JPS60200844A - Dehydration treatment of optical material by glow discharge - Google Patents

Dehydration treatment of optical material by glow discharge

Info

Publication number
JPS60200844A
JPS60200844A JP59057312A JP5731284A JPS60200844A JP S60200844 A JPS60200844 A JP S60200844A JP 59057312 A JP59057312 A JP 59057312A JP 5731284 A JP5731284 A JP 5731284A JP S60200844 A JPS60200844 A JP S60200844A
Authority
JP
Japan
Prior art keywords
glow discharge
group
optical material
contg
dehydration treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59057312A
Other languages
Japanese (ja)
Inventor
Osamu Niihori
新堀 理
Hidenori Mimura
三村 栄紀
Hideharu Tokiwa
常磐 英晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP59057312A priority Critical patent/JPS60200844A/en
Priority to GB08507656A priority patent/GB2158054B/en
Priority to FR8504482A priority patent/FR2562219B1/en
Publication of JPS60200844A publication Critical patent/JPS60200844A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0085Drying; Dehydroxylation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/60Silica-free oxide glasses
    • C03B2201/78Silica-free oxide glasses containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/84Halide glasses other than fluoride glasses, i.e. Cl, Br or I glasses, e.g. AgCl-AgBr "glass"
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Drying Of Solid Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To dehydrate optical material contg. OH group without contg. impurities by arranging the optical material contg. OH group in the atmosphere of halogen atom isolated by glow discharge in the state wherein said material is subjected to high-frequency electric heating and substituting the halogen atom for the OH group. CONSTITUTION:When for example, gaseous fluorine is introduced in a reaction tube 3 from a gas introduction port 7 and glow discharge is caused from high frequency coils 8, plasma 9 contg. fluorine atom in nascent state is uniformly formed in the inside of the coil 8. On the other hand, the material 5 to be treated which is optical material is heated with the eddy current of high-frequency current flowing through coil 8 to give thermal energy necessary to a chemical reaction. Therefore, the fluorine atom isolated in the nascent state is substituted for the OH group of said material 5 and furthermore the OH group is allowed to react with fluorine atom to produce hydrogen halide and H2O molecule and these are discharged from an exhaust port 6. In this manner, the material is dehydrated.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は光学材料の脱水処理方法に係わり、特に、グロ
ー放電を用いた脱水処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for dehydrating optical materials, and particularly to a method for dehydrating optical materials using glow discharge.

(従来技術) 光通信は広帯域伝送が可能であシ、かつ低損失化が図れ
るため、近年特に脚光を浴びている。この光通信の伝送
媒体としては低損失の石英ガラスファイバが主に用いら
れているが、その伝送損失はほぼ理論限界値′に達した
ため、新しいファイバ材料の開発が進められている。そ
の中で、フン化物ガラスファイバは、3〜4μmの波長
帯域において石英ガラスファイバの伝送損失の百分の一
程度になると推定され、次世代のファイバとして最も有
望視されている。また、この波長近傍の赤外線領域にお
いて、高い光の透過性があるKBr 、 KCt。
(Prior Art) Optical communication has been particularly in the spotlight in recent years because it allows broadband transmission and reduces loss. Low-loss silica glass fibers are mainly used as transmission media for optical communications, but the transmission loss has almost reached the theoretical limit, so new fiber materials are being developed. Among them, fluoride glass fiber is estimated to have a transmission loss of about one hundredth of that of silica glass fiber in the wavelength band of 3 to 4 μm, and is considered the most promising as a next-generation fiber. In addition, KBr and KCt have high light transmittance in the infrared region near this wavelength.

CaF2等の結晶を用いたレンズやプリズムとして光計
測器等の光部品として使用されている。
Lenses and prisms using crystals such as CaF2 are used as optical components in optical measuring instruments and the like.

