JPS60200724A - Protective relaying unit - Google Patents
Protective relaying unitInfo
- Publication number
- JPS60200724A JPS60200724A JP59054160A JP5416084A JPS60200724A JP S60200724 A JPS60200724 A JP S60200724A JP 59054160 A JP59054160 A JP 59054160A JP 5416084 A JP5416084 A JP 5416084A JP S60200724 A JPS60200724 A JP S60200724A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- time
- output
- inspection
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Emergency Protection Circuit Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は自動監視機能の向上を計った保護継電装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a protective relay device with an improved automatic monitoring function.
[発明の技術的背県]
保護継電装置において、その装置の信頼性は極めて重要
な要素である。静止形継電器を主体とした今日の保護継
電装置では、そのほとんどが自動監視機能を設(プて装
置の信頼性向上を計っている。[Technical Background of the Invention] Reliability of the protective relay device is an extremely important element. Most of today's protective relay devices, which are mainly static relays, are equipped with automatic monitoring functions to improve device reliability.
自動監視機能は常時監視機能と自動点検機能とで構成へ
れ、常時監視は平常時と異なった状態が一定時間以上継
続したとぎアラームを出づもので、主として継電器の誤
動作側の不良を検出する。これに対し自動点検は、一定
の点検周期−旬に所定の点検入力を継電器に加え、その
応動を見るもので、主として継電器の誤不動作側の不良
を検出゛する。The automatic monitoring function consists of a constant monitoring function and an automatic inspection function.Continuous monitoring issues an alarm when a condition different from normal has continued for a certain period of time, and is mainly used to detect malfunctioning relays. . On the other hand, automatic inspection involves applying a predetermined inspection input to a relay at a fixed inspection period and observing its response, and mainly detects defects on the side of the relay that malfunctions.
ところが自動監視の対象となる継電器にJ一つでは不良
以外でも常時動作及び常時不動作の両方のモードになり
えるものがあり、このJ:うな継電器は単純に上記の検
出方法では不良を判別1゛ることは出来ない。例えば系
統の故障を系統電圧が一定電圧以下に低下したことで検
出する不足電圧継電器では、被保護系統が平常運転状態
では系統に故障が生じているときだ(〕短短時間動作力
を出(だりであるが、系統切換中又は停止中で被保護系
統が充電されない状態、所謂全停時には常時動作出力を
出した状態となっている。このため不足電圧継電器が不
良で動作しているのか、又は正常で動作しているのかを
判別しないと自動監視出来ないこととなる。However, some relays that are subject to automatic monitoring can be in both a constantly operating mode and a constantly non-operating mode even if only J is defective. It is not possible. For example, in an undervoltage relay that detects a system failure when the system voltage drops below a certain voltage, the protected system outputs a short-term operating force ( However, when the protected system is not being charged during system switching or stoppage, it is in a state where the operating output is constantly output during a so-called total outage.Therefore, it is difficult to determine whether the undervoltage relay is malfunctioning and is operating. Otherwise, automatic monitoring cannot be performed unless it is determined whether the system is operating normally.
ところで最近の自動点検方式は点検入力を与え被点検継
電器が動作するのを確認すると共に、動作後点検入力を
切って復帰するまで確認し次の点検ステップに進める方
法が用いられることが多くなっている。これは自動点検
で継電器が同時に2つ以上動作するのを極力防止するの
と、自動点検で復帰不良となったときは自動点検不良と
してアラームを出ず考え方によるものである。このため
全停中は不足電圧継電器が常時動作した状態となってい
ると動作確認をする必要がなく、又復帰確認も出来ない
ので全停中は不足電圧継電器の点検を行なわず、点検ス
テップだけを進まける所謂空歩進させる方法がとられて
いる。By the way, recent automatic inspection methods often use a method in which a check input is given, the relay to be inspected is checked to see if it operates, and after the operation, the check input is turned off and the relay is checked until it returns to normal, before proceeding to the next check step. There is. This is based on the concept of preventing two or more relays from operating at the same time during automatic inspection as much as possible, and when an automatic inspection fails to restore the relay, an alarm is not issued as an automatic inspection failure. For this reason, during a total power outage, there is no need to check the operation if the undervoltage relay is constantly operating, and it is also impossible to confirm recovery, so during a total power outage, the undervoltage relay is not inspected and only the inspection step is performed. A method of making so-called empty steps is used.
