JPS60198064A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPS60198064A
JPS60198064A JP59053041A JP5304184A JPS60198064A JP S60198064 A JPS60198064 A JP S60198064A JP 59053041 A JP59053041 A JP 59053041A JP 5304184 A JP5304184 A JP 5304184A JP S60198064 A JPS60198064 A JP S60198064A
Authority
JP
Japan
Prior art keywords
fuel
differential pressure
signal
oxidizer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59053041A
Other languages
Japanese (ja)
Inventor
Yasuo Takagi
康夫 高木
Takuma Yuasa
湯浅 琢磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON NENRYO GIJUTSU KAIHATSU KK
Toshiba Corp
Original Assignee
NIPPON NENRYO GIJUTSU KAIHATSU KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON NENRYO GIJUTSU KAIHATSU KK, Toshiba Corp filed Critical NIPPON NENRYO GIJUTSU KAIHATSU KK
Priority to JP59053041A priority Critical patent/JPS60198064A/en
Publication of JPS60198064A publication Critical patent/JPS60198064A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To absorb transient pressure variation to improve safety by connecting in parallel volume elements to a fuel electrode line and an oxidizing agent electrode line through control valves, detecting differential pressure between both lines to control opening of each control valve. CONSTITUTION:Volume elements 16 and 17 are connected in parallel to an oxidizing agent line 14 and a fuel electrode line 15 in the outlet of a fuel cell containing an oxidizing agent electrode 12 and a fuel electrode 13 through control valves 18 and 19. The differential pressure between both lines 14 and 15 in the inlet of the fuel cell is detected with a differential pressure gauge. The signal detected is inputted to a dead zone circuit 21 of a controller 20. When the value of differential pressure exceeds a specified value, the opening of either control valve 18 or 19 is controlled through a signal recognition circuit 23. When pressure in either electrode is high, pressure variation is absorbed with either volume element 16 or 17 to prevent generation of crossover. Therefore, safety and reliability are improved.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は燃料電池装置に関するものである。[Detailed description of the invention] [Technical field of invention] The present invention relates to a fuel cell device.

[発明の技lfi的背景とその問題点コ従来、燃料の有
しているエネルギーを直接電気的エネルギーに変換する
装置どじ−(燃¥:1電池が知られている。′この燃ネ
81電池は通常、電解負層を挾んで燃料極および酸化剤
極より成る一対の多孔7′I電極を配置・するとともに
、一方の電恒の背面に水素等の流体燃料を接触させ、ま
た他方の電極の背面に酸素等の流体酸化剤を接触させ、
このとき′起こる電気化学的反応を利用して、上記電極
間から電気エネルギーを取り出すようにしたものであり
、前記燃料と酸化剤が供給されている限り高い変検効率
で電気エネルギーを取り出すことができるものである。
[Background of the invention and its problems] Conventionally, a device that directly converts the energy contained in fuel into electrical energy has been known. Usually, a pair of porous 7'I electrodes consisting of a fuel electrode and an oxidizer electrode are placed between the electrolytic negative layer, and a fluid fuel such as hydrogen is brought into contact with the back surface of one electrode, and the other electrode is placed in contact with a fluid fuel such as hydrogen. Bring a fluid oxidizer such as oxygen into contact with the back of the
The electrochemical reaction that occurs at this time is used to extract electrical energy from between the electrodes, and as long as the fuel and oxidizer are supplied, electrical energy can be extracted with high efficiency. It is possible.

第1図は、−例としてり/V酸型燃料電池の単位セルの
構成を断面斜視図にて示したも′のである。
FIG. 1 is a cross-sectional perspective view showing the structure of a unit cell of a Li/V acid fuel cell as an example.

第1図において、電解質としてりん酸を多孔質のカーボ
ンベーパに含浸させた電解質層1をザントイッチ状に挾
んで、その両端に白金触媒を塗布した燃料極2および酸
化剤極3の一対の電極を配し、さらにその両側に燃料流
通溝4および酸化剤流通溝5を有する黒鉛板のインタコ
ネクタ6.7を取付け、一方のインクコネクタの満4に
水素を主成分とする燃料を流し、他方のインタコネクタ
の溝5に酸化剤として空気を流す。
In FIG. 1, an electrolyte layer 1 in which porous carbon vapor is impregnated with phosphoric acid as an electrolyte is sandwiched in a Zandwich shape, and a pair of electrodes, a fuel electrode 2 and an oxidizer electrode 3, coated with a platinum catalyst on both ends of the electrolyte layer 1 are sandwiched in between. Furthermore, a graphite plate interconnector 6.7 having a fuel flow groove 4 and an oxidizer flow groove 5 is installed on both sides of the ink connector 6. Air is passed through the groove 5 of the interconnector as an oxidizing agent.