しかし、これらの光学材料に極微量の820分子やOH
基が不純物として混入すると、820分子やOH基の分
子振動により近赤外線領域の光を吸収し、光の透過性を
著しく劣化させることが知られている。従って、低損失
の光通信システムあるいは光学部品を構築するには、使
用する光学材料から820分子やOR基を除去する方法
が非常に重要となってくる。このように、光学材料から
H20分子やOH基を化学的に除去する方法は化学的脱
水処理法と呼ばれている。
However, these optical materials contain extremely small amounts of 820 molecules and OH.
It is known that when groups are mixed in as impurities, light in the near-infrared region is absorbed due to the molecular vibrations of 820 molecules and OH groups, significantly degrading light transmittance. Therefore, in order to construct a low-loss optical communication system or optical component, a method for removing 820 molecules and OR groups from the optical materials used is extremely important. The method of chemically removing H20 molecules and OH groups from optical materials in this way is called a chemical dehydration treatment method.

第1図は、従来の化学的脱水処理法を用いた装置の基本
構成図である。同図の化学的脱水処理法は、液相中のH
20分子またはOH基とノ・ロ″ゲン元素との置換反応
を利用したものであり、1はHeやAr等の不活性ガス
の導入口、2はフッ素、塩素あるいは臭素等のノ・ロゲ
フ化剤の導入口、3は反応管、4は加熱用ヒータ、5は
脱水処理が行われる被処理物、6は排気口である。導入
口2から供給されたハロゲン化剤と導入口1かも供給さ
れた不活性ガスとが混合されて反応管3の内へ導かれ、
加熱ヒータ4により所望の温度に加熱さJする。所望の
温度に加熱された不活性ガスとノ・ロゲフ化剤のうち、
例えばフッ素ガス(F2)の如きノ・ロゲフ化剤は熱エ
ネルギーにより分子状態(F2)から極めて反応性の大
きい原子状態(2F)(以下、この状態を「発生期状態
」という)に解離される。この解なされたハロゲン原子
(F)は被処理物5に含まれているOH基と置換する。
FIG. 1 is a basic configuration diagram of an apparatus using a conventional chemical dehydration treatment method. In the chemical dehydration treatment method shown in the figure, H
It utilizes a substitution reaction between 20 molecules or OH groups and a nitrogen element, and 1 is an inlet for an inert gas such as He or Ar, and 2 is an inlet for a nitrogen gas such as fluorine, chlorine, or bromine. The halogenating agent supplied from the introduction port 2 and the introduction port 1 are also supplied. mixed with the inert gas and introduced into the reaction tube 3,
It is heated to a desired temperature by the heater 4. Of the inert gas heated to the desired temperature and the no-logeflating agent,
For example, a chemical agent such as fluorine gas (F2) is dissociated from a molecular state (F2) into an extremely reactive atomic state (2F) (hereinafter referred to as the "nascent state") by thermal energy. . This resolved halogen atom (F) replaces the OH group contained in the object to be treated 5.

その置換されたOH基は更に遊泳しているノ・ロゲン原
子(F)に反応し、ハロゲン化水素(I(F)とH20
分子とになり、不活性ガスと共に排気口6から排出され
る。
The substituted OH group further reacts with the floating hydrogen atom (F), and hydrogen halide (I (F) and H20
It becomes molecules and is discharged from the exhaust port 6 together with the inert gas.

このように、従来技術では、加熱ヒータ4などから成る
熱源で7・ロゲン化剤を所望の温度に加熱することによ
り、反応性の大きい発生期状態の・・ロゲン原子に解離
して、被処理物5に含まれているOH基と置換する方法
をとっていた。従って、この化学的脱水処理法は単に被
処理物質を7・ロゲン元素を含む雰囲気中で加熱処理を
行うだけでよく、広く一般に用いられている。
In this way, in the conventional technology, by heating the 7. rogogenating agent to a desired temperature with a heat source such as the heater 4, it is dissociated into highly reactive nascent rogen atoms and treated. The method used was to replace the OH group contained in Product 5. Therefore, this chemical dehydration treatment method simply heat-treats the substance to be treated in an atmosphere containing the 7-rogen element, and is widely used.

