JPS60198454A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS60198454A
JPS60198454A JP59054528A JP5452884A JPS60198454A JP S60198454 A JPS60198454 A JP S60198454A JP 59054528 A JP59054528 A JP 59054528A JP 5452884 A JP5452884 A JP 5452884A JP S60198454 A JPS60198454 A JP S60198454A
Authority
JP
Japan
Prior art keywords
delay material
ultrasonic
cracks
probe
tenon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59054528A
Other languages
Japanese (ja)
Inventor
Tetsuya Kisanuki
木佐貫 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59054528A priority Critical patent/JPS60198454A/en
Publication of JPS60198454A publication Critical patent/JPS60198454A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect accurately by the crack of an objective body by fitting a delay material to the ultrasonic probe, dividing the delay material into an upper and a lower part and rotating and adjusting turnably the upper delay material about the lower delay material, and making an ultrasonic wave incident on the crack at right angles. CONSTITUTION:The upper delay material 23 and lower delay material 25 are fitted to an ultrasonic probe case 29. The lower part of the upper delay material 23 is formed into a semicylindrical surface 27 and the lower delay material 25 is fitted therein while the upper delay material 23 is made slidable as shown by an arrow A. Then when a flaw of the tenon 41 of a turbine blade 39 is detected by this probe 20, the lower delay material 25 is set abutting on the surface of the tenon 41 and the upper delay material 23 is rotated to make an adjustment so that the ultrasonic wave is incident to cracks A and B at right angles. Even when the cracks A and B run in different angle directions, the upper delay material 23 is rotated to make an adjustment. Thus, the ultrasonic wave is made incident on the cracks at right angles and its reflected wave is received, so cracks in the objective body are detected accurately.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は超音波探傷装置に使用される超音波探触子に
係り、特に蒸気タービンのタービン羽根テノン部の超音
波探傷に使用されて好適な超音波探触子に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an ultrasonic probe used in an ultrasonic flaw detection device, and particularly to an ultrasonic probe suitable for use in ultrasonic flaw detection of the tenon portion of a turbine blade of a steam turbine. Regarding ultrasonic probes.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、超音波探傷装置は、超音波探触子を被検体に当
接し、この超音波探触子から超音波を被検体内部へ入射
させ、被検体内部の欠陥(亀裂等)から反射する超音波
(反射波)を同一または他の超音波探触子で受信するこ
とにょシ、被検体内部の欠陥を探傷するものである。と
ころが、このような超音波探傷装置では、入射する超音
波のエネルギ伝搬の点から、被検体の浅部を探傷するこ
とができない。そこで、との浅部探傷を可能とするため
に遅延材が用いられる。
In general, ultrasonic flaw detection equipment uses an ultrasonic probe that is brought into contact with the object to be inspected, and the ultrasonic probe injects ultrasonic waves into the object. Defects inside the object are detected by receiving sound waves (reflected waves) with the same or different ultrasonic probes. However, such an ultrasonic flaw detection device cannot detect shallow parts of the object due to the energy propagation of the incident ultrasonic waves. Therefore, a delay material is used to enable shallow flaw detection.

例えば、第1図に示すように、蒸気タービンのタービン
羽根テノン部を探傷する超音波探触子(垂直探触子)1
では、超音波を発生する振動子が内包された探触子ケー
ス3の下部に、遅延材5が固着される。この遅延材5に
より、被検体たるタービン羽根6のテノン7へ入射する
超音波は全て遠距離音場波とな9、テノン7の探傷面9
直下(約3〜4■)に生ずる亀裂Aをも探傷することが
できる。なお、図中符号11はシュラウドである。
For example, as shown in FIG.
In this case, the delay material 5 is fixed to the lower part of the probe case 3 containing a transducer that generates ultrasonic waves. Due to this delay material 5, all the ultrasonic waves incident on the tenon 7 of the turbine blade 6, which is the object to be inspected, become far-field sound waves 9, and the flaw detection surface 9 of the tenon 7
It is also possible to detect cracks A that occur directly below (approximately 3 to 4 cm). Note that the reference numeral 11 in the figure is a shroud.