これにより、水素を主成分どする燃料を流す側の燃料極
2では、次のような反応により水素ガスがイAン化され
る。
As a result, at the fuel electrode 2 on the side through which fuel containing hydrogen as a main component flows, hydrogen gas is converted into ion by the following reaction.

1」2−+ 2 l−1” +22− ・=(1)この
水素イオンは、電解質層1を通って空気を流す側の酸化
剤極3に到達する。一方、上記(1)の反応により放出
された電子e′″は外部負荷回路8を通って酸化剤極3
に達し、空気中の酸素と次のような化学反応を行ない水
蒸気が生成される。
1"2-+ 2 l-1" +22- ・=(1) These hydrogen ions pass through the electrolyte layer 1 and reach the oxidizer electrode 3 on the side through which air flows. On the other hand, due to the reaction in (1) above, The emitted electrons e''' pass through the external load circuit 8 and reach the oxidizer electrode 3.
water vapor is produced through the following chemical reaction with oxygen in the air.

J402 +2日” +22−−+1−120 =12
1この電気化学反応に必要な最小の単位をセルと称する
。そして、この単位セル9がら得られる電圧はせいぜい
1v程度であるので、実用的にはこの単位セル9を複数
個積層した積層体を1つの電池としてまとめ上げ、圧力
容器内に収納して燃オ′M電池本体を形成している。
J402 +2 days” +22−−+1−120 =12
1. The smallest unit required for this electrochemical reaction is called a cell. Since the voltage obtained from this unit cell 9 is about 1V at most, in practice, a stacked body of a plurality of unit cells 9 is assembled together as one battery, stored in a pressure vessel, and burned. 'M forms the battery body.

ところで、このような燃料電池にあっては、酸化剤極3
および燃料極2側に流通するガスの圧力の不均衡(以下
、極間差圧と称する)が一定値以上に達すると、電解質
層1を反応ガスが電離されない状態で通り抜ける、いわ
ゆるクロスオーバ現象を引起すことになる。この極間差
圧が過大となることによるクロスオーバ現象は、特に燃
料電池の起動、停止時または負荷急変時等、燃料極2ま
たは酸化剤極3のラインの流旦が変化するような過渡状
態において起りやすい。そして、このような現象が起る
と水素と酸素がガス状のまま混合し、燃焼Jる可能性が
あり危険であるばかりでなく、電解¥1層1が破壊して
正常な電気化学反応の機能を喪失する恐れがある。
By the way, in such a fuel cell, the oxidant electrode 3
When the pressure imbalance of the gas flowing to the fuel electrode 2 side (hereinafter referred to as the interelectrode pressure difference) reaches a certain value or more, a so-called crossover phenomenon occurs in which the reactant gas passes through the electrolyte layer 1 without being ionized. It will cause it. This crossover phenomenon caused by an excessive differential pressure between the electrodes occurs especially in transient situations where the flow rate of the fuel electrode 2 or oxidizer electrode 3 line changes, such as when the fuel cell starts or stops or when the load suddenly changes. It is more likely to occur in When such a phenomenon occurs, hydrogen and oxygen mix in a gaseous state and may burn, which is not only dangerous, but also destroys the electrolytic layer 1 and prevents normal electrochemical reactions. There is a risk of loss of function.

[発明の目的] 本発明は上記のような問題を解決するために成されたも
ので、その目的はシステムが過渡状態にあるような場合
にも極間差圧の発生を小さく抑制し電解質層の破壊を防
止することが可能な安全性の高い燃料電池装置を提供す
ることにある。
[Purpose of the Invention] The present invention has been made to solve the above-mentioned problems, and its purpose is to suppress the generation of interelectrode pressure to a small level even when the system is in a transient state, and to reduce the electrolyte layer. The object of the present invention is to provide a highly safe fuel cell device that can prevent destruction of the fuel cell.