しかし、フッ素ガスなどのノ・ロゲンガスを加熱処理で
発生期状態の原子に解離する従来の化学的脱水処理法で
は、定常状態のノ・ロゲンガスは分子間の結合力が大き
いため、約1200度以上の高温にする必要がある。従
って、ノ・ロゲンガスを解離するための加熱温度では、
低融点の光学材料が蒸発してしまい、低融点の光学材料
の脱水処理が不可能であった。
However, in the conventional chemical dehydration treatment method, in which fluorine gas and other fluorine gases are dissociated into nascent atoms through heat treatment, fluorine gases in a steady state have a strong intermolecular bonding force, so temperatures of approximately 1200 degrees or higher It is necessary to raise the temperature to Therefore, at the heating temperature to dissociate the gas,
The optical material with a low melting point evaporated, making it impossible to dehydrate the optical material with a low melting point.

また、低融点の光学材料の従来の脱水処理ではフッ素ガ
スなどのハロゲンガスの代りに、四塩化炭素などのハロ
ゲン化メタンガスを用いていた。
Furthermore, in conventional dehydration treatment for optical materials with low melting points, halogenated methane gas such as carbon tetrachloride has been used instead of halogen gas such as fluorine gas.

四塩化炭素(CCt4)などのハロゲン化メタンガスは
、加熱温度が約300度程度でも発生期状態の塩素(C
t)に解離することが可能であり、脱水処理効果も上が
る。
Halogenated methane gas such as carbon tetrachloride (CCt4) does not produce chlorine (C
It is possible to dissociate in step t), and the dehydration treatment effect is also improved.

しかし、熱分解反応によシ分子を解離する際に、塩素原
子(cgを1個解離する反応(CCt4→CCt3十C
t)以外に2個以上の塩素を同時に解離して炭素原子を
遊離する反応(CCt4→C+2Ct2)も起り、炭素
原子(C)が不純物として被処理物に混入する欠点があ
った。また、四塩化炭素などの・・ロゲン化メタンは脱
水反応の過程で炭酸ガスを発生し、大部分は不活性ガス
と共に排気されるが、一部はフッ化物のように反応性の
高い被処理物5と反応し、炭素を遊離して新たな不純物
源を生成する欠点があった。
However, when dissociating a molecule by thermal decomposition reaction, a reaction that dissociates one chlorine atom (CG) (CCt4→CCt30C
In addition to t), a reaction (CCt4→C+2Ct2) in which two or more chlorines are simultaneously dissociated to liberate carbon atoms also occurs, which has the disadvantage that carbon atoms (C) are mixed into the treated material as an impurity. In addition, methane such as carbon tetrachloride generates carbon dioxide gas during the dehydration reaction, and most of it is exhausted together with inert gas, but some of it is highly reactive like fluoride. It has the disadvantage that it reacts with substance 5, liberates carbon, and generates a new source of impurities.

以上のように、従来技術では低融点の光学材料に不純物
を含まず脱水処理を行うことは不可能であった。
As described above, with the prior art, it has been impossible to dehydrate optical materials with low melting points without containing impurities.

(発明の目的) 本発明は、上述した従来技術の欠点に鑑みなされたもの
で、低融点および高融点の光学材料に適用でき、かつ不
純物を含まず脱水可能なグロー放電による光学材料の脱
水処理方法を提供することを目的とする。
(Object of the Invention) The present invention was made in view of the above-mentioned drawbacks of the prior art, and is a dehydration treatment of optical materials using glow discharge, which can be applied to optical materials with a low melting point and a high melting point, and can be dehydrated without containing impurities. The purpose is to provide a method.

(発明の構成および作用) 以下、図面を用いて本発明の詳細な説明する。(Structure and operation of the invention) Hereinafter, the present invention will be explained in detail using the drawings.

