算する
演算部45と、この演算部45により演算された気体混
入率の計測値を、あらかじめ記憶部46に記憶された気
体混入率の目標値および該目標値より少ない所定の設定
気体混入率と比較する比較部47ど、上記演算部45で
得られた気体混入率の計測値が上記設定気体混入率より
低い場合に、上記第1.第2気体電磁弁33゜38の双
方を開くとともに、気体混入率の計測値が上記目標値よ
り低くかつ上記設定気体混入率より高い場合に、上記第
1気体電磁弁33のみを開放し、また、気体混入率のS
1測値が上記目標値より高いか等しい場合に上記第1.
第2気体電磁弁33.38の双方を閉じる指令部48と
から成るもので、上記演算部45は上記エンコーダ42
と圧力センサ43に、また、指令部48は上記第1゜第
2気体電磁弁33’、38にそれぞれ連絡されている。
The control device 44 includes: ■Recorder 42 and pressure sensor 43;
A calculation unit 45 calculates the gas mixture rate for the liquid using the output from the calculation unit 45, and the measured value of the gas mixture rate calculated by this calculation unit 45 is used as a target value of the gas mixture rate stored in advance in the storage unit 46 and When the measured value of the gas mixture rate obtained by the calculation unit 45 is lower than the set gas mixture rate, the comparison unit 47 compares it with a predetermined set gas mixture rate that is less than the target value. Both the second gas solenoid valves 33 and 38 are opened, and when the measured gas mixture rate is lower than the target value and higher than the set gas mixture rate, only the first gas solenoid valve 33 is opened; , gas mixing rate S
1. If the measured value is higher than or equal to the target value, the 1st value is higher than or equal to the target value.
and a command section 48 that closes both of the second gas solenoid valves 33 and 38.
and the pressure sensor 43, and the command unit 48 is connected to the first and second gas solenoid valves 33' and 38, respectively.

ぞして、上記エンコーダ42と圧力センサ43および制
御装置44等が、液体中の気体混入率を計測し、その計
測値に基づいて上記第1.第2気体吹込み装置15.3
5を総括的に制御する計測制御装@49を構成している
Then, the encoder 42, pressure sensor 43, control device 44, etc. measure the gas mixture rate in the liquid, and based on the measured value, the first. Second gas blowing device 15.3
It constitutes a measurement control device @49 that comprehensively controls the 5.

なJ3、上記液体タンク10には、周知のようにhII
r′!シリンダ装置50と混合ヘッド51が接続され、
液体タンク10から供給されたプラスチック液状成分を
混合ヘッド51に送って、図示されていない他の計量シ
リンダ装置等から送られてきた他のプラスチック液状成
分と混合し、両液状成分の反応により成形品を得ること
ができるようになっている。また、図中52は液体タン
ク10の中のプラスチック液状成分の液レベルを測定す
るレベル計である。
J3, the liquid tank 10 contains hII as is well known.
r'! The cylinder device 50 and the mixing head 51 are connected,
The plastic liquid component supplied from the liquid tank 10 is sent to the mixing head 51, where it is mixed with other plastic liquid components sent from other measuring cylinder devices (not shown), etc., and a molded product is formed by the reaction of both liquid components. It is now possible to obtain Further, numeral 52 in the figure is a level meter for measuring the liquid level of the plastic liquid component in the liquid tank 10.

次に、上記のように構成された本発明の液体に気体を混
入する装置の作用について説明する。
Next, the operation of the apparatus for mixing gas into a liquid according to the present invention configured as described above will be explained.