[発明の概要] 上記目的を達成するために本発明では、燃料および酸化
剤が流通する燃料流通溝および酸化剤流通溝を有する燃
料極および酸化剤極の一対の電極間に電解質層を配しC
なる単位セルを複数個積層して燃料電池本体を形成し、
上記燃料極および酸化剤極へ燃料極ラインおよび酸化剤
極ラインを介しで燃料および酸化剤を供給、排出し上記
電極間から電気エネルギーを取り出すようにした本来の
燃11電池に、上記燃料極ラインおよび酸化剤極ライン
に並列に夫々設けられた体積要素と、これら各々の体積
要素の入口側に設けられた調節弁と、上記燃料極ライン
と酸化剤極ラインとの差圧を検出する差圧検出器と、こ
の差圧検出器からの差圧信号に応じて上記調節弁の開度
を制御する制御装置とを付加して構成したことを特徴と
する。 ゛[発明の実施例] まず本発明は、一般に体積要素がラインの圧力変動を吸
収緩和する特性をもっていることを利用し、各電極ライ
ンに並列に体積要素を設置し、かつ入口側に設けられた
調節弁の開度を極間差圧信号により制御しようとするも
のである。
[Summary of the Invention] In order to achieve the above object, the present invention provides an electrolyte layer between a pair of electrodes, a fuel electrode and an oxidizer electrode, each having a fuel flow groove and an oxidizer flow groove through which fuel and an oxidizer flow. C
A fuel cell body is formed by stacking multiple unit cells of
In the original fuel cell, fuel and oxidant are supplied and discharged to the fuel electrode and oxidizer electrode through the fuel electrode line and oxidizer electrode line, and electrical energy is extracted from between the electrodes. and a volume element provided in parallel with the oxidizer electrode line, a control valve provided on the inlet side of each volume element, and a differential pressure for detecting the differential pressure between the fuel electrode line and the oxidizer electrode line. The present invention is characterized in that it is configured by adding a detector and a control device that controls the opening degree of the control valve in accordance with a differential pressure signal from the differential pressure detector.゛[Embodiments of the Invention] First, the present invention takes advantage of the fact that volume elements generally have the property of absorbing and mitigating line pressure fluctuations, and a volume element is installed in parallel with each electrode line, and a volume element is installed on the inlet side. The opening degree of the control valve is controlled by the interpole differential pressure signal.

以下、本発明を図面に示す一実施例について説明する。An embodiment of the present invention shown in the drawings will be described below.

第2図は、本発明による燃料電池装置の構成例を示すも
のである。図において、11は前述した第1図の単位セ
ル9を複数個積層して成る燃料電池装置であり、12お
よび13は夫々その酸化剤極および燃料極である。また
31および32は、夫々上記酸化剤逢12および燃料極
13へ供給する空気流量および燃料流量をm節する調節
弁、33および34は同じく夫々の極12および13か
ら排出されるガス流量を調節する調節弁である。
FIG. 2 shows an example of the configuration of a fuel cell device according to the present invention. In the figure, 11 is a fuel cell device formed by stacking a plurality of unit cells 9 shown in FIG. 1, and 12 and 13 are an oxidizer electrode and a fuel electrode thereof, respectively. Further, 31 and 32 are control valves that adjust the air flow rate and fuel flow rate to be supplied to the oxidizing agent 12 and the fuel electrode 13, respectively, and 33 and 34 are control valves that adjust the gas flow rate discharged from the respective poles 12 and 13. It is a control valve that

一方、14および15は夫々酸化剤極ラインおよび燃料
極ラインで由り、各極ライン14.15の燃料電池本体
11の出口側には、並列にそれぞれ体積要素16.17
を設り、且つこの各体積要素16.17の入口側には夫
々調節弁18.19を設けている。
On the other hand, 14 and 15 are an oxidizer electrode line and a fuel electrode line, respectively, and volume elements 16 and 17 are arranged in parallel on the outlet side of the fuel cell main body 11 of each electrode line 14 and 15.
A control valve 18.19 is provided on the inlet side of each volume element 16.17.