第2図は本発明による脱水処理方法の原理を説明するた
めの模式図であり、グロー放電により反応管内にプラズ
マが生じる様子を示している。同図において、7はハロ
ゲン化剤と不活性ガスとを供給する気体導入口、3は反
応管、8はグロー放電を起こすための高周波コイル、9
はグロー放電が生じている部分を示している。気体導入
ロアから供給される例えばフッ素ガス(F)は、周囲温
度に関係なくグロー放電により解離され、発生期状態の
F原子を含んだプラズマ9が高周波コイル8の内側にほ
ぼ均一に形成、される。一方、被処理物5は高周波コイ
ル8を流れる高周波電流の渦電流によシ加熱され、化学
反応に必要な熱エネルギーが与えられる。このように、
グロー放電によシ発生期状態に解離されたF原子は加熱
された被処理物のOH基と置換し、更にF原子と反応し
てハロゲン化水素とH20分子となり、不活性ガスと共
に排気口6から排気される。また、不純物の■(20分
子も被処理物5を加熱することにより、蒸発して排気口
6から排気される。
FIG. 2 is a schematic diagram for explaining the principle of the dehydration treatment method according to the present invention, and shows how plasma is generated in the reaction tube by glow discharge. In the figure, 7 is a gas inlet for supplying a halogenating agent and an inert gas, 3 is a reaction tube, 8 is a high-frequency coil for causing glow discharge, and 9
indicates the part where glow discharge occurs. For example, fluorine gas (F) supplied from the gas introduction lower is dissociated by glow discharge regardless of the ambient temperature, and a plasma 9 containing F atoms in a nascent state is formed almost uniformly inside the high-frequency coil 8. Ru. On the other hand, the object to be processed 5 is heated by the eddy current of the high frequency current flowing through the high frequency coil 8, and thermal energy necessary for the chemical reaction is provided. in this way,
The F atoms dissociated into a nascent state by the glow discharge replace the OH groups of the heated workpiece, and further react with the F atoms to form hydrogen halide and H20 molecules, which are then discharged from the exhaust port 6 along with the inert gas. is exhausted from. Further, by heating the object 5 to be treated, 20 molecules of impurities (2) are also evaporated and exhausted from the exhaust port 6.

以上のように、グロー放電されている雰囲気中にハロゲ
ン化剤を供給すると、ハロゲン化剤は温度に関係なく高
濃度の発生期状態の原子に解離され、被処理物に応じた
温度、すなわち固体の被処理物が化学反応できる温度で
かつ熱で蒸発しない温度にすることにより、被処理物の
OH基と置換し除去するものである。従って、この処理
方法は、ハロゲンガスを熱分解反応で解離しOH基と反
応させる従来方法では出来なかったフッ化物ガラスある
いは酸化ゲルマニー−ムファイバ等の低融点の光学材料
にも適用することができる。なお、表1は主な光学材料
が化学反応するに必要な温度を示したものである。
As described above, when a halogenating agent is supplied into the atmosphere undergoing glow discharge, the halogenating agent is dissociated into atoms in the nascent state at a high concentration regardless of the temperature, and the halogenating agent is dissociated into atoms in the nascent state at a high concentration, and the By setting the temperature at which the object to be treated can undergo a chemical reaction and at a temperature that does not evaporate due to heat, the OH groups of the object to be treated are replaced and removed. Therefore, this treatment method can also be applied to low-melting point optical materials such as fluoride glass or germanium oxide fiber, which could not be produced using the conventional method of dissociating halogen gas by thermal decomposition reaction and reacting with OH groups. Note that Table 1 shows the temperatures required for chemical reactions of main optical materials.

表 1 第3図は本発明による脱水処理方法を実施するための装
置の具体例である。同図において、10は石英ガラスま
たはアルミナ等の絶縁物から成るサスセプタ支持棒、1
1は金属またはグラファイト等から成るサスセプタ、1
2はるつぼ、13は被処理物であるフッ化物ガラス、1
4はフランジをシールを介して結合した結合部を示す。
Table 1 FIG. 3 shows a specific example of an apparatus for carrying out the dehydration treatment method according to the present invention. In the figure, 10 is a susceptor support rod made of an insulating material such as quartz glass or alumina;
1 is a susceptor made of metal or graphite, etc.;
2 is a crucible, 13 is a fluoride glass which is the object to be treated, 1
Reference numeral 4 indicates a joint where flanges are joined via a seal.