しかしながら、このような遅延材5を用いた探触子1で
もテノン7に生ずる亀裂を探傷できないことがある。つ
ま9、テノン7の探傷面9がシュラウド11面に対し傾
斜し、しかもテノン7に生ずる亀裂A、Bがシュラウド
11面にほぼ平行であるため、探傷面9に垂直に設置さ
れた垂直探触子1は、第1図矢視の如く亀裂A、Bで反
射する超音波を受信できないからである。
However, even with the probe 1 using such a delay material 5, cracks occurring in the Tenon 7 may not be able to be detected. The testing surface 9 of the claw 9 and tenon 7 is inclined with respect to the shroud 11 surface, and the cracks A and B that occur in the tenon 7 are almost parallel to the shroud 11 surface, so the vertical probe is installed perpendicular to the testing surface 9. This is because the child 1 cannot receive the ultrasonic waves reflected by the cracks A and B as shown by the arrow in FIG.

そこで、第2図に示すように、遅延材13の下端部を傾
斜させた斜角探触子15が用いられる。この第2図にお
いて第1図と同様な部分は同一の符号を附す。この斜角
探触子15によれば、探触子ケース3内の振動子で発生
した超音波は探傷面9で屈曲して、テノン7内を亀裂A
、Bに対し垂直に入射する。そして、亀裂A、Bからの
反射波は入射波と同一のコースを逆進して斜角探触子1
5に到る。
Therefore, as shown in FIG. 2, an oblique probe 15 in which the lower end of the delay material 13 is inclined is used. In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals. According to this angle probe 15, the ultrasonic waves generated by the vibrator in the probe case 3 are bent at the flaw detection surface 9 and are transmitted through the crack A in the tenon 7.
, is incident perpendicularly to B. Then, the reflected waves from cracks A and B travel in the same direction as the incident wave and reach the angle probe 1.
Reach 5.

したがって、この斜角探触子15により、シュラウ+−
n面にほぼ平行に生ずる亀裂A、Bを探傷することがで
きる。
Therefore, with this angle probe 15, Shrou +-
Cracks A and B that occur almost parallel to the n-plane can be detected.

ところが、亀裂A、Bはシュラウド11面に対し常に平
行であるとは限らず、経験的には約100の範囲内で傾
斜する場合が多い。これに対し、斜角探触子15におけ
る遅延材15の下端面の傾斜角は一定であり、したがっ
てテノン7内へ入射する超音波は常にシュラウド11面
に垂直である。したがって、一つの斜角探触子15で様
々に傾斜した全ての亀裂を探傷することができず、その
ためには、超音波入射角を異ならしめる多種類の斜角探
触子を複数個使用しなければならない。その結果、探傷
作業が複雑化し、また探傷精度が低下するおそれがある
However, the cracks A and B are not always parallel to the shroud 11 surface, and empirically, they are often inclined within a range of about 100 degrees. On the other hand, the angle of inclination of the lower end surface of the delay material 15 in the angle probe 15 is constant, and therefore the ultrasonic waves incident into the Tenon 7 are always perpendicular to the shroud 11 surface. Therefore, it is not possible to detect all cracks with various inclinations with one angle probe 15, and in order to do so, it is necessary to use multiple types of angle probes with different ultrasonic incident angles. There must be. As a result, the flaw detection work becomes complicated and the flaw detection accuracy may decrease.

〔発明の目的〕[Purpose of the invention]