さらに、20は上記燃料電池本体11の入口mすに設け
られ上記各極ライン14.15の極間差圧を検出する差
圧検出器としての差圧計、30はこの差圧ム120の出
力信号に応じて上記調節弁18゜19の開度を制御する
制御装置である。
Furthermore, 20 is a differential pressure gauge as a differential pressure detector installed at the entrance m of the fuel cell main body 11 and detects the differential pressure between the poles of each pole line 14, 15, and 30 is the output signal of this differential pressure gauge 120. This is a control device that controls the opening degree of the control valves 18 and 19 in accordance with the above.

ここで制御装置30は、上記差圧8120の出力信号が
正負側ともにあらかじめ定めた一定値を越えた場合に、
その越えた分の信号に比例した出力信号22を送出する
不感帯回路21と、この不感帯回路21の出力信号22
が正符号であるか負符号であるかによって上記調節弁1
8または19のいずれを制御すべき方を判別し、判別さ
れた方に対して上記不感帯回路21の出力信号22を制
り0信号24または25として出力する信号ブを別回路
23とから成り、その具体的な一例を第3図1こ示す、
第3図で、26はスイッヂンク回路、27は符号判別回
路である。
Here, the control device 30 controls, when the output signal of the differential pressure 8120 exceeds a predetermined constant value on both the positive and negative sides,
A dead band circuit 21 that sends out an output signal 22 proportional to the exceeded signal, and an output signal 22 of this dead band circuit 21.
The above control valve 1 depends on whether it has a positive sign or a negative sign.
8 or 19 to be controlled, and controls the output signal 22 of the dead band circuit 21 for the determined one and outputs it as a 0 signal 24 or 25. A specific example of this is shown in Figure 3.
In FIG. 3, 26 is a switching circuit, and 27 is a code discrimination circuit.

次に、かかる如く構成した燃1′3I電池装置において
、酸化剤極ライン14の圧力が大きい方向を差圧計20
の正符号の信号とし、今システムの過渡状態において第
4図20に示Jような極間差圧が差圧計20によって検
出されたとづる。この差圧信号20は、不感帯回路21
を通ると第4図の22に示す如く、当該信号20の正の
あるla P + 。
Next, in the fuel 1'3I battery device configured as described above, the direction in which the pressure of the oxidizer electrode line 14 is high is determined by the differential pressure gauge 2.
It is assumed that the differential pressure between the electrodes is detected by the differential pressure gauge 20 as shown in FIG. 4, 20 in the transient state of the system. This differential pressure signal 20 is transmitted to a dead band circuit 21
As shown at 22 in FIG. 4, the signal 20 has a positive la P + .

負のある値P−を越えた信号のみが出力される。Only signals exceeding a certain negative value P- are output.

そして、この出力信号22は第3図の信号弁別回路23
を通ると、信号20の正負の符号を判別し上記信号22
を、正の場合は調節弁18へ制御信号24として出力し
て調節弁18が開方向に、一方角の場合は調節弁19へ
制御信号25として出力して調節弁19が開方向に夫々
制御される。
This output signal 22 is then transferred to the signal discriminator circuit 23 in FIG.
When passing through the signal 22, the positive or negative sign of the signal 20 is determined and the signal 22 is
If it is positive, it is output as a control signal 24 to the control valve 18 to control the control valve 18 in the opening direction, and if it is one side, it is output as a control signal 25 to the control valve 19 to control the control valve 19 in the opening direction. be done.

すなわち、この信号弁別回路23により弁別された信号
は第4図の24.25に示すような波形となり、酸化剤
極ライン14側の圧力が大きいときは差圧信号20が正
符号として現われ、当該ライン14に並列に設各ノられ
た体積要素16の入口側glB弁18を、正の値の大き
さに応じて信号24により同方向に動作させて、正方向
の差圧の上昇を吸収し抑制する。逆に、燃料極ライン1
5側の圧力が高いときは差圧信号20が負符号として現
われ、燃料極ライン15に並列に設けられている体積要
素17の入口側調節弁19を、負の値の大きさに応じて
信号25により開方向に動作させて負方向の差圧の上昇
を吸収して抑制することになる。
That is, the signal discriminated by this signal discrimination circuit 23 has a waveform as shown at 24.25 in FIG. 4, and when the pressure on the oxidizer electrode line 14 side is large, the differential pressure signal 20 appears as a positive sign, and The glB valve 18 on the inlet side of the volume element 16 installed in parallel with the line 14 is operated in the same direction by the signal 24 according to the magnitude of the positive value, thereby absorbing the rise in differential pressure in the positive direction. suppress. Conversely, fuel electrode line 1
When the pressure on the side 5 is high, the differential pressure signal 20 appears as a negative sign, and the control valve 19 on the inlet side of the volume element 17 provided in parallel with the fuel electrode line 15 is controlled according to the magnitude of the negative value. 25 in the opening direction to absorb and suppress the rise in differential pressure in the negative direction.