通常不足電圧継電器の全停検出方法として、検出要素を
3相(R,S、T相)備えた不足電圧継電器では3相全
てが一定時間以上動作を継続したときは全停と判定し、
1相又は2相動作が一定時間以上継続したときは不良と
判定しアラームを出す方法が通常用いられている。又超
高圧系統の保護継電装置では地絡及び短絡故障検出用の
不足電圧継電器が備えられるので、この様な場合には地
絡及び短絡の両方の動作が一定時間継続したときは全停
と判定し、地絡又は短絡の片方が一定時間以上継続した
ときは不良と判定しアラームを出す方法が通常用いられ
ている。Normally, as a total failure detection method for an undervoltage relay, in an undervoltage relay equipped with three phases (R, S, and T phases) of detection elements, when all three phases continue to operate for a certain period of time or more, it is determined that a total failure has occurred.
A method is usually used in which when one-phase or two-phase operation continues for a certain period of time or more, it is determined to be defective and an alarm is issued. In addition, the protective relay system for ultra-high voltage systems is equipped with an undervoltage relay for detecting ground faults and short circuits, so in such cases, if both ground faults and short circuits continue for a certain period of time, a total power outage will occur. A method is usually used in which a ground fault or a short circuit is determined, and if either ground fault or short circuit continues for a certain period of time, it is determined to be defective and an alarm is issued.
[背景技術の問題点]
上記不足電圧継電器の自動点検を行なう方法として、検
出要素を3相備えた不足電圧継電器では各相ごと点検入
力を加えて応動を確認する方法と3相同時に点検入力を
加えて応動を確認する方法とが用いられているが、最近
は点検回路の削減及び点検時間の短縮の観点から後者の
方法で行なわれることが多くなってい°る。又地絡及び
短絡故障検出用の不足電圧継電器邦備えられている場合
でも、同様な趣旨から地絡及び短絡を同時に点検を行な
う方法が用いられている。ところが前述の全停検出方法
を用いていると自動点検中は3相全て動作又は地絡及び
短絡の両方が動作し、見掛は上全停と全く同じ動作とな
る。このため従来は、全停検出時間を点検不良検出時間
より長くして点検不良による点検渋滞時に、全停と判定
し空歩進するのを防止していた。しかし中速度再開路装
置又は後備保護装置等の自動点検時間の長く要する装置
を具備している場合には、点検不良検出時間も長くなる
のでこれに合わせて全停検出時間も長くしなりればなら
なかった。このため全停時不足電圧継電器の常時監視回
路をロックする時間が遅くなるので、これに合せて常時
監視検出時間も長くする必要がある。この結果、常時監
視不良検出時間の精度が低下し、又不良発生時の対応も
遅くなり装置の信頼性を低下させる要因となっていた。[Problems in the Background Art] Two methods of automatically inspecting the above-mentioned undervoltage relays are: for undervoltage relays equipped with three phases of detection elements, one method is to apply inspection input to each phase to check the response, and the other is to confirm the response by inputting inspection input to each phase at the same time. In addition, a method of confirming response is also used, but recently the latter method has been increasingly used from the viewpoint of reducing the number of inspection circuits and shortening inspection time. Even when an undervoltage relay for detecting ground faults and short circuits is provided, a method of simultaneously checking for ground faults and short circuits is used for the same purpose. However, when the above-mentioned total failure detection method is used, all three phases or both the ground fault and short circuit operate during automatic inspection, and the apparent operation is exactly the same as the upper total failure. For this reason, in the past, the full-stop detection time was made longer than the inspection defect detection time to prevent the vehicle from idling because it was determined to be a full-stop during an inspection traffic jam due to an inspection defect. However, if you are equipped with a device that requires a long automatic inspection time, such as a medium-speed recirculation device or backup protection device, the inspection failure detection time will also be longer, so the total stop detection time should be lengthened accordingly. did not become. For this reason, the time for locking the constant monitoring circuit of the undervoltage relay at full stop is delayed, so the constant monitoring detection time must be lengthened accordingly. As a result, the accuracy of the constant monitoring failure detection time is reduced, and the response when a failure occurs is delayed, which is a factor that reduces the reliability of the device.