この発明は上記事実に鑑みなされたものであって、被検
体内に生じた亀裂を適確かつ容易に探傷することができ
る超音波探触子を提供するととを目的とする。
The present invention has been made in view of the above facts, and it is an object of the present invention to provide an ultrasonic probe that can accurately and easily detect cracks occurring within a subject.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、この発明に係る超音波探触
子は、超音波発生用の振動子を内包した探触子ケースが
遅延材に回着されて、被検体の浅部をも探傷可能とする
超音波探触子において、上記遅延材が分割され、上記探
触子ケースを固着する可動分割遅延材が、前記被検体の
探傷面に設置可能な固定分割遅延材に対し摺動自在に構
成されたものでちゃ、前記振動子から上記両分側遅延材
を介して被検体内へ入射する超音波の入射角を連続的に
変化させるものである。
In order to achieve the above object, the ultrasonic probe according to the present invention has a probe case containing a transducer for generating ultrasonic waves, which is rotated around a delay material, so that flaws can be detected even in shallow parts of the object. In the ultrasonic probe, the delay material is divided, and the movable divided delay material that fixes the probe case is slidable relative to the fixed divided delay material that can be installed on the flaw detection surface of the object. In this configuration, the angle of incidence of the ultrasonic waves that enter the subject from the transducer through the delay members on both sides is continuously changed.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第3図および第4図は、この発明に係る超音波探触子の
一実施例を示す説明図である。
FIGS. 3 and 4 are explanatory diagrams showing one embodiment of the ultrasonic probe according to the present invention.

超音波探触子加の遅延材21はその高さ方向に上下二分
割され、可動分割遅延材としての上部遅延材おと、固定
分割遅延材としての下部遅延材5とから成る。この分割
面は半円柱曲面Mに形成され、この半円柱曲面nは下部
遅延材5の側に向って突出して湾曲形成される。したが
って、上部遅延材部は下部遅延材5に対し摺りながら、
半円柱曲面27の軸線0を中心にこの半円柱曲面nの湾
曲方向に揺動可能に設けられる。
The delay material 21 to which the ultrasonic probe is attached is divided into upper and lower halves in the height direction, and consists of an upper delay material 5 as a movable divided delay material and a lower delay material 5 as a fixed divided delay material. This dividing surface is formed into a semi-cylindrical curved surface M, and this semi-cylindrical curved surface n is curved and protrudes toward the lower delay member 5 side. Therefore, while the upper delay material part is sliding against the lower delay material 5,
It is provided so as to be swingable about the axis 0 of the semi-cylindrical curved surface 27 in the curving direction of the semi-cylindrical curved surface n.

また、上部遅延材おの上面には、探触子ケースとしての
金属性ケース29が植設される。この金属性ケース四に
は、電気振動を超音波に変換する振動子が内包される。
Further, a metal case 29 as a probe case is implanted on the upper surface of the upper delay material. This metal case 4 contains a vibrator that converts electrical vibrations into ultrasonic waves.

そして、この振動子に高周波ケーブル31が接続されて
、振動子に電気振動が送られる。振動子から発生した縦
波の超音波は第4図に二点鎖線で示すように、上部遅延
材部および下部遅延材25を通過して遠距離音場波とな
る。遠距離音場波とは、振動子から被検体までの距離が
遠距離となるため、被検体の浅部をも探傷可能とする超
音波をいう。
A high frequency cable 31 is connected to this vibrator, and electric vibrations are sent to the vibrator. The longitudinal ultrasonic wave generated from the vibrator passes through the upper delay material section and the lower delay material 25 and becomes a far-field sound field wave, as shown by the two-dot chain line in FIG. 4. Far-field sound field waves refer to ultrasonic waves that can detect flaws even in shallow parts of the object because the distance from the transducer to the object is long.

また、下部遅延材5の上部外周には、筒状のケーシング
33が嵌合され固定される。このケーシング33の内部
には、上部遅延材nが一定の間隙を有して収納され、こ
の間隙により上部遅延材るはその揺動が妨げられること
がない。
Further, a cylindrical casing 33 is fitted and fixed to the upper outer periphery of the lower delay member 5. The upper delay member n is housed inside the casing 33 with a certain gap therebetween, and the swing of the upper delay member n is not hindered by this gap.

さらに、ケーシングあの対向する両側壁には可動調整ね
じ35A、3.5Bが螺装される。これら一対の可動調
整ねじ35A 、 Bはその先端面が、揺動方向に位置
する上部遅延材部の両側面37A、37Bにそれぞれ当
接可能に設けられる。可動調整ねじ35A、Bのこの当
接によシ、上部遅延材乙は下部遅延材6に対し任意の角
度傾斜した位置に保持される。この上部遅延材部の傾斜
角度を連続的に変化させることにより、超音波の入射角
が例えば35゜の範囲内で連続的に変化可能に構成され
る。
Further, movable adjustment screws 35A and 3.5B are screwed onto the opposite side walls of the casing. These pair of movable adjustment screws 35A and 35B are provided so that their tip surfaces can abut on both side surfaces 37A and 37B of the upper delay material section located in the swinging direction, respectively. Due to this contact of the movable adjustment screws 35A and 35B, the upper delay member B is held at a position inclined at an arbitrary angle with respect to the lower delay member 6. By continuously changing the inclination angle of the upper delay material section, the incident angle of the ultrasonic wave can be continuously changed within a range of, for example, 35 degrees.