まず、液体タンク10内の液体を液体流路11に通じて
循環させる場合は、シリンダ装置14を作動させればよ
い。りなわら、シリンダ装置14のピストン21が後退
して、第2図において最も左方の位置に移動している状
態では、第1三方式切換弁17が切換ねり、そのα端と
β端とが連通されるとともに、第2三方式切換弁18が
切換わり、そのβ端とγ端とが連通され、かつ第1、第
2、第3切換弁16.24.26はそれぞれ開状態にな
っている。この状態から図示しない油圧回路を作動させ
て、アクチュエータ22内のピストン23を第2図にお
いて右方に前進させると、それと連動し未シリンダ装置
14のピストン21が右方に移動されるので、シリンダ
装置14内の液体はシリンダ19の他端から第2三方式
切換弁18のβ、γ端、第2切換弁24を通って、液体
流路11内に流出させられるどともに、シリンダ装置1
4内には第1三方式切換弁17のα、β端を通って液体
がシリンダ19の一端から流入さゼられる。したがって
、液体タンク10内の液体は、第2図の矢印に示すよう
に、第1切換弁16、第1三方式切換弁17の順にシリ
ンダ装置14に吸入され、第2三方式切換弁18、第2
切換弁24、第1気体吹込み装置15、逆止弁25、第
3切換弁26の順に圧送されて液体タンク10に循環さ
れる。次いで、シリンダ装置14のピストン21が第2
図において最も右方の位置に移動すると、それに連動し
て第1三方式切換弁17が切換わり、イのβ端どγ端が
連通されるとともに、第2三方式切換弁18が切換わり
、そのα端とβ端とが連通される。そして、上記油圧回
路を切換えてアクチュエータ22内のピストン23を第
2図においで左方に後退さけると、それと連動してシリ
ンダ装置14のピストン21が左方に移動されるので、
シリンダi!装置14内の液体はシリンダ19の一端か
ら第1三方式切換弁17のβ、γ端を通って液体流路1
1内に流出させられるとともに、シリンダ装置14内に
は、第2三方式切換弁18のα、β端を通って液体がシ
リンダ19の他端から流入させられる。したがって、液
体タンク10内の液体は、第2図の矢印に・示すように
、第1切換弁16、第2三方式切換弁18の順にシリン
ダ装置14に吸入され、第1三方式切換弁17、第1気
体吹込み装置15、逆止弁25、第3切模弁26の順に
圧送されて液体タンク10に循環される。
First, in order to circulate the liquid in the liquid tank 10 through the liquid flow path 11, the cylinder device 14 may be operated. However, when the piston 21 of the cylinder device 14 is retracted and moved to the leftmost position in FIG. At the same time, the second three-way switching valve 18 is switched, its β end and γ end are communicated, and the first, second, and third switching valves 16, 24, and 26 are each in an open state. There is. When a hydraulic circuit (not shown) is operated from this state to move the piston 23 in the actuator 22 to the right in FIG. The liquid in the device 14 flows from the other end of the cylinder 19 through the β and γ ends of the second three-way switching valve 18 and the second switching valve 24, and flows out into the liquid flow path 11.
Liquid flows into the cylinder 4 from one end of the cylinder 19 through the α and β ends of the first three-way switching valve 17. Therefore, the liquid in the liquid tank 10 is sucked into the cylinder device 14 in the order of the first switching valve 16, the first three-way switching valve 17, and the second three-way switching valve 18, as shown by the arrow in FIG. Second
The gas is fed under pressure through the switching valve 24 , the first gas blowing device 15 , the check valve 25 , and the third switching valve 26 in this order and circulated to the liquid tank 10 . Next, the piston 21 of the cylinder device 14 moves to the second position.
When moving to the rightmost position in the figure, the first three-way switching valve 17 is switched in conjunction with this, the β end and the γ end of A are communicated, and the second three-way switching valve 18 is switched, Its α end and β end are communicated. Then, when the hydraulic circuit is switched and the piston 23 in the actuator 22 is moved backward to the left in FIG. 2, the piston 21 of the cylinder device 14 is moved to the left in conjunction with this.
Cylinder i! The liquid in the device 14 flows from one end of the cylinder 19 through the β and γ ends of the first three-way switching valve 17 to the liquid flow path 1.
At the same time, liquid is caused to flow into the cylinder device 14 from the other end of the cylinder 19 through the α and β ends of the second three-way switching valve 18 . Therefore, the liquid in the liquid tank 10 is sucked into the cylinder device 14 in the order of the first switching valve 16 and the second three-way switching valve 18, as shown by the arrow in FIG. , the first gas blowing device 15 , the check valve 25 , and the third cutoff valve 26 in this order and circulated to the liquid tank 10 .