上述したように本燃料電池発電装置は、燃料゛および酸
化剤が流通する燃料流通溝および酸化剤流通溝を有する
燃料t11.3および酸化剤tii12の一対の電極間
に電解質層を配してなる単位セルを複数個積層して燃料
電池本体11を形成し、上記燃料極13および酸化剤極
12へ燃料極ライン15および酸化剤極ライン14を介
して燃料および酸化剤を供給、排出し、上記電極12.
13間から電気エネルギーを取り出すようにした従来の
燃料電池に、上記燃料極ライン15および酸化剤極ライ
ン14に並列に夫々設けられた体積要素16および17
と、これら各々の体積要素16および17の入口側に設
けられた調節弁18および19と、上記燃料極ライン1
5と酸化剤極ライン14との差圧を検出する差圧検出L
120と、この差圧検出器20からの差圧信号の正また
は負の符号を判別し、かつ当該信号の大きさが一定値を
越えた場合にその越えた分の信号に比例した信号の大き
さに応じて上記調節弁18または19の開度を制御する
制御装置30とを備えて構成するようにしたものである
As described above, this fuel cell power generation device includes an electrolyte layer arranged between a pair of electrodes of the fuel t11.3 and the oxidizer tii12, which have a fuel flow groove and an oxidizer flow groove through which the fuel and oxidizer flow. A fuel cell main body 11 is formed by stacking a plurality of unit cells, and fuel and oxidizer are supplied to and discharged from the fuel electrode 13 and the oxidizer electrode 12 through the fuel electrode line 15 and the oxidizer electrode line 14, and the fuel cell body 11 is formed by stacking a plurality of unit cells. Electrode 12.
In a conventional fuel cell that extracts electrical energy from between 13 and 13, volume elements 16 and 17 are provided in parallel with the fuel electrode line 15 and the oxidizer electrode line 14, respectively.
, control valves 18 and 19 provided on the inlet side of each of these volume elements 16 and 17, and the fuel electrode line 1
Differential pressure detection L that detects the differential pressure between 5 and the oxidizer electrode line 14
120, and determines the positive or negative sign of the differential pressure signal from this differential pressure detector 20, and when the magnitude of the signal exceeds a certain value, the magnitude of the signal proportional to the exceeded signal is determined. The control device 30 is configured to include a control device 30 that controls the opening degree of the control valve 18 or 19 depending on the situation.

従って、何らかの原因でシステムが過渡状態となり、酸
化剤極および燃料極ライン14および15の流量変化に
よって極間差圧が大きく発生した場合には、いずれかの
極の圧力が高くなったかにより、その極のライン14ま
たは15に並列に設置された体積要素16または17の
入0側の調節片18または19を開方向に制御して、そ
の圧ノj変化を吸収し、過渡的な圧力変動の発生に対し
てもクロスオーバ現象の発生を防止することができ、ち
って従来のような電解質層1の破壊をなくして本来の電
気化学反応機能を保持し、かつガスの燃焼を防止して安
全性を高めることか可能となる。
Therefore, if the system enters a transient state for some reason and a large difference in pressure between the electrodes occurs due to changes in the flow rates of the oxidizer electrode and fuel electrode lines 14 and 15, the The adjustment piece 18 or 19 on the inlet side of the volume element 16 or 17 installed in parallel with the pole line 14 or 15 is controlled in the opening direction to absorb the change in pressure no. It is possible to prevent the occurrence of crossover phenomenon, which eliminates the conventional destruction of the electrolyte layer 1, maintains the original electrochemical reaction function, and prevents gas combustion, making it safe. It is possible to improve your sexuality.