一方、下部遅延材5の下端面は一定角度に傾斜して形成
される。この傾斜角は、例えば第10図に示すように、
超音波探触子20ヲ被検体としての蒸気タービン羽根3
9のテノン41に設置し、この超音波探触+9の上部遅
延材23を下部遅延材部に対し傾斜させない(傾斜角度
θ°)場合に、探傷面43からテノン41内へ入射する
超音波が、同図矢印に示すごとく、シュラウド45面に
対し垂直に入射するよう設定される。例えば、約5°の
傾斜角度に設定される。
On the other hand, the lower end surface of the lower delay member 5 is formed to be inclined at a certain angle. This angle of inclination is, for example, as shown in FIG.
Ultrasonic probe 20; steam turbine blade 3 as a test object
When the ultrasonic probe + 9's upper delay member 23 is not inclined with respect to the lower delay member (angle of inclination θ°), the ultrasonic waves incident from the flaw detection surface 43 into the tenon 41 , is set to be incident perpendicularly to the shroud 45 surface as shown by the arrow in the figure. For example, the tilt angle is set to about 5°.

次に、この超音波探触+9を用いて蒸気タービンのター
ビン羽根テノン部を探傷する方法を説明する。
Next, a method of detecting flaws in the tenon portion of a turbine blade of a steam turbine using this ultrasonic probe +9 will be explained.

まず、タービン羽根テノン部の構造およびそのテノン部
に生ずる亀裂につき述べる。蒸気タービンでは、第5図
に示すように、タービンロータ47に複数列のタービン
動翼49が形成される。このタービン動翼49は多数の
タービン羽[39が環状に配列して形成されるが、これ
らタービン羽根39の先端部は第6図に示すように、シ
ュラウド45によシ数枚づつ連結される。
First, we will discuss the structure of the tenon part of the turbine blade and the cracks that occur in the tenon part. In a steam turbine, as shown in FIG. 5, a plurality of rows of turbine rotor blades 49 are formed on a turbine rotor 47. The turbine rotor blades 49 are formed by a large number of turbine blades [39] arranged in an annular shape, and the tips of these turbine blades 39 are connected to the shroud 45 in several pieces, as shown in FIG. .

すなわち、タービン羽根39の先端にはテノン41が突
設され、このテノン41が第7図に示すようにシュラウ
¥45の貫通孔51に嵌合される。この嵌合されたテノ
ンの先端は第8図に示すようにかしめられて、シュラウ
ド45に固定される。このように、タービン羽根39が
シュラウド49に数枚づつ連結される結果、蒸気力およ
び遠心力等に対するタービン動翼490強度が確保され
る。
That is, a tenon 41 is provided protruding from the tip of the turbine blade 39, and this tenon 41 is fitted into the through hole 51 of the shroud 45 as shown in FIG. The tip of this fitted tenon is caulked and fixed to the shroud 45 as shown in FIG. As a result of connecting several turbine blades 39 to the shroud 49 in this way, the strength of the turbine blade 490 against steam force, centrifugal force, etc. is ensured.

ところで、タービン回転中には、かしめられたテノン4
1に剪断応力および曲げ応力が生ずる。このうち曲げ応
力は、第9図における0部およびD部に応力集中を生せ
しめ、この応力集中によシこれら0部、D部に亀裂が発
生する。この亀裂A。
By the way, while the turbine is rotating, the caulked Tenon 4
1, shear and bending stresses occur. Among them, the bending stress causes stress concentration in the 0 part and the D part in FIG. 9, and this stress concentration causes cracks to occur in the 0 part and the D part. This crack A.