又被点検装置によって全停検出時間及び常時監視不良検
出時間をその都度変えるのは整定上非常に煩雑でもあっ
た。In addition, it is very complicated to change the total failure detection time and the continuous monitoring failure detection time each time depending on the equipment to be inspected.
[発明の目的1
本発明は上記問題点を解決することを目的としてなされ
たものであり、被占徐貼詣によってその都度全停検出時
間を変えることなく自動点検を可能とし、自動点検を具
備することによる機能低下を防止し得る保護継電装置を
提供することを目的としている。[Objective of the Invention 1 The present invention has been made with the aim of solving the above-mentioned problems, and is capable of automatic inspection without changing the full stop detection time each time by occupied slow inspection, and is equipped with an automatic inspection. The purpose of the present invention is to provide a protective relay device that can prevent functional deterioration caused by
[発明の概要]
本発明では不足電圧継電器を含む保護継電装置に対して
点検入力を印加した際、既に全停検出がなされていれば
全停検出回路をロックせず、全停検出がなされていない
時のみ全停検出回路をロックしようとするものである。[Summary of the Invention] In the present invention, when a check input is applied to a protective relay device including an undervoltage relay, if a total failure has already been detected, the total failure detection circuit is not locked and the total failure is detected. The system attempts to lock the total stop detection circuit only when the system is not in use.
[発明の実施例]
以下図面を参照して自動監視回路の構成と本発明の一実
施例について説明する。第1図は点検歩進回路で、81
〜Snは各点検ステップ信号、×1〜Xnは各点検ステ
ップに対応する被点検継電器の゛出力である。1〜4は
AND回路、5は叶回路、6は歩進回路で、Slと×1
・・・3nと×nどのAND条件が点検ステップごと順
次成立するとAND回路1〜3はOR回路5を介して歩
進回路6を制御するので、第2図の歩進回路のタイムチ
ャートの如く点検ステップは81〜3nに順次進むよう
に制御される。[Embodiment of the Invention] The configuration of an automatic monitoring circuit and an embodiment of the present invention will be described below with reference to the drawings. Figure 1 shows the inspection step circuit, 81
~Sn is each inspection step signal, x1~Xn is the output of the relay to be inspected corresponding to each inspection step. 1 to 4 are AND circuits, 5 is a leaf circuit, and 6 is a step circuit, with Sl and ×1
. . . When which AND condition of 3n and The inspection steps are controlled to proceed sequentially from 81 to 3n.
AND回路4は全停検出し、かつ不足電圧継電器の点検
ステップS1のとき出力を生じ、歩進回路6を制御しス
テップを瞬時に81から82に進める所謂空歩進を行な
う。第3図は点検入力印加回路で、[く、S、Tは被保
護系統電圧を電圧変成器を介して与えた電圧である。The AND circuit 4 detects a full stop, produces an output during the undervoltage relay inspection step S1, and controls the step circuit 6 to instantaneously advance the step from 81 to 82, thereby performing a so-called idle step. FIG. 3 shows an inspection input application circuit, where S and T are voltages obtained by applying the protected system voltage via a voltage transformer.