なお、初期設定として、るつぼ12が高周波コイル8の
内側に入るように、高周波コイル8の高さを調整する。
Note that, as an initial setting, the height of the high-frequency coil 8 is adjusted so that the crucible 12 enters inside the high-frequency coil 8.

また、反応管3の中を1O−3torr (1torr
= 1/ 760気圧)以下の真空状態まで減圧する。
In addition, the inside of the reaction tube 3 is 1O-3torr (1torr
= 1/760 atm) or less.

以上の初期設定終了後、気体導入ロアからアルゴン(A
r)またはヘリー−ム(He)等の不活性ガスを導入し
、反応管3の中の圧力を0.03〜l torr間に保
つ。次に、高周波コイル8に高周波電流を印加すると、
反応管3の内部にグロー放電が発生するとともに、高周
波電流による渦電流でサスセプタ11が加熱される。
After completing the above initial settings, argon (A
An inert gas such as helium (He) or helium (He) is introduced to maintain the pressure in the reaction tube 3 between 0.03 and 1 torr. Next, when a high frequency current is applied to the high frequency coil 8,
A glow discharge is generated inside the reaction tube 3, and the susceptor 11 is heated by an eddy current caused by the high-frequency current.

この高周波電流量を調整するととにより、フッ化物ガラ
スの融点(約460度)以上で、かつフッ化物ガラスが
蒸発しない温度(約900度)以下にする。この状態で
、不活性ガスにハロゲン化剤を混合した気体を気体導入
ロアから供給する。反応管3の中に供給されたハロゲン
化剤は、グロー放電により解離され、プラズマ中に高濃
度の発生期状態のイオン化されたハロゲン原子がフッ化
物ガラス13中のOH基と反応してハロゲン化水素とH
20分子が生成される。これらのハロゲン化水素とH2
0分子は不活性ガスとともに排気口6から排気され、脱
水処理が行われる。
By adjusting the amount of high frequency current, the temperature is set to be above the melting point of fluoride glass (approximately 460 degrees) and below the temperature at which fluoride glass does not evaporate (approximately 900 degrees). In this state, a gas consisting of an inert gas mixed with a halogenating agent is supplied from the gas introduction lower. The halogenating agent supplied into the reaction tube 3 is dissociated by glow discharge, and the ionized halogen atoms in the nascent state at a high concentration in the plasma react with the OH groups in the fluoride glass 13 to be halogenated. hydrogen and H
20 molecules are produced. These hydrogen halides and H2
The 0 molecules are exhausted from the exhaust port 6 along with the inert gas, and dehydration processing is performed.

上述の実施例では、被処理物としてフッ化物ガラスを用
いた場合について説明したが、酸化ゲルマニュームファ
イバ、カルコゲナイドガラスファイバ、多成分系ガラス
ファイバ、臭化カリュームあるいは塩化カリー−ム等の
低融点光学材料は勿論のこと、石英ファイバ等の高融点
光学材料の脱水処理に適用できることは言うまでもない
In the above embodiment, a case was explained in which fluoride glass was used as the object to be treated, but low melting point optical materials such as germanium oxide fiber, chalcogenide glass fiber, multi-component glass fiber, potassium bromide or chloride kareem were also used. Of course, it goes without saying that it can be applied to dehydration treatment of high melting point optical materials such as quartz fibers.

