JPS60197206A - Washing method of permeable membrane module - Google Patents

Washing method of permeable membrane module

Info

Publication number
JPS60197206A
JPS60197206A JP5201284A JP5201284A JPS60197206A JP S60197206 A JPS60197206 A JP S60197206A JP 5201284 A JP5201284 A JP 5201284A JP 5201284 A JP5201284 A JP 5201284A JP S60197206 A JPS60197206 A JP S60197206A
Authority
JP
Japan
Prior art keywords
raw water
water
permeate
permeable membrane
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5201284A
Other languages
Japanese (ja)
Other versions
JPH0122005B2 (en
Inventor
Tatsuo Azuma
東 辰夫
Misao Yasui
操 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP5201284A priority Critical patent/JPS60197206A/en
Publication of JPS60197206A publication Critical patent/JPS60197206A/en
Publication of JPH0122005B2 publication Critical patent/JPH0122005B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prevent the contamination of a permeate side by a pyrogen by enabling backwashing using a permeate, by hermetically closing the permeate side in a gas preliminarily filled state while raising raw water pressure in a raw water side for a predetermined time and subsequently falling the same. CONSTITUTION:If circumferential sterilized gas is naturally substituted with a sterilized liquid after a permeable membrane module 7 is sterilized, the gas in the permeate side of the permeable membrane module 7 can be filled. At the time of washing, a permeate take-out valve 3 is closed. Raw water transmits a membrane 9 from an open raw water inflow valve 1 and is gradually accumulated in the permeate side while compresses gas to raise the pressure in the permeate side. Next, when a raw water discharge valve 2 is opened, the pressure in the raw water side is lowered at a stroke. The permeate 15 accumulated in the permeate side is flowed to the raw water side by the expansion force of the compressed gas to perform backwashing. The fine suspended substance accumulated on the surface of the membrane 9 is released and discharged out of the system while goes with the flow in the raw water side. This operation is repeated several times by the opening and closing of the raw water discharge valve 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明紘、透過膜モジュールの洗浄方法に関し、特に都
市上水、イオン交換水、微粒子を含んだスラリー水溶液
などを原水として、膜透過によって微粒子、生菌、パイ
ロジエン(Pyrogen )などを含まない透過水(
精製水)を得るための、透過膜モジュールを洗浄する透
過膜モジュールの洗浄方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for cleaning a permeable membrane module, in particular city water, ion-exchanged water, slurry aqueous solution containing fine particles, etc. as raw water, and fine particles are removed by membrane permeation. , permeated water that does not contain live bacteria, pyrogen, etc.
The present invention relates to a method for cleaning a permeable membrane module to obtain purified water.

(従来技術) 都市上水、イオン交換水、蒸溜水などは、それぞれ家庭
用、工業用などの使用の目的に応じたそれ相応の浄化処
理を経た水であるが、微粒子、生菌、パイロジエンを完
全に除去したものではなく、電子工業用、製薬工業用、
医療用などの目的には不適当である。
(Prior art) City tap water, ion-exchanged water, distilled water, etc. are water that has undergone appropriate purification treatment depending on the purpose of use, such as household or industrial use. It is not completely removed, but it is used in the electronic industry, pharmaceutical industry,
It is unsuitable for medical purposes.

微粒子、生菌、パイロジエンを完全に除去した水(以下
無菌水と称す)を製造するには、一般に無滴よシも膜分
離による方法が適当であシ、孔径の小さな逆浸透膜を用
いれば純度の極めて高い水を製造することができる。し
かしながら、そのような高純度の無菌水を高流量で確保
するためには設備が大型になシ、複雑な圧力調整設備が
必要となシ、更に使用端末に至るまでの装置において、
再汚染の機会が多く、これを管理すること社甚だ困難で
あゐ。
In order to produce water that has completely removed particulates, viable bacteria, and pyrogenes (hereinafter referred to as sterile water), membrane separation methods are generally more appropriate than dropless methods. Water of extremely high purity can be produced. However, in order to secure such high-purity sterile water at a high flow rate, large equipment is required, complicated pressure adjustment equipment is required, and furthermore, the equipment up to the terminal where it is used is
There are many opportunities for recontamination, and it is extremely difficult to control this.

これに対し最近、上質の原水が使用できることを前提と
して、よシコンパクトで簡易な設備であって、使用端末
近傍に設置し、−供給原水を全量透過して無菌水を得る
ことができ、かつ簡単に管理できるものが要求されてい
る。
In contrast, recently, on the premise that high-quality raw water can be used, very compact and simple equipment has been developed that can be installed near the user terminal, and - allows all of the supplied raw water to pass through to obtain sterile water. There is a need for something that can be easily managed.