7はN01回路、8はAND回路で不足電圧継電器の出
力×1が出ていない状態で、N01回路7の出ツノが「
1」レベルのとき、ステップ信号S1によりAND80
回路出力が生じて9の補助継電器が動作する。9Aは補
助継電器9が動作したとき開路リ−る常時閉接点、10
は検出要素を3相(R,S、T相)備えた不足電圧m電
器で、R,S、Hの電圧が印加されているときは不動作
の状態となっているが、R,S、Hの電圧が一定値以下
に低下したとき、又は自動車検時接点9Aが回路したと
き動作する。第4図は常時監視回路でY1〜Ynは各l
ll!電器の出力、11μNOT回路、12.14はA
ND回路、13はOR回路、15は常時監視不良を検出
する限時動作回路である。不足電圧継電器の出力Y1が
全停検出していない状態のとき、又はY2〜Ynの出ノ
〕が夫々一定時間以上継続すれば叶回路13を介して、
かつAND回路14で点検中でないことを条件に限時動
作回路15の整定時間経過後、常時監視不良と判定しア
ラームを出づ。7 is the N01 circuit, 8 is the AND circuit, and when the output x 1 of the undervoltage relay is not output, the output horn of the N01 circuit 7 is "
1" level, the step signal S1 causes the AND80
A circuit output is generated and auxiliary relay 9 operates. 9A is a normally closed contact that opens when auxiliary relay 9 operates; 10
is an undervoltage electric appliance with three phases (R, S, and T phases) of detection elements, and it is in an inactive state when the R, S, and H voltages are applied, but the R, S, It operates when the voltage of H drops below a certain value or when the vehicle inspection contact 9A is circuited. Figure 4 shows a constant monitoring circuit, where Y1 to Yn are each
ll! Electrical output, 11μNOT circuit, 12.14 is A
ND circuit, 13 is an OR circuit, and 15 is a time-limited operation circuit for constantly monitoring failure detection. When the output Y1 of the undervoltage relay is not detected as a complete stop, or if each of the outputs Y2 to Yn continues for a certain period of time or more,
On the condition that the AND circuit 14 is not inspecting, after the settling time of the time-limited operation circuit 15 has elapsed, it is determined that the constant monitoring is defective and an alarm is issued.
このとき点検中であればAND回路14はロックされ、
限時動作回路15は起動されず、アラームも出ない。At this time, if inspection is in progress, the AND circuit 14 is locked,
The time-limited operation circuit 15 is not activated and no alarm is issued.
第5図は点検不良検出回路で、16は801回路、17
.18はAND回路、19はOR回路、20は点検不良
を検出する限時動作回路である。点検中に第1図のOR
回路5の出力oPが一定時間以上変化せず「1」レベル
の状態のときは、AND回路17の出力が生じOR回路
19を介して限時動作回路20の整定時間後、点検不°
良と判定しアラームを出す。又OPがrOJレベルの状
態のときは、NO101回路1出力が「1」レベルとな
り、AND回路18の出力が生じOR回路19を介して
限時動作回路20の整定時間後アラームを出づ。このよ
うにOP比出力一定時間以上変化しない状態、所謂歩進
波Nuを検出するもので自動点検が正常に行なわれてい
るときは、OPは第2図のタイムチャー1への如く一定
間隔で「1」 「0」を繰り返すので限時動作回路20
は動作しない。第6図は本発明に゛コ;る全停検出回路
で、10Aは不足電圧継電器の出力端子、21.22は
AND回路、23は801回路、24.25は011回
路、26は全停検出する限時動作回路である。不足電圧
継電器10Aの出力が出ていない状態ではAND回路2
1も出力を出さ、ないので、AND回路22も出力を生
ぜず、限時動作回路26は起動されないので全停検出し
ていない状態となっている。このとき自動点検が行なわ
れ不足電圧継電器10Aが動作して出力を生じ、AND
回路21の出力が「1」レベルとなっても点検ステップ
S1が出力を生じている7jめ、NOT回路23の出力
は「0」レベルとなり、又全停検出−シシていないので
OR回路24は出力を生ぜず、AND回路22の入力の
一端はOレベルに押え込まれる。このため限時動作回路
26は起動されず全停検出は行なわない。次に自動点検
以前に全停の場合には、不足電圧継電器10Aが動作し
出力を出しているので、AND回路21の出力が「1」
レベルとなっている。又点検ステップS1が出力を生じ
ていないのでNOT回路23の出力は「1」レベルとな
り、OR回路24の出力が「1」レベルとなるのでAN
D回路22の出力も「1」レベルとなり、限時動作回路
26が起動され整定時間後アラームする。一旦全停検出
するとOR回路24の出力が全停検出中「1」レベルに
制御される。この状態で自動点検が行なわれると、不足
電圧#I!l電器10Aは出力を出したままでいるので
へNO回路21の出力は「1」レベルの状態となる。こ
こで点検ステップS1の出力が生じ、NO101回路2
出力が「0」レベルとなっても叶回路24は全停検出条
件で「1」レベル制御されて(\るので、AND回路2
2は「1」レベルの状態を保っている。このため限時動
作回路は全停検出したままの状態を保つことになる。上
記の・ように本発明による全停検出回路では、自動点検
が行なわれても自動点検実施前の状態を保ったままとな
る。Figure 5 shows the inspection defect detection circuit, with 16 being the 801 circuit and 17 being the 801 circuit.
