JPS6020167B2 - Manufacturing method of glass fiber reinforced cement pipe - Google Patents

Manufacturing method of glass fiber reinforced cement pipe

Info

Publication number
JPS6020167B2
JPS6020167B2 JP5795381A JP5795381A JPS6020167B2 JP S6020167 B2 JPS6020167 B2 JP S6020167B2 JP 5795381 A JP5795381 A JP 5795381A JP 5795381 A JP5795381 A JP 5795381A JP S6020167 B2 JPS6020167 B2 JP S6020167B2
Authority
JP
Japan
Prior art keywords
cement
glass fibers
fibers
manufacturing
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5795381A
Other languages
Japanese (ja)
Other versions
JPS57173110A (en
Inventor
聰 神口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Iron Works Ltd
Original Assignee
Kurimoto Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Iron Works Ltd filed Critical Kurimoto Iron Works Ltd
Priority to JP5795381A priority Critical patent/JPS6020167B2/en
Publication of JPS57173110A publication Critical patent/JPS57173110A/en
Publication of JPS6020167B2 publication Critical patent/JPS6020167B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【発明の詳細な説明】 この発明はガラス繊維補強セメント管の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for manufacturing glass fiber reinforced cement pipes.

最近耐アルカリ性ガラス繊維が開発されるに及んで、セ
メント管の軽量化及び価額の低れん化を図るため、従来
セメント管の補強部材として使用していた銅線製鍵に代
えて、前記のようなガラス繊維の長繊維を補強部材とし
て使用することが提案され、その製造方法の代表的なも
のとしては第1図に示すようなものをあげることができ
る。
Recently, with the development of alkali-resistant glass fibers, in order to reduce the weight and cost of cement pipes, the above-mentioned type of key was used instead of the copper wire key that was conventionally used as a reinforcing member for cement pipes. It has been proposed to use long glass fibers as a reinforcing member, and a typical manufacturing method thereof is shown in FIG.

第1図において11は両端を端板12で支持され、回転
論13に載って回転する型枠であって、この型枠11の
回転中にその内部にノズル14を挿入して軸方向に往復
動させる。このノズル14にはパイプ15を通じてセメ
ントスラリー及び連続したガラス長繊維2が供給され、
これらがノズル14から型枠11の内周に向けて吹付け
られ、その結果セメント中にノズル14の移動速度に見
合ったピッチの螺旋状となったガラス長繊維2が埋設さ
れたセメント管1を得た。ここにおいて16はセメント
スラリーの供聯合管であり、またガラス長繊維2による
補強層が内外周側に2層形成されたものとなっており、
同図は内周側の補強層を形成している過程を示す。この
ようにして製造されたセメント管にあっては、ガラス長
繊維が直線状の場合は、環状破壊応力に対しては効果的
に耐えられるが、鞠方向の折れ強度は充分ではないため
、この折れ強度を補うセメント量の少し、小口隆替をこ
れによつ製造することができないということになるので
、これを改善するために、ガラス長繊維を波状とするこ
とが、椿公昭弘−3班48号において提案された。とこ
ろでこのようなものにあっては、波形が小さくて重ね合
せ部分(入り込み部分)がない場合は、鞠方向に連続し
た軸万向分力をうろことができないので、重ね合せ部分
が形成されるようにしなければならない。そこで発明者
は平板についてガラス長繊維を敵方向に直線的に配置し
たものと、車ね合せ部分を有する波形に配置したものと
について実験してみたところ、後者の場合重ね合せ部分
の高さは波形の高さの1/2以上でないと、前者と同等
の軸方向強度をえられず、このような波形にする場合は
、多くのガラス繊維を必要として経済的に不利であると
ともに、その縦方向折れ強度の調節が困難であるという
ような欠点があることがわかった。この発明は前記のよ
うな従釆のセメント管のもつ欠点を排除することができ
るセメント管の製造方法を提供することを目的とするも
のである。
In FIG. 1, reference numeral 11 denotes a formwork that is supported at both ends by end plates 12 and rotates on a rotating mechanism 13. During the rotation of this formwork 11, a nozzle 14 is inserted into the inside of the formwork to reciprocate in the axial direction. make it move. Cement slurry and continuous glass fibers 2 are supplied to this nozzle 14 through a pipe 15,
These are sprayed from the nozzle 14 toward the inner periphery of the formwork 11, and as a result, a cement pipe 1 is formed in which the long glass fibers 2 are embedded in a spiral shape with a pitch commensurate with the moving speed of the nozzle 14. Obtained. Here, 16 is a joint tube for cement slurry, and two reinforcing layers made of long glass fibers 2 are formed on the inner and outer peripheral sides.
This figure shows the process of forming the reinforcing layer on the inner peripheral side. In cement pipes manufactured in this way, if the long glass fibers are straight, they can effectively withstand annular breaking stress, but the bending strength in the direction of the ball is not sufficient. Since a small amount of cement is required to compensate for the bending strength, it is not possible to manufacture small-sized ridges with this, so to improve this, it is recommended to make the long glass fibers wavy. It was proposed in Group No. 48. By the way, in such a product, if the waveform is small and there is no overlapping part (intrusion part), the continuous axial force in the direction of the ball cannot flow, so an overlapping part is formed. You must do so. Therefore, the inventor conducted experiments on a flat plate in which long glass fibers were arranged in a straight line in the opposite direction, and in a waveform arrangement with a rolling part, and found that in the latter case, the height of the overlapped part was If the height of the corrugation is not more than 1/2, it will not be possible to obtain the same axial strength as the former, and when creating such a corrugation, it is economically disadvantageous as it requires a large number of glass fibers. It has been found that there are drawbacks such as difficulty in adjusting the directional bending strength. The object of the present invention is to provide a method of manufacturing a cement pipe that can eliminate the drawbacks of the conventional cement pipe as described above.