Bは第10図に示すように、0部、D部のそれぞれから
シュラウド45面にほぼ平行に、テノン41の中心軸に
向って延びるものである。これらの亀裂A。
As shown in FIG. 10, B extends from each of the 0 section and the D section approximately parallel to the shroud 45 surface toward the central axis of the tenon 41. These cracks A.

Bft、超音波探触子頒によシ探傷する。Bft, flaws are detected using an ultrasonic probe.

下部遅延材5に対する上部遅延材幻の傾斜角度を00と
した状態で、超音波探触+9をテノン41の探傷面43
に設置する。このとき、探傷面43からテノン41内へ
入射する超音波は第10図に矢視する如く、シュラウド
45面に対し垂直となる。
With the inclination angle of the upper delay material phantom relative to the lower delay material 5 set to 00, the ultrasonic probe +9 is placed on the flaw detection surface 43 of the Tenon 41.
to be installed. At this time, the ultrasonic waves entering the tenon 41 from the flaw detection surface 43 are perpendicular to the shroud 45 surface as shown by the arrow in FIG.

さて、この場合、金属ケース9内の振動子から発生する
超音波は、上部および下部遅延材オ、25を通過して遠
距離音場波となるため、至近位置C部に発生する亀裂A
kも探傷することができる。
Now, in this case, since the ultrasonic waves generated from the vibrator in the metal case 9 pass through the upper and lower delay members O, 25 and become far-field sound field waves, a crack A occurs at the close position C.
k can also be detected.

また、0部およびD部に発生する亀裂A、Bがシュラウ
ド45面に対し±3°以内であるときは、上部遅延材部
の傾斜角度を調整せずとも、超音波は亀裂A、BK対し
ほぼ垂直に入射する。その結果、亀裂A、Bから反射す
る超音波は超音波探触+9の方向に逆進する。また、亀
裂A、Bがシュラウド45面に対し±3°以上に傾いて
いる場合には、上部遅延材部の傾斜角度を可動調整ねじ
35A、Bで連続的に調整し、探傷面43からテノン4
1内へ入射する超音波の入射角を例えば最大35°まで
変化させて、種々に傾斜した亀裂A、Bのそれぞれに対
し超音波を垂直に入射させる。その結果、この場合にも
、棟々に傾斜した亀裂A、Bから反射する超音波を超音
波探触+9の方向に逆進させることができる。
In addition, when the cracks A and B that occur in the 0 and D parts are within ±3 degrees with respect to the shroud 45 surface, the ultrasonic waves will be able to penetrate the cracks A and BK without adjusting the inclination angle of the upper delay material part. incident almost perpendicularly. As a result, the ultrasonic waves reflected from the cracks A and B travel backward in the direction of the ultrasonic probe +9. In addition, if the cracks A and B are inclined by ±3° or more with respect to the shroud surface 45, continuously adjust the inclination angle of the upper delay material section with the movable adjustment screws 35A and B, and 4
The angle of incidence of the ultrasonic waves incident into the cracks A and B is varied, for example, up to 35 degrees, and the ultrasonic waves are made perpendicular to each of the variously inclined cracks A and B. As a result, in this case as well, the ultrasonic waves reflected from the ridge-sloping cracks A and B can be made to travel backwards in the direction of the ultrasonic probe +9.

このように、亀裂A、Bから反射する超音波が超音波探
触+9の方向に逆進することから、亀裂A、Bにおける
テノン41の中心軸方向への投影断面積が小さく、亀裂
A、Bから反射する超音波のエネルギが小のときでも、
この反射エネルギのほとんど全てを超音波探触+9がキ
ャッチするととができる。
In this way, since the ultrasonic waves reflected from the cracks A and B travel backwards in the direction of the ultrasonic probe +9, the projected cross-sectional area of the Tenon 41 in the direction of the central axis in the cracks A and B is small, and the Even when the energy of the ultrasound reflected from B is small,
Ultrasonic probe +9 catches almost all of this reflected energy.