.. 18 is an AND circuit, 19 is an OR circuit, and 20 is a time-limited operation circuit for detecting inspection defects. The OR shown in Figure 1 was checked during inspection.
When the output oP of the circuit 5 does not change for a certain period of time or more and remains at the "1" level, an output from the AND circuit 17 is generated and sent via the OR circuit 19 to the time-limited operation circuit 20 after the settling time, and an inspection error is detected.
It is determined to be good and an alarm is issued. When OP is at the rOJ level, the NO101 circuit 1 output goes to the "1" level, an output from the AND circuit 18 is generated, and an alarm is issued via the OR circuit 19 after the settling time of the time-limited operation circuit 20. In this way, when the OP ratio output does not change for a certain period of time, the so-called progressive wave Nu is detected, and when automatic inspection is performed normally, the OP is output at regular intervals as shown in time chart 1 in Figure 2. Since “1” and “0” are repeated, the time-limited operation circuit 20
doesn't work. Figure 6 shows a total failure detection circuit according to the present invention, where 10A is the output terminal of an undervoltage relay, 21.22 is an AND circuit, 23 is an 801 circuit, 24.25 is a 011 circuit, and 26 is a total failure detection circuit. This is a time-limited operation circuit. AND circuit 2 when the undervoltage relay 10A output is not output.
1 also outputs an output, so the AND circuit 22 also does not generate an output, and the time-limited operation circuit 26 is not activated, so it is in a state where a total stop has not been detected. At this time, an automatic inspection is performed and the undervoltage relay 10A operates to generate an output, and the AND
Even if the output of the circuit 21 is at the "1" level, the output of the NOT circuit 23 is at the "0" level at 7j when the inspection step S1 is producing an output, and since the total failure is not detected, the OR circuit 24 is No output is produced, and one end of the input of the AND circuit 22 is held at O level. Therefore, the time limit operation circuit 26 is not activated and complete stop detection is not performed. Next, if there is a complete power outage before the automatic inspection, the undervoltage relay 10A operates and outputs, so the output of the AND circuit 21 becomes "1".
level. Also, since the inspection step S1 does not produce an output, the output of the NOT circuit 23 is at the "1" level, and the output of the OR circuit 24 is at the "1" level, so the AN
The output of the D circuit 22 also goes to the "1" level, and the time-limited operation circuit 26 is activated to issue an alarm after the settling time. Once a full stop is detected, the output of the OR circuit 24 is controlled to the "1" level while the full stop is detected. If automatic inspection is performed in this state, undervoltage #I! Since the electric appliance 10A continues to output its output, the output of the NO circuit 21 is at the "1" level. Here, the output of the inspection step S1 is generated, and the NO101 circuit 2
Even if the output is at the "0" level, the output circuit 24 is controlled at the "1" level under the full stop detection condition (\), so the AND circuit 2
2 remains at the "1" level. Therefore, the time-limited operation circuit maintains the state in which the total power failure is detected. As described above, in the total failure detection circuit according to the present invention, even if an automatic inspection is performed, the state before the automatic inspection is maintained.
ここで全停検出回路の限時動作回路26と第4図の常時
監視不良検出の限時動作回路15の時間協調について説
明すると、被保護系統が全停となると第6図において、
不足電圧継電器10Aが出力を生じ、OR回路25の出
力Y1が「1」レベルとなるため、第4図の常時監視回
路では点検中でなければ限時動作回路15が起動される
。その後第6図において限時動作回路26が全停検出す
るため第4図のNUT回路11によりAND1回路12
がロックされるので、限時動作回路15の起動もロック
される。」]記より全停時には常時監視不良検出づる前
に全停検出しないと常時監視不良となるので、限時動作
回路26より限時動作回路15を長く整定しなければな
らない。Now, to explain the time coordination between the time-limited operation circuit 26 of the total power failure detection circuit and the time-limited operation circuit 15 for constant monitoring failure detection shown in FIG. 4, when the protected system becomes a total failure, in FIG.