このようにして、油圧回路を切換えてアクチュエータ2
2内のピストン23を左右に往復移動させることにより
、シリンダ装置14のピストン21が左右に往復移動さ
れて液体タンク10内の液体は液体流路11を経て循環
される。
In this way, the hydraulic circuit is switched and the actuator 2
By reciprocating the piston 23 in the cylinder device 2 left and right, the piston 21 of the cylinder device 14 is reciprocated left and right, and the liquid in the liquid tank 10 is circulated through the liquid flow path 11.

しかして、液体中への気体の混入は、第1.第2気体吹
込み装置15.35によって行うが、その際、エンコー
ダ42と圧力センザ43からの出ツノを基にして制御装
置44によって液体中の気体混入率を演算するとともに
、その演算値により上記第1.第2気体吹込み装置15
.35を総括的に制御する。
Therefore, the mixing of gas into the liquid is the first problem. This is carried out by the second gas blowing device 15.35, and at that time, the control device 44 calculates the gas mixture rate in the liquid based on the output from the encoder 42 and the pressure sensor 43, and the calculated value is used to calculate the gas mixing rate in the liquid. 1st. Second gas blowing device 15
.. 35 in general.

すなわち、液体中の気体混入率を算定する場合は、まず
、第2三方式り換弁18のα端とβ端を連通させ、かつ
、第2切換弁24を閉じた状態でシリンダ装置14のピ
ストン21を右方から左方に移動させて、シリンダ19
内にその他端から液体を・吸入りる(第3図(イ)参照
)。そして、液1本の内圧を減圧するために、第2三方
式切換弁18のβ端どγ端を連通させ、α端から液体が
流入しないようにした状態で、シリンダ装置14のピス
トン21をさらに左方に移動させる(第3図(l] )
 参照)。次いで、シリンダ装置14のピストン21を
右方に移動させて圧縮に移る。そして、圧力センサ43
により、制御装置44であらかじめ設定した第1圧ツノ
(低圧)P+ に到達したのを検出して、その時点のピ
ストンスドロークツ1をエンコーダ42によって読取る
(第3図(ハ)参照)。さらに、制御装置44であらか
じめ設定した第2斤力(高圧)P2に到達したのを圧力
レン1ノ43により検出して、その時点のピストンスト
ロークJ2をエンコーダ42によって読み取る。
That is, when calculating the gas mixture rate in the liquid, first, the α end and the β end of the second three-way switching valve 18 are communicated with each other, and the piston of the cylinder device 14 is opened with the second switching valve 24 closed. 21 from the right to the left, cylinder 19
Inhale liquid from the other end (see Figure 3 (a)). In order to reduce the internal pressure of one liquid, the piston 21 of the cylinder device 14 is connected to the β end and the γ end of the second and third type switching valve 18, with the liquid not flowing in from the α end. Move further to the left (Figure 3 (l))
reference). Next, the piston 21 of the cylinder device 14 is moved to the right to begin compression. And pressure sensor 43
As a result, the control device 44 detects that the preset first pressure point (low pressure) P+ has been reached, and the piston stroke 1 at that point is read by the encoder 42 (see FIG. 3(c)). Further, the pressure lens 43 detects when the second loaf force (high pressure) P2 preset by the control device 44 is reached, and the encoder 42 reads the piston stroke J2 at that point.

これらの測定データPI、P2、Jl、J2は、制御装
置44の演樟部45に送られ、次式により大気圧下にお
ける液体中の気体混入率Xaが算出される。
These measurement data PI, P2, Jl, and J2 are sent to the calculation unit 45 of the control device 44, and the gas mixing rate Xa in the liquid under atmospheric pressure is calculated using the following equation.

Xa−πD2J PI P2 /N ただし N−4,132(Vo +VP −πI)2 J+//
l)x (P2 −P+ )+πD”JP2X (P+
−1,033’) なお、この式は次のようにして割出されたものである。
Xa-πD2J PI P2 /N However, N-4,132 (Vo +VP -πI)2 J+//
l)x (P2 −P+ )+πD”JP2X (P+
-1,033') Note that this formula was determined as follows.