実験によれば、超音波周波数を20 MHzとし入射音
圧を80 dBとして、直径1m+の円形断面を有する
亀裂Aを探傷した場合には、第11図の矢印Eに示すよ
うに、亀裂Aから反射する超音波は入射音圧の約10%
の波高となってブラウン管画面上に表われる。なお、同
図における矢印Fはテノン41および遅延材21間の反
射波を示す。このように、0部に生ずる亀裂Aでは、第
12図に示すように、直径約0.8rIrM以上のもの
であれば、この亀裂Aからの反射波のエネルギを超音波
探触子加がキャッチできる。また、D部に生ずる亀裂B
では、第13図に示すごとく、直径約0.411111
1以上のものであれば、この亀裂Bから反射する超音波
のエネルギを同様にキャッチすることができる。なお、
上記第12図および第13図では、入射する超音波周波
数が20MH2の場合である。
According to experiments, when a crack A with a circular cross section of 1 m+ in diameter is detected using an ultrasonic frequency of 20 MHz and an incident sound pressure of 80 dB, as shown by arrow E in Fig. The reflected ultrasonic wave is approximately 10% of the incident sound pressure.
The wave height appears on the CRT screen. Note that an arrow F in the figure indicates a reflected wave between the tenon 41 and the delay material 21. In this way, as shown in Figure 12, if the crack A that occurs at part 0 has a diameter of approximately 0.8 rIrM or more, the ultrasonic probe will catch the energy of the reflected wave from this crack A. can. In addition, the crack B that occurs in the D part
Then, as shown in Figure 13, the diameter is about 0.411111
If it is one or more, the energy of the ultrasonic wave reflected from this crack B can be similarly caught. In addition,
12 and 13 above, the incident ultrasonic frequency is 20 MH2.

故に、亀裂A、Hの投影断面積が小であっても、さらに
亀裂A、Bが種々の角度に傾斜していても、可動調整ね
じ35A、Bi用いて超音波の入射角を連続的に変化さ
せることにより、亀裂A、Hに対し超音波を垂直に入射
させることができ、亀裂A。
Therefore, even if the projected cross-sectional area of cracks A and H is small, and even if cracks A and B are inclined at various angles, the incident angle of the ultrasonic waves can be continuously adjusted using the movable adjustment screws 35A and 35Bi. By changing this, it is possible to make the ultrasonic waves perpendicularly enter the cracks A and H.

Bを確実に探傷することができる。これにより、テノン
に生ずる亀裂の探傷精度が向上し、タービン羽根の信頼
性を高めることができる。と同時に、探傷作業の簡易化
を図ることもできる。
B can be reliably detected. This improves the accuracy of detecting cracks that occur in the Tenon, and increases the reliability of the turbine blade. At the same time, flaw detection work can be simplified.

なお、上記実施例では、分割面たる半円柱曲面27が下
部遅延材部の側に突出するものにつき説明したが、上部
遅延材部の側に突出して湾曲するものであってもよい。
In the above embodiment, the semi-cylindrical curved surface 27 serving as the dividing surface protrudes toward the lower delay material portion, but it may protrude toward the upper delay material portion and curve.

また、上記実施例では、遅延材210分割面が半円柱曲
面ごとなるものにつき説明したが、その分割面が球面形
状をなすものであってもよい。この場合には、上部遅延
材nは下部遅延材5に対しあらゆる方向に傾斜可能に設
けられるので、テノン41に生ずる亀裂の探傷精度をよ
り向上させることができる。
Further, in the above embodiment, the dividing surface of the delay material 210 is a semi-cylindrical curved surface, but the dividing surface may have a spherical shape. In this case, since the upper delay member n is provided so as to be tiltable in all directions with respect to the lower delay member 5, the accuracy of detecting cracks occurring in the tenon 41 can be further improved.