Since the undervoltage relay 10A generates an output and the output Y1 of the OR circuit 25 goes to the "1" level, the time-limited operation circuit 15 is activated in the constant monitoring circuit of FIG. 4 unless an inspection is being performed. After that, in FIG. 6, the time limit operation circuit 26 detects a complete stoppage, so the AND1 circuit 12 is operated by the NUT circuit 11 in FIG.
Since this is locked, activation of the time-limited operation circuit 15 is also locked. ] From the above, when there is a full stop, if the full stop is not detected before the constant monitoring failure is detected, the constant monitoring will become defective, so the time limit operation circuit 15 must be set longer than the time limit operation circuit 26.
次に自動点検時に不足電圧継電器の復帰不良が発生した
と想定すると、第1図において81と×1が成立し、そ
の復帰不良でOP出力が「1」レベルのままとなってい
ると、第5図においてANDN0回路1出力を生じ点検
不良を検出する限時動作回路20が起動する。もしもこ
のとき第1図において全停検出条件が成立するとAND
N0回路出−力を生じ、歩進回路6を制御して次のステ
ップS2へ進むため復帰不良を検出づ°ることか出来な
くなる。このため本発明による全停検出回路は、自動点
検によって全停検出しないように構成されているので上
記不具合は生じない。ところが従来方式の全停検出回路
では、全停検出時間を点検不良検出時間より長くして上
記不具合を逃げていたが、このため点検不良検出時間が
長くなれば、それに伴なって全停検出時間も長くしな【
プればならなかった。又前述で説明したように常時監視
不良の検出時間も艮くせざるを得なかった。Next, assuming that a reset failure of the undervoltage relay occurs during automatic inspection, 81 and ×1 hold in Figure 1, and if the OP output remains at the "1" level due to the reset failure, then In FIG. 5, a time-limit operation circuit 20 is activated to generate the ANDN0 circuit 1 output and detect an inspection failure. If the complete stop detection condition is satisfied in Fig. 1 at this time, AND
Since the N0 circuit output is generated and the step circuit 6 is controlled to proceed to the next step S2, it becomes impossible to detect a return failure. For this reason, the total failure detection circuit according to the present invention is configured not to detect a total failure through automatic inspection, so the above-mentioned problem does not occur. However, in the conventional total failure detection circuit, the total failure detection time was made longer than the inspection failure detection time to avoid the above problem, but as a result, if the inspection failure detection time becomes longer, the total failure detection time also increases. It's long too [
I had to pull it. Furthermore, as explained above, the detection time for constant monitoring failures had to be lengthened.
以上本発明の一実施例について説明したが、本実施例以
外に自動点検により釡停検出回路に影響を与えない方法
があれば本発南と同様な結果を与えることは言うまでも
ない。Although one embodiment of the present invention has been described above, it goes without saying that if there is a method other than this embodiment that does not affect the stoppage detection circuit by automatic inspection, it will give the same result as the main train.