(発明の効果) 以上説明したように、本発明によれば、グロー放電を利
用して・・ロゲフ化剤を解離して発生期状態のハロゲン
原子を生成し、かつ被処理物の加熱をグロー放電を発生
するための高周波電流で行っている。従って、ハロゲン
化剤を解離して発生期状態のハロゲン原子の生成は処理
温度に関係なく、固体の光学材料が化学反応するに必要
な温度にすればよく、従来できなかった低融点光学材料
にも応用でき、かつ不純物を含捷ない脱水処理ができる
ので、近赤外線領域で使用される光学材料の低損失化を
実現する上で極めて効果が大きい。
(Effects of the Invention) As explained above, according to the present invention, glow discharge is used to dissociate the logeflating agent to generate halogen atoms in a nascent state, and heating of the object to be treated is performed using glow discharge. This is done using high frequency current to generate discharge. Therefore, the halogenating agent can be dissociated to generate nascent halogen atoms, regardless of the processing temperature, as long as the temperature is set to the temperature required for the chemical reaction of the solid optical material. It is also applicable to dehydration treatment that does not contain impurities, so it is extremely effective in reducing the loss of optical materials used in the near-infrared region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化学的脱水処理装置の断面図、第2図は
本発明のグロー放電による脱水処理方法を説明するため
の模式図、第3図は本発明のグロー放電による脱水処理
装置の実施例を示す断面図である。 1・・・不活性ガス導入口、2・・・ハロゲン化剤の導
入口、3・・・反応管、4・・・加熱ヒータ、5・・・
被処理物、6・・・排気口、7・・・気体導入口、8・
・・高周波コイル、9・・・グロー放電によりプラズマ
が生じている部分、10・・サスセプタ支持棒、11・
・・サスセプタ、12・・・るつぼ、13・・・7ノ化
物ガラス、14・・・結合部。 特許出願人 国際電信電話株式会社 代理人犬塚 学 外1名 第1目 1 を 躬2図 弗3図 手続補正書(自発) 昭和59年5月22日 特許庁長官 若杉 和 夫 殿 1、事件の表示 特願昭59−57312号 2、発明の名称 グロー放電による光学材料の 脱水処理方法 3、補正をする者 事件との関係 出願人 (121)国際電信電話株式会社 4、代理人 東京都新宿区西新宿1−23−1
Figure 1 is a sectional view of a conventional chemical dehydration treatment device, Figure 2 is a schematic diagram for explaining the glow discharge dehydration method of the present invention, and Figure 3 is a diagram of the glow discharge dehydration treatment device of the present invention. It is a sectional view showing an example. DESCRIPTION OF SYMBOLS 1... Inert gas inlet, 2... Halogenating agent inlet, 3... Reaction tube, 4... Heater, 5...
Object to be treated, 6... Exhaust port, 7... Gas inlet, 8.
... High frequency coil, 9... Part where plasma is generated by glow discharge, 10... Susceptor support rod, 11.
... Susceptor, 12... Crucible, 13... 7-node glass, 14... Joining part. Patent Applicant: International Telegraph and Telephone Co., Ltd. Agent Inuzuka, 1 external person, 1st item 1, 2 drawings, 3 drawings, procedural amendment (voluntary) May 22, 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi, 1. Indication of the case Patent Application No. 59-57312 2, Name of the invention: Method for dehydrating optical materials by glow discharge 3, Relationship with the amended case Applicant (121) Kokusai Telegraph and Telephone Co., Ltd. 4, Agent Nishi, Shinjuku-ku, Tokyo Shinjuku 1-23-1

Claims (1)

【特許請求の範囲】[Claims] グロー放電によシ解離されたハロゲン原子の雰囲気中に
OH基を含む光学材料を化学反応する所望の温度まで高
周波加熱した状態で配置することによシ、前記OH基と
ハロゲン原子とを置換せしめて光学材料の脱水処理を行
うことを特徴とするグロー放電による光学材料の脱水処
理方法。
By placing an optical material containing an OH group in an atmosphere of halogen atoms dissociated by glow discharge under high-frequency heating to a desired temperature for chemical reaction, the OH groups and halogen atoms are replaced. 1. A method for dehydrating an optical material using glow discharge, the method comprising dehydrating the optical material using a glow discharge.
JP59057312A 1984-03-27 1984-03-27 Dehydration treatment of optical material by glow discharge Pending JPS60200844A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59057312A JPS60200844A (en) 1984-03-27 1984-03-27 Dehydration treatment of optical material by glow discharge
GB08507656A GB2158054B (en) 1984-03-27 1985-03-25 Method for dehydrating optical materials by glow discharge
FR8504482A FR2562219B1 (en) 1984-03-27 1985-03-26 PROCESS FOR DEHYDRATING OPTICAL MATERIALS BY LUMINESCENT DISCHARGE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057312A JPS60200844A (en) 1984-03-27 1984-03-27 Dehydration treatment of optical material by glow discharge