この発明を第2図以降に示す実施例を参照して説明する
こととする。この実施例において、前記従来のものと同
じ部分には同じ符号を付して、該部分についての説明を
簡略にする。
This invention will be explained with reference to embodiments shown in FIG. 2 and subsequent figures. In this embodiment, the same parts as those in the conventional system are given the same reference numerals to simplify the explanation of the parts.

型枠11内にガラス長繊維からなる円周方向繊維3及び
麹方向繊維4によって構成された縄目を有する補強髄5
(これの詳細については後述する)を隊遣した後、型枠
11を回転させながらコンクリート又はセメントモルタ
ルを投入し、このようにしてコンクリート又はセメント
層に補強髄5が埋入した後コンクリート又はセメントモ
ルタルの投入を中止し、その内周に向けてノズル14か
らセメントスラリ−及び連続したガラス長繊維2を吹付
け、このようにして外周側にガラス長繊維補強館5が、
内周側に螺旋状ガラス長繊維2が包含されたセメント管
1がえられる。この場合必要に応じて補強鍵5又は繊維
2を複数層としてもよい。前記において使用されるガラ
ス長繊維2,3,4は1150テックスを用い、補強籍
5の網目は投入されるコンクリート又はセメントモルタ
ル中における最大寸法の骨材が容易に通過することがで
きるような大きさとなっている。
A reinforcing pith 5 having ropes formed by circumferential fibers 3 made of long glass fibers and koji fibers 4 in the formwork 11
(Details of this will be described later), concrete or cement mortar is poured while rotating the formwork 11, and after the reinforcing marrow 5 is embedded in the concrete or cement layer, the concrete or cement The injection of mortar is stopped, and cement slurry and continuous glass fibers 2 are sprayed from the nozzle 14 toward the inner periphery of the mortar, and in this way, the glass long fiber reinforcement structure 5 is formed on the outer periphery side.
A cement tube 1 is obtained in which the spiral long glass fibers 2 are included on the inner circumferential side. In this case, the reinforcing key 5 or the fibers 2 may be formed in multiple layers as required. The long glass fibers 2, 3, and 4 used in the above are made of 1150 tex, and the mesh of the reinforcing fiber 5 is large enough to allow the largest size of aggregate in the concrete or cement mortar to easily pass through. It's sato.

このような補強髄5はどのような方法で成形してもよい
が、その1例を第3図を参照して述べることとする。
Such reinforcing pulp 5 may be formed by any method, and one example will be described with reference to FIG. 3.

円筒状芯金21の外周にセロフアン紙等の離型紙22を
装着し、芯金21を回転しながらその外周に予めセメン
トモルタル又はエポキシ樹脂のような熱硬化性樹脂を含
浸させた連続したガラス長繊維の適宜のピッチで螺旋状
に巻き付けて円周方向繊維3を形成し、その外周に芯金
21の中心軸にほぼ平行に複数の軸方向繊維4を、芯金
21の両端に取付けたエンドリング23に設けられた突
起24を利用して張設する。この場合繊維3は螺旋状と
なっていなくともよい。このようにして成形作業を終了
した後、加熱又は蒸気養生等によりモルタル又は樹脂を
硬化させ、第3図のA部において繊維3,4を切断し、
芯金21から抜き出したうえ、内部から離型紙22を取
り出す。
A release paper 22 such as cellophane paper is attached to the outer periphery of the cylindrical core 21, and while the core 21 is rotated, the outer periphery is pre-impregnated with cement mortar or a thermosetting resin such as epoxy resin to form a continuous length of glass. The fibers are spirally wound at an appropriate pitch to form a circumferential fiber 3, and a plurality of axial fibers 4 are attached to the outer periphery of the fiber in a direction substantially parallel to the central axis of the core bar 21, and are attached to both ends of the core bar 21. The ring 23 is stretched using a projection 24 provided on the ring 23. In this case, the fibers 3 do not need to be spirally shaped. After completing the molding work in this way, the mortar or resin is cured by heating or steam curing, and the fibers 3 and 4 are cut at section A in FIG.
It is pulled out from the core metal 21, and the release paper 22 is taken out from inside.