第7図は本発明による他の実施例である。第7図の10
A、21.23.25.26は’ls、6図と同様な回
路である。27はNOT回路、28.29はAND回路
、30はフリップフロップ回路で第8図の真理値表に示
されるような応動をするものである。ここで第7図の動
作について説明づると、自動点検が行なわれない状態で
はNOT回路23の出ノjが11」レベルに制御される
ため、全停時計り回路21の出力×1が「1」レベルと
なると静り回路28の出力は「1」レベルとなり、NO
1回路27の出力がrOJレベルとなるのでAND回路
2つの出力は「O」レベルとなる。この/jめフリップ
フロップ300Å力はS端子Ml、R端子「0」となる
ので、第8図の真理値居よりQ端子は「1」レベルとな
り限時動作回路26は整定時間後金停と判定する。又全
停でないときにはXlが「0」レベルとなるので、AN
DN0回路2「0」レベル、ANDN0回路2「1」レ
ベルとなり、フリップフロップ回路30のS端子「O」
、R端子「1」によりQ端子は「O」レベルとなり全停
とは判定しない。FIG. 7 shows another embodiment according to the present invention. 10 in Figure 7
A, 21.23.25.26 is a circuit similar to 'ls, Figure 6. 27 is a NOT circuit, 28 and 29 are AND circuits, and 30 is a flip-flop circuit that responds as shown in the truth table of FIG. Here, to explain the operation of FIG. 7, when automatic inspection is not performed, the output j of the NOT circuit 23 is controlled to the level 11, so the output x 1 of the all-stop clock circuit 21 is set to 11. ” level, the output of the quiet circuit 28 becomes “1” level, and NO
Since the output of the first circuit 27 is at the rOJ level, the outputs of the two AND circuits are at the "O" level. Since the 300 Å force of this /j flip-flop becomes S terminal Ml and R terminal "0", the Q terminal becomes "1" level from the truth gate of FIG. 8, and the time limit operation circuit 26 determines that the money has stopped after the settling time. do. Also, when it is not completely stopped, Xl is at the "0" level, so the AN
The DN0 circuit 2 becomes “0” level, the ANDN0 circuit 2 becomes “1” level, and the S terminal of the flip-flop circuit 30 becomes “O”.
, the Q terminal becomes "O" level due to the R terminal "1", and it is not determined that there is a total stop.
次に自動点検が行なわれるとNOT回路23の出力はr
OJレベルに制御されるのでANDN0回路229の出
力は共に「0」レベルとなりフリップフロップ回路30
のS、R端子共「0」となってQ端子の出力は前値保持
(※印)つまり自動点検以前の状態を保つことになる。When the next automatic inspection is performed, the output of the NOT circuit 23 is r
Since it is controlled to the OJ level, the outputs of the ANDN0 circuit 229 both become "0" level, and the flip-flop circuit 30
Both the S and R terminals become "0", and the output of the Q terminal maintains its previous value (marked with *), that is, the state before the automatic inspection.
[発明の効果]
以上本発明によるは全停検出回路によれば自動点検によ
り全停検出回路が影響を全く受()ないので、点検不良
検出回路及び常時監視回路の検出時間との時間協調を考
慮する必要がなくなる。本来全停検出時間は系統故障が
除去される時間と協調をとるべきで不要に長く整定する
のは好ましくない。又従来方法だと常時監視回路の検出
時間を運用面より長く出来ない揚台があり、このときt
よ点検不良の検出をあきらめなければならなかった。[Effects of the Invention] As described above, according to the present invention, since the total failure detection circuit is not affected at all by automatic inspection, time coordination with the detection time of the defective inspection detection circuit and the constant monitoring circuit can be achieved. There is no need to consider it. Essentially, the total failure detection time should be coordinated with the time for removing system faults, and it is not desirable to set it to be unnecessarily long. In addition, with the conventional method, there are platforms where the detection time of the constant monitoring circuit cannot be longer than the operational point of view, and in this case, t
I had to give up on detecting poor inspection.
更に本発明に°;ればあらゆる装置の全停検出時間を同
じ整定とすることも可能となり、保守面の煩雑さが軽減
されることになる。Furthermore, according to the present invention, it becomes possible to set the total stop detection time of all devices to the same setting, which reduces the complexity of maintenance.