Publications (1)

Publication Number Publication Date
JPS60200844A true JPS60200844A (en) 1985-10-11

Family

ID=13052043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057312A Pending JPS60200844A (en) 1984-03-27 1984-03-27 Dehydration treatment of optical material by glow discharge

Country Status (3)

Country Link
JP (1) JPS60200844A (en)
FR (1) FR2562219B1 (en)
GB (1) GB2158054B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103338A (en) * 1989-09-14 1991-04-30 Sumitomo Electric Ind Ltd Surface-treatment of fluoride glass
CN114992987A (en) * 2022-07-13 2022-09-02 农业农村部规划设计研究院 Grain and oil radio frequency hot air-normal temperature air combined drying device and operation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2018519B3 (en) * 1986-08-29 1991-04-16 American Telephone & Telegraph Company SOOTH COATING METHOD OF AN OPTICAL PREFORM.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE562396A (en) * 1956-11-19
NL140499C (en) * 1963-07-08
JPS5268222A (en) * 1975-12-04 1977-06-06 Furukawa Electric Co Ltd Process for eliminating air bubbles in the wall of silica glass tube
JPS5852935B2 (en) * 1978-11-20 1983-11-26 三菱マテリアル株式会社 Manufacturing method for optical transmission materials
EP0103441B1 (en) * 1982-09-10 1986-07-23 BRITISH TELECOMMUNICATIONS public limited company Method for drying oxide glasses
JPS60108349A (en) * 1983-11-15 1985-06-13 Nippon Telegr & Teleph Corp <Ntt> Surface treatment of fluoride glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103338A (en) * 1989-09-14 1991-04-30 Sumitomo Electric Ind Ltd Surface-treatment of fluoride glass
CN114992987A (en) * 2022-07-13 2022-09-02 农业农村部规划设计研究院 Grain and oil radio frequency hot air-normal temperature air combined drying device and operation method
CN114992987B (en) * 2022-07-13 2022-11-29 农业农村部规划设计研究院 Grain and oil radio-frequency hot air-normal-temperature air combined drying device and operation method

Also Published As

Publication number Publication date
FR2562219B1 (en) 1988-10-14
GB8507656D0 (en) 1985-05-01
GB2158054B (en) 1988-03-09
GB2158054A (en) 1985-11-06
FR2562219A1 (en) 1985-10-04

Similar Documents

Publication Publication Date Title
US4810054A (en) Fusion splicing method for optical fibers
US4090055A (en) Apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
EP0656326A2 (en) Method for making optical fiber preforms
JPH04119939A (en) Production of base material for optical fiber
JP2004203736A (en) Method of manufacturing high purity fused silica
JP2000103628A (en) Treatment of silica granule using porous graphite crucible
US5766291A (en) Method for producing heat-resistant synthetic quartz glass
JPS6163538A (en) Purification of fluoride glass
JPS60200844A (en) Dehydration treatment of optical material by glow discharge
DK3156378T3 (en) Method of etching a primary preform
JPS6071590A (en) Manufacture of reactor for crystal growth
JPS59146947A (en) Manufacture of preform for light conductive body
JP2005035883A (en) Method for blending and recirculating deuterium-containing gas
JP4487560B2 (en) Optical fiber preform manufacturing method
JPS61270232A (en) Method for treating optical fiber base material
JPS5879835A (en) Surface-treating method for optical fiber preform
JPH03212938A (en) Forming method of silicon nitride film
JPS6217025A (en) Preparation of fluoride glass
JP2005325019A (en) Method for manufacturing optical fiber
EP0517169B1 (en) Method of and apparatus for fluoride glass fabrication
Drexhage et al. Carbon dioxide absorption in heavy metal fluoride glasses
Broer et al. Reaction of NF3 and SF6 with some oxides connected with heavy-metal fluoride glass processing
JPS63215523A (en) Production of fluoride glass
JPH02180729A (en) Production of optical fiber preform
JPS60239339A (en) Preparation of parent material for optical fiber