この発明は前記のようであって、回転可能な円0箇状型
枠の内周に、セメントモルタル又は熱硬化性樹脂を含浸
させたガラス長繊維からなる円周方向繊維とガラス長繊
維からなる軸方向繊維とを、前記モルタル又は樹脂を硬
化させ、かつコンクリート又はセメントモルタル中にお
ける最大寸法のタ骨材が通過可能な網目を形成して予め
構成された補強髄を設贋するので、従来のように外周側
に包含されるガラス長繊維を回転する型枠内に投入する
ような手間が省けて、該補強髄をコンクリート又はセメ
ント層に迅速に埋入でき、セメント管の0製造時間の短
縮化を実現することができる。
This invention is as described above, and the inner periphery of a rotatable circular form is made of circumferential fibers made of long glass fibers impregnated with cement mortar or thermosetting resin and long glass fibers. Since the axial fibers are used to harden the mortar or resin and to form a network through which the largest aggregate in the concrete or cement mortar can pass, the reinforcing marrow is pre-configured. This eliminates the need to put the long glass fibers contained in the outer periphery into a rotating formwork, and the reinforcing core can be quickly embedded into the concrete or cement layer, reducing the manufacturing time of cement pipes. can be realized.

また、前記に際し、補強龍は円周方向繊維と軸方向繊維
とがセメントモルタル又は熱硬化性樹脂の硬化によって
一体的に接着されているため、型枠の回転によって網目
が変形して、前記両繊維が部分5的に片寄るなど不規則
な配置となることがなく、しかも網目は最大寸法の骨材
を通過させるので、網目の内外のコンクリート又はセメ
ント層に骨材を均等に配置することができる。さらに、
この製造方法によれば、従釆の遠心製造装置がそのまま
0利用できて経済的であるのに加え、少し、量のガラス
長繊維からなる藤方向繊維により軸方向の折れ強度をう
ろことができるとともに、鞠方向の折れ強度の調整を軸
方向繊維の本数又は数量を加減するとによって容易に行
なうことができるというよ夕うなすぐれた効果を有する
In addition, in the above case, since the circumferential fibers and the axial fibers of the reinforcing dragon are integrally bonded by cement mortar or hardening of thermosetting resin, the mesh is deformed by the rotation of the formwork, and the There is no irregular arrangement such as the fibers being lopsided, and since the mesh allows the largest size of aggregate to pass through, the aggregate can be evenly distributed in the concrete or cement layer inside and outside the mesh. . moreover,
According to this manufacturing method, the centrifugal manufacturing equipment can be used as is, which is economical, and the bending strength in the axial direction can be improved by using a small amount of filamentous fibers made of long glass fibers. In addition, it has an excellent effect in that the bending strength in the ball direction can be easily adjusted by adjusting the number or amount of fibers in the axial direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガラス繊維補強セメント管の代表的な製
造方法を説明するための縦断正面図、第2図はこの発明
の製造方法を説明するための縦断0正面図、第3図はこ
の発明によるセメント管の補強鍵の製造方法の1例を説
明するための一部縦断正面図である。 1……セメント管、2……螺旋状ガラス長繊維、3・・
・・・・円周方向ガラス長繊維、4…・・・鞠方向ガラ
ス長繊維、5……補強鍵、11……回転型枠、14……
ノズル。 稀l図 稀2図 格3図
Fig. 1 is a vertical sectional front view for explaining a typical manufacturing method of a conventional glass fiber reinforced cement pipe, Fig. 2 is a vertical sectional front view for explaining the manufacturing method of the present invention, and Fig. FIG. 2 is a partially longitudinal front view for explaining an example of a method for manufacturing a reinforcing key for a cement pipe according to the invention. 1... Cement pipe, 2... Spiral glass long fiber, 3...
... Circumferential long glass fibers, 4... Circumferential glass long fibers, 5... Reinforcement key, 11... Rotating formwork, 14...
nozzle. Rare l figure rare 2 figure 3 figure