第1図は歩進回路図、第2図は歩進回路のタイムチヤー
ド、第3図は点検人力印加回路図、第4図は常時監視回
路図、第5図は点検不良検出回路図、第6図は本発明に
よる全停検出回路図、第7図は他の実施例図、第8図は
フリップフロップの図
真理値表である。
1〜4,8,12,14.17,18,21,22,2
8.29・・・AND回路5.13.19.24.25
・・・・・・・・・・・・OR回路6・・・・・・・・
・歩進回路
7.11.16.23.27・・・・・・・・・・・・
NOT回路15.20.26、・・・・・・・・・・・
・・・・・・・限時動作回路30・・・・・・[[回路
(7317)代理人 弁理士 則近 憲佑(他1名)
第2図
第3図Fig. 1 is a stepwise circuit diagram, Fig. 2 is a time chart of the stepwise circuit, Fig. 3 is an inspection manual power application circuit diagram, Fig. 4 is a constant monitoring circuit diagram, Fig. 5 is an inspection defect detection circuit diagram, FIG. 6 is a diagram of a full stop detection circuit according to the present invention, FIG. 7 is a diagram of another embodiment, and FIG. 8 is a truth table of a flip-flop. 1~4,8,12,14.17,18,21,22,2
8.29...AND circuit 5.13.19.24.25
・・・・・・・・・・・・OR circuit 6・・・・・・・・・
・Step circuit 7.11.16.23.27・・・・・・・・・・・・
NOT circuit 15.20.26,・・・・・・・・・・・・
......Time-limited operation circuit 30...[[Circuit (7317) Agent Patent attorney Kensuke Norichika (and 1 other person) Fig. 2 Fig. 3
Claims (1)
なえた保護継電装置において、不足電圧継電器が所定時
間以上動作したとき全停と判定する第1の回路と、前記
不足電圧継電器に点検入力をくわえたとき前記第1の回
路にロック出力を導出する第2の回路とをそなえ、第1
の回路が既に全停と判定しているときは第1の回路に対
してロック出力を導出せず、第1の回路が全停と判定し
ていないときのみ、第1の回路に対してロック出力を導
出することを特徴とする保護継電装置。A protective relay device equipped with an undervoltage relay that detects a drop in system voltage includes a first circuit that determines a total outage when the undervoltage relay operates for more than a predetermined time, and a check input to the undervoltage relay. a second circuit that derives a lock output from the first circuit when the first circuit is held in its mouth;
If the circuit has already been determined to be completely stopped, the lock output is not derived for the first circuit, and the lock output is not derived for the first circuit only when the first circuit has not been determined to be completely stopped. A protective relay device characterized by deriving an output.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59054160A JPS60200724A (en) | 1984-03-23 | 1984-03-23 | Protective relaying unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59054160A JPS60200724A (en) | 1984-03-23 | 1984-03-23 | Protective relaying unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60200724A true JPS60200724A (en) | 1985-10-11 |
Family
ID=12962792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59054160A Pending JPS60200724A (en) | 1984-03-23 | 1984-03-23 | Protective relaying unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60200724A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0928033A (en) * | 1995-07-10 | 1997-01-28 | Fuji Electric Co Ltd | Bus protective device |
-
1984
- 1984-03-23 JP JP59054160A patent/JPS60200724A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0928033A (en) * | 1995-07-10 | 1997-01-28 | Fuji Electric Co Ltd | Bus protective device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7707458B2 (en) | Self-test system | |
JPS6128142B2 (en) | ||
JPS60200724A (en) | Protective relaying unit | |
JP3063334B2 (en) | Highly reliable information processing equipment | |
JPH069426B2 (en) | Inspection device for protective relay | |
JP2002315175A (en) | Protective relay system | |
JP2885575B2 (en) | Auxiliary relay drive circuit | |
JPS61164420A (en) | Reclosing device | |
JP5147460B2 (en) | Protection control device | |
JPH10129485A (en) | Electronic railroad crossing control device | |
JPH04127819A (en) | Protective relay | |
JPH02246726A (en) | Method of detecting monitoring failure of digital relay | |
JP2000201426A (en) | Protective relay device | |
JP2986267B2 (en) | Digital relay device | |
JPH0254011B2 (en) | ||
JP2000047724A (en) | Monitor and control unit | |
JPS62224377A (en) | Disasters preventing system | |
JPH10138922A (en) | Electronic railroad-crossing controller | |
JPS60148325A (en) | Protective relay system | |
JPH10129484A (en) | Electronic railroad crossing control device | |
JPS60207414A (en) | Protecting relaying device | |
JPS6245770B2 (en) | ||
JPH04172911A (en) | Protective relay | |
JPS6361858B2 (en) | ||
JPS5911721A (en) | Protecting repeating device |