つまり、 (1)気体の状態式<pv=一定)か液体に対する混入
状態においても成立する。
In other words, (1) The state equation for gas <pv=constant) also holds true when mixed with liquid.

(2)液体は非圧縮性である。(2) Liquids are incompressible.

そして、Pa :大気圧(1、033kg/ cvr2
)Pl :第1圧力条件k(1/ cm’ (絶対圧)
P2 :第2圧力条件k(1/cf(絶対圧)Vm :
液体の体V4cm’ Va:Pa下の混入気体の体積印゛ V+:P+下の混入気体の体積d v2:P2下ノ混入気体ノ体積ClT1′vo ニジリ
ンダ19の容積Cゴ Vt:P+下のシリンダ19内の液体と気体の合に1容
fAcwi VS:P2下のシリンダ19内の液体と気体の合計容積
d vP :パイプ内容積d Jl :エンコーダ42原点aから圧力がPlになった
点すまでの距11cm ノ =圧力がPlになった点すから圧力がPlになった
点Cまでの距離1 (J=J2−1+ > D ニジリンダ19の直径C とり°る。気体の状態式より、 1.033Va −P+ VI =P2 V2よって、 V+=1.033Va/P+ −−(1)Vz=1.0
33Va/P2 −−(2)VI V2 =1.033
Va X(1/PI 1/P2)・・・(3)また、 ■す +Vp=V++V111 ・・・・・・ (4)
Vす −Vo −πD’ J l/ 4 −− (5)
(1)、(4)、(5〉式より Vm =Vt +Vp V+ =Vo −7(D2 J I/4+Vp−1、033V
 a / P + −−(6)ざらに、 VI V2=πP2ノ/4 ・・・・・・(7)(3)
、(7)式より ■a=πD2J PI Pl / (4X1.033 
(Pl PI )) ・・・(8)気体混入率XaはX
a =Va / (Vi +Va )でめられるので、
(6)、(8)式より ×a=πD2J PI Pl /N ただし N=4.13 ’2 (Vo +Vp −πD2j+ 
/4)(Pl−P+−) +πD2 jP2 (P+ ’ 1.033)このよう
に測定データP1、Pl、Jl、J2に基づいて制御装
E44の演算部45において気体混入率が演算されると
、その演算結果は記憶部46にあらかじめ記憶されてい
る気体混入率の目標値および該目標値より低い所定の設
定気体混入率と比較部47で比較され、その結果が指令
部48に送られて第1.第2気体吹き込み装置15゜3
5が制御される。つまり、演算部45で得られた気体混
入率の計測値が、上記設定気体混入率より低いど比較部
47において判定されると、指令部48はMl、第2気
体電磁弁33.38の双方を聞く。するど、気体供給源
28から送られた気体が、第1気、第2気体吹込み装置
15.35によって液体流路11と液体タンク10の双
方において液体に混入されるとともに、シリンダ装置1
4と切換弁17.18.24によって該液体が液体流路
11と液体タンク10内を循環される。
And Pa: Atmospheric pressure (1,033 kg/cvr2
) Pl: First pressure condition k (1/cm' (absolute pressure)
P2: Second pressure condition k (1/cf (absolute pressure)) Vm:
Liquid body V4cm' Va: Volume of mixed gas under Pa V+: Volume of mixed gas under P+ d v2: Volume of mixed gas under P2 ClT1'vo Volume of cylinder 19 C Go Vt: Cylinder below P+ The total volume of liquid and gas in cylinder 19 under P2 is 1 volume fAcwi VS: Total volume of liquid and gas in cylinder 19 below P2 d vP : Pipe internal volume d Jl : From encoder 42 origin a to the point where the pressure becomes Pl = distance 1 from the point where the pressure becomes Pl to the point C where the pressure becomes Pl (J=J2-1+ > D Take the diameter C of Niji cylinder 19. From the gas state equation, 1 .033Va -P+ VI =P2 V2 Therefore, V+=1.033Va/P+ --(1) Vz=1.0
33Va/P2 --(2)VI V2 =1.033
Va
Vsu -Vo -πD' J l/ 4 -- (5)
From formulas (1), (4), and (5), Vm = Vt +Vp V+ = Vo -7 (D2 J I/4+Vp-1, 033V
a / P + --(6) Zarani, VI V2=πP2ノ/4 ・・・・・・(7)(3)
, From formula (7), ■a=πD2J PI Pl / (4X1.033
(Pl PI )) ... (8) Gas mixing rate Xa is X
Since a = Va / (Vi + Va),
From equations (6) and (8), ×a=πD2J PI Pl /N where N=4.13 '2 (Vo +Vp -πD2j+
/4) (Pl-P+-) +πD2 jP2 (P+ ' 1.033) When the gas mixture rate is calculated in the calculation unit 45 of the control device E44 based on the measurement data P1, Pl, Jl, and J2 in this way, The calculation result is compared with the target value of the gas mixture rate stored in advance in the storage unit 46 and a predetermined set gas mixture rate lower than the target value in the comparison unit 47, and the result is sent to the command unit 48 and 1. Second gas blowing device 15゜3
5 is controlled. That is, when the comparator 47 determines that the measured value of the gas mixture rate obtained by the calculation unit 45 is lower than the set gas mixture rate, the command unit 48 controls both Ml and the second gas solenoid valve 33.38. hear. Then, the gas sent from the gas supply source 28 is mixed into the liquid in both the liquid flow path 11 and the liquid tank 10 by the first gas and second gas blowing devices 15.35, and the cylinder device 1
4 and switching valves 17, 18, 24, the liquid is circulated within the liquid channel 11 and the liquid tank 10.