さらに、上記実施例では、遅延材21を二分割するもの
につき説明したが、この遅延材21′f、その高さ方向
に、分割面を半円柱曲面または球面とじて三分割するも
のであってもよい。
Further, in the above embodiment, the delay material 21 is divided into two parts, but the delay material 21'f is divided into three parts by dividing the dividing surface into a semi-cylindrical curved surface or a spherical surface in the height direction. Good too.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る超音波探触子によれば、
振動子を内包する探触子ケースが固着された遅延材が分
割され、上記探触子ケースを固着する可動分割遅延材が
、被検体の探傷面に設置可能な固定分割遅延材に対し摺
動自在に構成されたことから、探傷子から被検体内部へ
入射する超音波の入射角を連続的に変化させて被検体内
の亀裂に対し超音波を垂直に入射させることができ、し
たがって被検体内に生じた亀裂を適確かつ容易に探傷す
ることができるという効果を奏する。
As described above, according to the ultrasonic probe according to the present invention,
The delay material to which the probe case containing the transducer is fixed is divided, and the movable split delay material that fixes the probe case slides against the fixed split delay material that can be installed on the test surface of the test object. Because of its flexible structure, it is possible to continuously change the angle of incidence of the ultrasonic waves that enter the inside of the test object from the flaw detector and make the ultrasonic waves perpendicular to the cracks inside the test object. This has the effect that cracks that occur inside can be detected accurately and easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は垂直探触子を用いてテノン全探傷する状況を示
す側面図、第2図は斜角探触子を用いてテノン全探傷す
る状況を示す側面図、第3図はこの発明に係る超音波探
触子の一実施例を示す斜視図、第4図はこの実施例の縦
断面図、第5図は蒸気タービンのタービン動翼を示す斜
視図、第6図はシュラウドの平面図、第7図はテノンを
かしめる前のシュラウドおよびタービン羽根を示す斜視
図、第8図はテノンをかしめた後のタービン羽根および
シュラウドを示す斜視図、第9図は第8図のIX−IX
線に沿う断面図、第10図はこの実施例を用いてテノン
を探傷する状況を示す側面図、第11図は直径1t+m
の円形投影断面積を有する亀裂Aをこの実施例によって
探傷した際に得られたブラウン管画面の模式図、第12
図はこの実施例を用いた場合の亀裂Aの直径とこの亀裂
Aから反射する超音波の波高との関係を示す線図、第1
3図はこの実施例を用いた場合の亀裂Bの直径とこの亀
裂Bから反射する超音波の波高との関係を示す線図であ
る。 加・・・超音波探触子、21・・・遅延材、幻・・・上
部遅延材、5・・・下部遅延材、27・・・半円柱曲面
、四・・・金属性ケース、35A、35B・・・可動調
整ねじ、39・・・タービン羽根、41・・・テノン、
43・・・探傷面、A、B・・・亀裂、0・・・半円柱
曲面の軸線。 B 第111図 第12図 第13図 υ、ロ −、υ 1.5
Fig. 1 is a side view showing a situation where a vertical probe is used to perform full Tenon flaw detection, Fig. 2 is a side view showing a situation where a full Tenon flaw is detected using an angled probe, and Fig. 3 is a side view showing a situation where a full Tenon flaw is detected using a vertical probe. FIG. 4 is a longitudinal sectional view of this embodiment; FIG. 5 is a perspective view of a turbine rotor blade of a steam turbine; and FIG. 6 is a plan view of a shroud. , FIG. 7 is a perspective view showing the shroud and turbine blade before the tenon is crimped, FIG. 8 is a perspective view showing the turbine blade and shroud after the tenon is crimped, and FIG. 9 is IX-IX in FIG. 8.
10 is a side view showing the situation in which Tenon is detected using this embodiment, and FIG. 11 is a cross-sectional view taken along the line.
A schematic diagram of a cathode ray tube screen obtained when a crack A having a circular projected cross-sectional area of
The figure is a diagram showing the relationship between the diameter of crack A and the wave height of the ultrasonic wave reflected from this crack A when this embodiment is used.
FIG. 3 is a diagram showing the relationship between the diameter of the crack B and the wave height of the ultrasonic wave reflected from the crack B when this embodiment is used. Add: Ultrasonic probe, 21: Delay material, Phantom: Upper delay material, 5: Lower delay material, 27: Semi-cylindrical curved surface, 4: Metallic case, 35A , 35B... Movable adjustment screw, 39... Turbine blade, 41... Tenon,
43...Flaw detection surface, A, B...Crack, 0...Axis of semi-cylindrical curved surface. B Fig. 111 Fig. 12 Fig. 13 υ, Lo -, υ 1.5