尚、上記実施例では体積要素16.17を燃料電池本体
11の出口側に設けたが、その入口側に設けるJ:うに
してもよいものである。
In the above embodiment, the volume elements 16 and 17 are provided on the outlet side of the fuel cell main body 11, but they may also be provided on the inlet side.

[発明の効果] 以上説明したように本発明によれば、システムが過渡状
態にあるような場合にも極間差圧の発生を小さく抑制し
電解質層の破壊を防止することが可能な安全性および信
頼性の高い燃料電池装置が提供できる。
[Effects of the Invention] As explained above, according to the present invention, even when the system is in a transient state, the generation of interelectrode pressure difference can be suppressed to a small level, and the electrolyte layer can be prevented from being destroyed. and a highly reliable fuel cell device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はりん酸型燃料電池本体の単位セルの構成を示1
11i面斜視図、第2図は本発明の一実施例を示す構成
図、第3図は同実施例における制御装置の一例を示すブ
ロック図、第4図は同実施例の作用を説明するだめの波
形図である。 1・・・電解質層、2・・・燃料極、3・・・酸化剤極
、4.5・・・流通溝、6.7・・・インクコネクタ、
8・・・外部負荷回路、9・・・単位セル、11・・・
燃オ°1電池本体、12・・・酸化剤極、13・・・燃
オ゛31極、14・・・酸化剤極ライン、15・・・燃
1’l +@ライン、16.17・・・体積要素、18
,19.31,32,33.34・・・調節弁、20・
・・差圧呂1.21・・・不感化回路、22・・・不感
帯回路の出力信号、23・・・信号弁別回路、30・・
・制御装置。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 1
Figure 1 shows the configuration of the unit cell of the phosphoric acid fuel cell.
11i plane perspective view, FIG. 2 is a configuration diagram showing an embodiment of the present invention, FIG. 3 is a block diagram showing an example of a control device in the embodiment, and FIG. 4 is a diagram for explaining the operation of the embodiment. FIG. DESCRIPTION OF SYMBOLS 1... Electrolyte layer, 2... Fuel electrode, 3... Oxidizer electrode, 4.5... Distribution groove, 6.7... Ink connector,
8... External load circuit, 9... Unit cell, 11...
Fuel 1 battery body, 12... Oxidizer electrode, 13... Fuel 31 pole, 14... Oxidizer electrode line, 15... Fuel 1'l + @ line, 16.17. ...Volume element, 18
, 19.31, 32, 33.34... control valve, 20.
... Differential pressure bath 1.21 ... Insensitization circuit, 22 ... Output signal of dead band circuit, 23 ... Signal discrimination circuit, 30 ...
·Control device. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 1

Claims (1)

【特許請求の範囲】 (l] I’A!: tlおよび酸化剤が流通する燃イ
゛!1流通溝および酸化剤流通溝を有づる燃料極J3よ
ひ酸化剤(倶の一対の電極間に電解質層を配してなる単
位セルを複数個(6層して燃料電油本体を形成し、前記
燃It極diよひΩ〉化剤極へ塩n1勇ラインおよび酸
化剤極ラインを介し−U 9p4料および酸化剤を供給
、排出し前記電極間から電気エネルギーを取り出νよう
にした燃料電池に43いて、前記燃料極ラインおよび(
l!i化剤極ラインに並列に夫々設置]られた体積要素
ど、これら各々の体積要素の入口側に股りられた調節弁
と、前記燃1’l 111!ラインと酸化剤極ラインど
の差圧を検出する差圧検出器と、この差圧検出器からの
差圧信号に応じて前記調節弁の開度を制御する制御装置
とを備えて成るこ″とを特徴とする燃籾電池引L (,2) 制御装置は、差圧検出器からの差圧信号の大
きさが一定額を越えた場合にその越えた分の信号に比例
した出力信号を送出する不感帯回路と、この不感帯回路
の出力信号が正rG号が負荷らかにより制御すべき調1
ii)弁を1′す別して制御信号を出力する信号弁別回
路とより成ることを特徴とづる111許請求の範囲第(
1)項記載の燃オ゛81電池装冒。
[Claims] (l) I'A!: A fuel electrode J3 having a fuel electrode J3 and an oxidizer flow groove, through which tl and an oxidizer flow, and an oxidizer (between the pair of electrodes). A plurality of unit cells (6 layers are formed to form a fuel cell body) each having an electrolyte layer arranged thereon, and a salt line and an oxidizer line are connected to the fuel electrode and the oxidizer electrode. -U 9P4 material and oxidizing agent are supplied and discharged, and electrical energy is extracted from between the electrodes 43, and the fuel electrode line and (
l! Volume elements installed in parallel with the i-forming agent pole line, control valves straddled on the inlet side of each of these volume elements, and the fuel 1'l 111! and a control device for controlling the opening degree of the control valve in accordance with the differential pressure signal from the differential pressure detector. When the magnitude of the differential pressure signal from the differential pressure detector exceeds a certain amount, the control device sends out an output signal proportional to the exceeded signal. The output signal of this dead band circuit has a positive rG signal which is controlled by the load.
ii) a signal discrimination circuit which separates the valve by 1' and outputs a control signal;
1) Insert the fuel 81 battery as described in item 1).
JP59053041A 1984-03-19 1984-03-19 Fuel cell system Pending JPS60198064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59053041A JPS60198064A (en) 1984-03-19 1984-03-19 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59053041A JPS60198064A (en) 1984-03-19 1984-03-19 Fuel cell system