一方、比較部47において気体混入率の計測値が上記設
定気体混入率より高くかつ上記目標値より低いど判定さ
れると、指令部48は第1気体電磁弁33のみを間放し
、第2気体電磁弁38は閉じる。リ−るど、気体供給源
28からの気体は第1気体吹込み装置15のみによって
液体流路11内の液体に混入されるとともに、該液体は
上記と同様に循環される。またさらに、比較部47にお
いて気体混入率の計測値が上記目標値より高いか等しい
と判定されると、指令部48は第1.第2気体電磁弁3
3.38の双方を閉じ、気体の混入を停止する。そして
、上記と同様にして液体を循環させるが、その際、必要
ならば気体が混入されていない液体を液体タンク10に
補充する。
On the other hand, if the comparator 47 determines that the measured value of the gas mixture rate is higher than the set gas mixture rate and lower than the target value, the command unit 48 releases only the first gas solenoid valve 33, and controls the second gas mixture rate. Solenoid valve 38 is closed. As shown, the gas from the gas source 28 is mixed into the liquid in the liquid channel 11 only by the first gas blowing device 15, and the liquid is circulated in the same manner as described above. Furthermore, when the comparison unit 47 determines that the measured value of the gas mixing rate is higher than or equal to the target value, the command unit 48 outputs the first. Second gas solenoid valve 3
3. Close both of 38 and stop mixing of gas. Then, the liquid is circulated in the same manner as described above, but at that time, if necessary, the liquid tank 10 is replenished with liquid that is not mixed with gas.