Claims (1)

【特許請求の範囲】 1、超音波発生用の振動子を内包した探触子ケースが遅
延材に固着されて、被検体の浅部をも探傷可能とする超
音波探触子において、上記遅延材が分割され、上記探触
子ケースを固着する可動分割遅延材が、前記被検体の探
傷面に設置可能な固定分割遅延材に対し摺動自在に構成
されたことを特徴とする超音波探触子。 2、可動分割遅延材は、被検体の探傷面に平行な直線廻
りに揺動可能に設けられた特許請求の範囲第1項記載の
超音波探触子。 3、遅延材は、その高さ方向上下に二分割された特許請
求の範囲第1項または第2項記載の超音波探触子。
[Scope of Claims] 1. An ultrasonic probe in which a probe case containing a transducer for generating ultrasonic waves is fixed to a delay material so that flaws can be detected even in shallow parts of the object, The ultrasonic detector is characterized in that the material is divided and the movable divided delay material that fixes the probe case is configured to be slidable relative to the fixed divided delay material that can be installed on the flaw detection surface of the test object. Tentacles. 2. The ultrasonic probe according to claim 1, wherein the movable segmented delay material is provided so as to be swingable around a straight line parallel to the flaw detection surface of the object. 3. The ultrasonic probe according to claim 1 or 2, wherein the delay material is vertically divided into two parts in the height direction.
JP59054528A 1984-03-23 1984-03-23 Ultrasonic probe Pending JPS60198454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59054528A JPS60198454A (en) 1984-03-23 1984-03-23 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59054528A JPS60198454A (en) 1984-03-23 1984-03-23 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS60198454A true JPS60198454A (en) 1985-10-07

Family

ID=12973158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59054528A Pending JPS60198454A (en) 1984-03-23 1984-03-23 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS60198454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3937465C1 (en) * 1989-11-10 1990-11-22 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt Ev, 5300 Bonn, De Test head holder for ultrasonic testing installation - has adjuster with spherical bearing in carrier and engaging conical shell under spring pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3937465C1 (en) * 1989-11-10 1990-11-22 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt Ev, 5300 Bonn, De Test head holder for ultrasonic testing installation - has adjuster with spherical bearing in carrier and engaging conical shell under spring pressure

Similar Documents

Publication Publication Date Title
US7010982B2 (en) Method of ultrasonically inspecting airfoils
EP3477296B1 (en) Dual ultrasonic probe with variable roof angle
CN110320282A (en) Variable-angle ultrasonic probe and pipe circumferential weld transverse defect supersonic detection method
US4388831A (en) Ultrasonic probe for nondestructive inspection
CN113552217B (en) Unknown defect profile reconstruction method based on double-self-transmitting and self-receiving phased array probe
US5001674A (en) Ultrasonic testing method
JPS60198454A (en) Ultrasonic probe
JP3908378B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
CN109187742B (en) Method for detecting whether bolt hole has hole edge crack
JP2016050811A (en) Ultrasonic flaw detector and ultrasonic flaw detection method based on tofd flaw detection technique
JP4077274B2 (en) Gas turbine air compressor blade surface crack inspection method and apparatus
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
Jin et al. Comparison of morphology characterization for regular cracks with multi-mode total focusing method
JP4023008B2 (en) Ultrasonic flaw detector for bolt defect inspection
JPS5826380Y2 (en) Ultrasonic flaw detection probe
JPS61148366A (en) Ultrasonic probe
US6952967B2 (en) Ultrasonic transducer
WO2022180972A1 (en) Ultrasonic inspection device
US11835485B2 (en) Ultrasonic probe having flexible stabilizing element for probe alignment
JPS6262287B2 (en)
KR100441757B1 (en) multi-scanning ultrasonic inspector for weld zone
JP2883051B2 (en) Ultrasonic critical angle flaw detector
JPH09329588A (en) Variable-angle probe
JPS61118655A (en) Probe for ultrasonic flaw detection of tenon part
JPS59184859A (en) Ultrasonic skew angle probe