Publications (1)

Publication Number Publication Date
JPS60198064A true JPS60198064A (en) 1985-10-07

Family

ID=12931798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59053041A Pending JPS60198064A (en) 1984-03-19 1984-03-19 Fuel cell system

Country Status (1)

Country Link
JP (1) JPS60198064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135770A (en) * 1986-11-26 1988-06-08 株式会社日立製作所 Temperature and humidity detector for refrigerator
JPH01195670A (en) * 1988-01-29 1989-08-07 Hitachi Ltd Fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100371A (en) * 1981-12-09 1983-06-15 Hitachi Ltd Fuel cell system
JPS58164159A (en) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The Abnormal pressure difference preventive device of fuel cell
JPS58165270A (en) * 1982-03-26 1983-09-30 Fuji Electric Corp Res & Dev Ltd Pressure control system of supply gas to fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100371A (en) * 1981-12-09 1983-06-15 Hitachi Ltd Fuel cell system
JPS58164159A (en) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The Abnormal pressure difference preventive device of fuel cell
JPS58165270A (en) * 1982-03-26 1983-09-30 Fuji Electric Corp Res & Dev Ltd Pressure control system of supply gas to fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135770A (en) * 1986-11-26 1988-06-08 株式会社日立製作所 Temperature and humidity detector for refrigerator
JPH01195670A (en) * 1988-01-29 1989-08-07 Hitachi Ltd Fuel cell

Similar Documents

Publication Publication Date Title
EP1517392B1 (en) Solid high polymer type cell assembly
US6455181B1 (en) Fuel cell system with sensor
EP0068508A2 (en) Methanol fuel cell
JPH06223850A (en) Operation protecting system for solid high polymer electrolyte fuel cell
US20040096710A1 (en) Methods for operating fuel cells fed with a gas containing hydrogen and carbon oxide, and devices relating thereto
JP4362266B2 (en) Fuel gas supply shortage detection method and fuel cell control method
US3544380A (en) Method of activating fuel cell electrode by direct current
JPS60198064A (en) Fuel cell system
AU2002226284A1 (en) Pem-fuel cell stack with a coolant distributor structure
US3357861A (en) Barriers for fuel cells
JP3258390B2 (en) Fuel cell
US20040013916A1 (en) Environment neutralization of pem bipolar plate fuel cell effluent in situ
JP3258378B2 (en) Fuel cell
JPS6191876A (en) Fuel cell device
JPS6191877A (en) Fuel cell power generating system
Chambers et al. Carbonaceous fuel cells
JPS5882480A (en) Fuel battery generating system
JPH06260197A (en) Solid polymer electrolytic fuel cell system
JPS59149665A (en) Fuel-cell system
JPH0773056B2 (en) Fuel cell
JPH0322026B2 (en)
JPS59209277A (en) Fuel cell
JPS62246266A (en) Fuel cell device
JPH11126623A (en) Fuel cell
JPS62278766A (en) Operating method for phosphoric acid fuel cell