このように、本発明の液体に気体を混入りる装置にあっ
ては、気体混入率が設定気体混入率より低い場合は、第
・1.第2気体吹込み装置13゜35の双方によって液
体に気体を混入さUoるので、気体の混入速度は速く、
気体混入率は急速に高まるが、気体混入率が設定気体混
入率に達すると、第2気体吹込み装置35が停止され、
第1気体吹込み装置15のみによって気体が混入される
ので、気体の混入速度は低められ、目標の気体混入率を
高い精度で達成することができる。すなわち、第1気体
吹込み装@15による気体吹込み串を多くづ−るど、気
体混入率を急速に高めることができるが、気体混入率の
計測インターバルは例えば30気程度であり、これをさ
らに短縮させることはできないので、気体混入率が目標
値に近づいた時に気体を吹込みJ−ざる。また、反対に
、上記気体吹込み♀を減じると気体混入率の目標値に達
するよ(・、時間がかかってしまう。このため、本発明
の装置では、液体タンク10に第2気体吹込み装置35
を設けて、所定の気体混入率までは双方の気体吹込み装
置10,35により気体を吹込んで気体混入率を急速に
高めるようにしたものである。
As described above, in the device for mixing gas into liquid according to the present invention, if the gas mixing rate is lower than the set gas mixing rate, the first. Since gas is mixed into the liquid by both the second gas blowing devices 13 and 35, the speed of gas mixing is fast;
The gas mixing rate increases rapidly, but when the gas mixing rate reaches the set gas mixing rate, the second gas blowing device 35 is stopped,
Since the gas is mixed only by the first gas blowing device 15, the gas mixing rate is reduced, and the target gas mixing rate can be achieved with high accuracy. In other words, by increasing the number of gas blowing skewers using the first gas blowing device @15, the gas mixing rate can be rapidly increased, but the measurement interval of the gas mixing rate is, for example, about 30 air, and this Since it cannot be further shortened, gas is blown into the colander when the gas mixture rate approaches the target value. On the other hand, if the gas injection rate ♀ is reduced, the target value of the gas mixture rate will be reached (it takes time. Therefore, in the apparatus of the present invention, the liquid tank 10 is provided with a second gas injection device. 35
is provided, and both gas blowing devices 10 and 35 blow gas until a predetermined gas mixing rate is reached, thereby rapidly increasing the gas mixing rate.

ここで、液体流路11のみに複数の気体吹込み装置市を
設りることも考えられるが、液体タンク10の容■が例
えば250J程度であるのに対し、シリンダ装置14に
よる液体の循環量は例えば10 J %m!II程度ど
少ないことから、液Illの少ない液体流路11内に多
量の気体を吹込むことになり、気体が微細な気泡となら
ないことがある。
Here, it is possible to provide a plurality of gas blowing devices only in the liquid channel 11, but since the capacity of the liquid tank 10 is, for example, about 250 J, the amount of liquid circulated by the cylinder device 14 is For example, 10 J%m! Since the amount of liquid Ill is small, a large amount of gas is blown into the liquid flow path 11 where the liquid Ill is small, and the gas may not become fine bubbles.

したがって、気体flj人率を急速に高めるためには、
液体タンク10内に気体を吹込むのが好ましい。
Therefore, in order to rapidly increase the gas flj population rate,
Preferably, gas is blown into the liquid tank 10.

ところで、気体が混入された液体は一定時間間隔で液体
タンク10から計量シリンダ装置50により混合ヘッド
51に送られるか、液体タンク10内の液体が低レベル
まで減少して新ICな気体を含まない液体が液体タンク
10内に高レベルになるまで供給され、気体を含まない
液体の量が急激に増加した状態にJ3いても、この混合
ヘット49への液体の供給は続けられる。し/こが−)
で、液体中の気体混入率を均一に保つためには、上記の
ような場合に特に気体の混入速度を速める必要があり、
このような場合、本発明の装置が極めて有効となる。
By the way, the liquid mixed with gas is sent from the liquid tank 10 to the mixing head 51 by the metering cylinder device 50 at regular time intervals, or the liquid in the liquid tank 10 is reduced to a low level and does not contain the new IC gas. Even in the state J3 where the liquid is supplied to a high level in the liquid tank 10 and the amount of liquid without gas increases rapidly, the supply of liquid to the mixing head 49 continues. shi/koga-)
In order to keep the gas mixing rate in the liquid uniform, it is necessary to increase the gas mixing rate especially in the above cases.
In such cases, the apparatus of the present invention is extremely effective.

なお、上記の実施例においては、液体の循環用に、耐摩
耗性等を考慮して、シリンダ装置14を用いたが、耐摩
耗性等を特に考慮する必要のない場合は、従来のように
液体ポンプを用いてbよい。
In the above embodiment, the cylinder device 14 was used for liquid circulation in consideration of wear resistance, etc., but if there is no need to take wear resistance etc. into consideration, the cylinder device 14 may be used as in the conventional case. It is possible to use a liquid pump.