Claims (1)

【特許請求の範囲】[Claims] 1 回転可能な円筒状型枠の内側に、セメントモルタル
又は熱硬化性樹脂を含浸させたガラス長繊維からなる円
周方向繊維とガラス長繊維からなる軸方向繊維とを、前
記モルタル又は樹脂を硬化させ、かつコンクリート又は
セメントモルタル中における最大寸法の骨材が通過可能
な網目を形成して予め構成された補強篭を設置し、該型
枠を回転しながらコンクリート又はセメントモルタルを
投入して前記補強篭を該コンクリート又はセメント層に
埋入した後、その内周に連続したガラス長繊維をセメン
トスラリーとともに螺旋状に吹付けて外周側に補強篭が
、内周側に螺旋状ガラス長繊維が包含された所要の管厚
のガラス繊維補強セメント管をうることを特徴とするセ
メント管の製造方法。
1 Inside a rotatable cylindrical form, circumferential fibers made of long glass fibers impregnated with cement mortar or thermosetting resin and axial fibers made of long glass fibers are placed inside a rotatable cylindrical form, and the mortar or resin is cured. A reinforcing basket is installed in advance to form a network through which the largest size aggregate in the concrete or cement mortar can pass, and concrete or cement mortar is poured in while rotating the formwork to reinforce the reinforcement. After embedding the cage in the concrete or cement layer, continuous glass fibers are sprayed spirally on the inner periphery of the cage along with cement slurry to form a reinforcing cage on the outer periphery and spiral glass fibers on the inner periphery. A method for manufacturing a cement pipe, characterized in that a glass fiber-reinforced cement pipe with a desired thickness is obtained.
JP5795381A 1981-04-17 1981-04-17 Manufacturing method of glass fiber reinforced cement pipe Expired JPS6020167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5795381A JPS6020167B2 (en) 1981-04-17 1981-04-17 Manufacturing method of glass fiber reinforced cement pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5795381A JPS6020167B2 (en) 1981-04-17 1981-04-17 Manufacturing method of glass fiber reinforced cement pipe

Publications (2)

Publication Number Publication Date
JPS57173110A JPS57173110A (en) 1982-10-25
JPS6020167B2 true JPS6020167B2 (en) 1985-05-20

Family

ID=13070388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5795381A Expired JPS6020167B2 (en) 1981-04-17 1981-04-17 Manufacturing method of glass fiber reinforced cement pipe

Country Status (1)

Country Link
JP (1) JPS6020167B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165621A (en) * 1986-12-26 1988-07-08 日本エタニツトパイプ株式会社 Composite reinforced concrete pipe

Also Published As

Publication number Publication date
JPS57173110A (en) 1982-10-25

Similar Documents

Publication Publication Date Title
CA2129636C (en) Pipe construction
US4483214A (en) Method for the production of fibre reinforced articles
JPS6292833A (en) Manufacture of bent continuous fiber reinforced resin tube
US3706615A (en) Composite tube and a method of producing the same using the filament winding process
JP2007503563A (en) Concentrated material transfer tube
JPS591177B2 (en) Manufacturing method of composite pipe
US3106940A (en) Manufacture of filament wound articles having reinforcement for openings formed therein
JPS6020167B2 (en) Manufacturing method of glass fiber reinforced cement pipe
US2280252A (en) Producing reinforced conduits
DK1347114T3 (en) Reinforcing bar for concrete constructions and method for the production of reinforcing bars
KR102398499B1 (en) Precast concrete using fiber-reinforced plastic rebar and manufacturing method thereof
US3436289A (en) Method of making a corrugated tube of fiber-reinforced plastic material
JPH0149109B2 (en)
JP4243889B2 (en) Synthetic pipe
RU2285187C2 (en) Method of manufacturing glass plastic pipeline section
JPH0533605Y2 (en)
WO2000050708A1 (en) Scaffolding member and production method
KR102398500B1 (en) Fiber-reinforced plastic rebar and manufacturing method thereof
KR102340445B1 (en) Fiber-reinforced plastic rebar using bendable thermoplastic resin
JPH0434240Y2 (en)
KR100556206B1 (en) fiber reinforced plastic pipe and manufacturing apparatus therefor
JPS626202Y2 (en)
JPS5855105B2 (en) Manufacturing method for reinforcing baskets using long glass fibers
JP2639503B2 (en) Structure reinforced from a reticulated tubular body
JPS5849102Y2 (en) fishing rod