また、上記では、液体流路11と液体タンク10に第1
.第2気体吹込み装置15.’35をそれぞれ1個設け
たが、液体流路11ど液体タンク10の双方に、複数の
気体吹込み装置が設けられていれば、」二記の効果を一
層良好に発揮させることができる。さらに、液体タンク
10のレベルに応じて気体吹込み装置15.35を制御
して気体の混入速度を変える制御機能を、上記制御装置
44に持たせるようにすることもできる。
In addition, in the above, the liquid flow path 11 and the liquid tank 10 have a first
.. Second gas blowing device 15. Although one gas blowing device is provided in each of the liquid passages 11 and the liquid tank 10, the effects described in Section 2 can be more effectively achieved if a plurality of gas blowing devices are provided in both the liquid flow path 11 and the liquid tank 10. Further, the control device 44 may be provided with a control function to control the gas blowing device 15.35 depending on the level of the liquid tank 10 to change the gas mixing rate.

以上説明したように、本発明の液体に気体を混入覆る¥
!i置にあっては、液体流路と液体タンクの双方に気体
吹込み装置が設(プられ、これら気体吹込み装置には、
液体中の気体混入率を計測し、その泪測値に基づいてこ
れら気体吹込み装置を総括的に制御する計測制御装置が
i=J設されているから、気体混入率に応じて気体の混
入速度を自在に変え、目標の気体混入率を迅速にかつ高
い精度で達成することができる。
As explained above, when gas is mixed into the liquid of the present invention,
! In the i-position, gas blowing devices are installed in both the liquid flow path and the liquid tank, and these gas blowing devices include
Since a measurement control device i=J is installed that measures the gas mixture rate in the liquid and controls these gas blowing devices overall based on the measured value, the gas mixture can be controlled according to the gas mixture rate. By freely changing the speed, the target gas mixing rate can be achieved quickly and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液体に気体を混入する装置を改良したも
のの概略構成図、第2図ないし第4図は本発明の一実施
例を示すもので、第2図は概略構成図、第3図(イ)、
(ロ)、(ハ)は気体混入率をmll定Jる際の手順を
承り説明図、第4図(イ)、(ロ)、(ハ)は各圧力下
の状態を示づ一説明図である。 10・・・・・・液体タンク、11・・・・・・液体流
路、14・・・・・・シリンダ装@(液体循vA装置1
ffi)、15・・・・・・第1気体吹込み装置、35
・・・・・・第2気体吹込み装置、49・・・・・・計
測制御装置。 出願人 株式会社新潟鉄工所 第3図 Cイ】 第4図 fイJ (0) (ハ1
FIG. 1 is a schematic configuration diagram of an improved conventional device for mixing gas into liquid; FIGS. 2 to 4 show an embodiment of the present invention; FIG. 2 is a schematic configuration diagram; Figure (a),
(B) and (C) are explanatory diagrams showing the procedure for determining the gas mixing rate, and Figure 4 (A), (B), and (C) are explanatory diagrams showing the conditions under each pressure. It is. 10...Liquid tank, 11...Liquid flow path, 14...Cylinder equipment @ (liquid circulation vA device 1
ffi), 15...first gas blowing device, 35
...Second gas blowing device, 49...Measurement control device. Applicant: Niigata Iron Works Co., Ltd. Figure 3 C A] Figure 4 f I J (0) (Ha 1

Claims (1)

【特許請求の範囲】[Claims] 液体タンクに両端が接続された液体流路に、該液体タン
クの液体を該液体流路に通じて循環させる液体循環装置
が設けられ、かつ、上記液体流路と液体タンクの双方に
は、それらの中の液体に気体を混入させる気体吹込み装
置が配設されるとともに、上記気体吹込み装置には、上
記液体の中の気体混入率を計測し、その計測値に基づい
てこれら気体吹込み装置を総括的に制御する計測制御装
置が付設されて成ることを特徴とする液体に気体を混入
する装置。
A liquid flow path connected at both ends to the liquid tank is provided with a liquid circulation device that circulates the liquid in the liquid tank through the liquid flow path, and both the liquid flow path and the liquid tank are provided with a liquid circulation device that circulates the liquid in the liquid tank through the liquid flow path. A gas blowing device that mixes gas into the liquid in the liquid is installed, and the gas blowing device measures the gas mixing rate in the liquid and blows these gases based on the measured value. 1. A device for mixing gas into a liquid, characterized in that it is equipped with a measurement control device that controls the device overall.
JP59059044A 1984-03-27 1984-03-27 Device for mixing gas with liquid Granted JPS60201918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059044A JPS60201918A (en) 1984-03-27 1984-03-27 Device for mixing gas with liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059044A JPS60201918A (en) 1984-03-27 1984-03-27 Device for mixing gas with liquid

Publications (2)

Publication Number Publication Date
JPS60201918A true JPS60201918A (en) 1985-10-12
JPH0144134B2 JPH0144134B2 (en) 1989-09-26

Family

ID=13101914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059044A Granted JPS60201918A (en) 1984-03-27 1984-03-27 Device for mixing gas with liquid

Country Status (1)

Country Link
JP (1) JPS60201918A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268624A (en) * 1987-04-27 1988-11-07 Tokyo Seat Kk Preparation of porous resin material and porous composite base material
WO1999002963A1 (en) * 1997-07-11 1999-01-21 Edf Polymer-Applikation Maschinenfabrik Gmbh Measuring device and method for measuring gas load in liquids, especially in liquid plastic materials
US20180370075A1 (en) * 2015-07-03 2018-12-27 Sonderhoff Engineering Gmbh Apparatus for the production of a mixture of at least one gas and at least one liquid plastic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268624A (en) * 1987-04-27 1988-11-07 Tokyo Seat Kk Preparation of porous resin material and porous composite base material
WO1999002963A1 (en) * 1997-07-11 1999-01-21 Edf Polymer-Applikation Maschinenfabrik Gmbh Measuring device and method for measuring gas load in liquids, especially in liquid plastic materials
US6393893B1 (en) 1997-07-11 2002-05-28 Edf Polymer Applikation Maschinenfabrik Gmbh Measuring device and method for measuring gas load in liquids, especially in liquid plastic materials
US20180370075A1 (en) * 2015-07-03 2018-12-27 Sonderhoff Engineering Gmbh Apparatus for the production of a mixture of at least one gas and at least one liquid plastic component
US10661478B2 (en) * 2015-07-03 2020-05-26 Henkel Ag & Co. Kgaa Apparatus for the production of a mixture of at least one gas and at least one liquid plastic component

Also Published As

Publication number Publication date
JPH0144134B2 (en) 1989-09-26

Similar Documents

Publication Publication Date Title
US7992429B2 (en) Chromatography system with fluid intake management
US7921696B2 (en) Liquid chromatograph device
US6010032A (en) Continuous dispensing system for liquids
JPH0459929B2 (en)
JP6654579B2 (en) Gas mixing method and gas mixing device for high viscosity materials
AU2010229111B2 (en) Electronic proportioner using continuous metering and correction
JP2009053098A (en) Liquid sending apparatus, liquid chromatograph, and operation method of liquid sending apparatus
US5540251A (en) Precision gas blender
US8851111B2 (en) Electronic proportioner using continuous metering and correction
JPS60201918A (en) Device for mixing gas with liquid
CN107709797B (en) Fluid pressure type driving device and its control method
JPH0471572B2 (en)
EP0451752A2 (en) Method and apparatus for testing gas dispersed in a liquid
JPS6125809A (en) Controlling method of gas quantity mixed in liquid
JPH0326786B2 (en)
JPH0144135B2 (en)
JPS6130617B2 (en)
JPS6158218B2 (en)
US11774438B2 (en) Measurement set-up for a return cement suspension, construction site arrangement having a measurement set-up as well as method and use
JP2008014140A (en) Flow control air-driven pump
JPH07290504A (en) In-mold coat injection device and in-mold coating method
US20210069940A1 (en) Manufacturing method of thermoset polymers and low-pressure metering and mixing machine implementing said manufacturing method
JPS6094314A (en) Measurement and pressure transfer device for liquid containing bubble
KR920007241Y1 (en) Apparatus for controlling feed amount of resin and organic solvent
JP2020051826A (en) Local pressurized cylinder stroke measurement device and stroke measurement method therefor