例えば、現在病院などの無菌水供給用には、マ□ イク
ロフィルトレーショングレードの膜が一般に用いられて
いる。具体的には特開昭57−17407号に、膜とし
てポリオレフィンを延伸して見られる網状構造のマイク
ロフィルトレージョン膜を用いると、その理論孔径が菌
やパイロジエンの大きさよシも大きいと考えられるにも
拘らず、菌やパイロジエンの表い透過水が得られること
が示されている。その機構は十分明らかではないが、膜
内部に菌やパイロジエンが捕促され通過を阻止するもの
と考えられている。
For example, microfiltration grade membranes are currently commonly used to supply sterile water in hospitals and the like. Specifically, in JP-A No. 57-17407, it is believed that if a microfiltration membrane with a network structure made by stretching polyolefin is used as a membrane, its theoretical pore diameter will be larger than the size of bacteria or pyrodiene. Nevertheless, it has been shown that surface permeate of bacteria and pyrogens can be obtained. Although the mechanism is not fully clear, it is thought that bacteria and pyrogens are trapped inside the membrane and blocked from passing through.

しかしながら実際には、都市上水を原水として、マイク
ロスイルトレージョングレードの膜を用いて無菌水を製
造した場合には、透過水量、(それまでに透過した水の
全量、つまシ積算量のこと)とともに急速に透水速度(
透過流量のこと)が低下し、かつ一定の透過水量を越え
るとパイロジエンのリークが始まシ、透過水量とともに
透過水中のパイロジエンの濃度が高くなっていく。
However, in reality, when sterile water is produced using a micro-siltation grade membrane using city water as raw water, the amount of permeated water (total amount of water permeated up to that point, cumulative amount of water) ), the water permeability rate (
When the amount of permeated water decreases and exceeds a certain amount of permeated water, pyrogen begins to leak, and the concentration of pyrogen in the permeated water increases with the amount of permeated water.

この現象は原水中の微小懸濁物質が膜孔中に捕促されて
閉塵するからであシ、またパイロジエンの捕捉量に一定
の限界があるからであると考えられる。
This phenomenon is thought to be because fine suspended matter in the raw water is trapped in the membrane pores and become trapped, and also because there is a certain limit to the amount of pyrogen that can be trapped.

次にマイクロフィルトレージョングレードの膜ではなく
限外濾過膜の無菌水供給用モジュールの場合、その理論
孔径線菌よシも遥かに小さく、またパイロジーエンよシ
も小さい。、従ってもちろん、菌紘完全に除去できるが
、パイロジエンの場合、非常に小さま透過率(オーダと
して例えば10−9〜10−18程度と推定できる)が
あると考えられる。限外濾過膜の阻止機構は、膜表面上
での阻止であると考えられる。しかるに都市上水を原水
として限外濾過膜を用いて全量透過で無菌水を製造した
場合、透過水量とともに急速に透水速度が低下し、かつ
一定の透過水量を越えた段階で無菌水使用の初期にパイ
ロジエンがリークし、この濃度も高くなっていく。この
現象紘、原水中の微小懸濁物質が膜表面上に堆積し、水
透過に対して抵抗するからであシ、またパイロジエンが
膜表面に高濃度に蓄積するため、膜を介してパイロジエ
ンの濃度に非常に大きな差が生じ、この濃度差を駆動力
として、装置の停止中に、パイロジエンが原水側から透
過側に拡散し、これが使用の初めに出るものと考えられ
る。
Next, in the case of a sterile water supply module that uses an ultrafiltration membrane rather than a microfiltration grade membrane, its theoretical pore diameter is much smaller, and its pyrogens are also smaller. Therefore, of course, bacterial spores can be completely removed, but in the case of pyrodiene, it is thought that the transmittance is extremely low (estimated to be on the order of, for example, 10-9 to 10-18). The inhibition mechanism of ultrafiltration membranes is believed to be inhibition on the membrane surface. However, when sterile water is produced using urban tap water as raw water and through total permeation using an ultrafiltration membrane, the water permeation rate decreases rapidly with the amount of permeated water, and when the amount of permeated water exceeds a certain level, the initial use of sterile water occurs. pyrogen leaks out, and its concentration also increases. This phenomenon is caused by microscopic suspended matter in the raw water depositing on the membrane surface and resisting water permeation, and also because pyrogen accumulates at a high concentration on the membrane surface, causing pyrogen to pass through the membrane. It is thought that a very large difference in concentration occurs, and this concentration difference is used as a driving force to diffuse pyrogen from the raw water side to the permeate side while the equipment is stopped, and this is released at the beginning of use.

従来、このような膜について逆洗浄を行えば、膜の透水
性捻回復し、膜表面の汚れが除去できることが知られて
いる。しかし、とれを無菌水製造用装置に用いた場合、
次のような問題がある。
Conventionally, it has been known that if such a membrane is backwashed, the water permeability of the membrane can be restored and dirt on the membrane surface can be removed. However, when Tore is used in a device for producing sterile water,
There are the following problems.

1)原水を逆洗浄に用いると透過水側か、微粒子、生菌
、パイロジエンなどで汚染すれる。
1) When raw water is used for backwashing, the permeate side becomes contaminated with fine particles, viable bacteria, pyrogen, etc.

2)もちろん透過水で逆洗浄を行うことができればよい
わけであるが、通常の方法で透過水を逆洗浄に用いるた
めに拡、透過水の貯槽、逆洗のための加圧ポンプ、ある
いは圧縮空気源、それらを無菌状態に保つための付帯設
備など巨大な設備が必要となる。
2) Of course, it would be good if backwashing could be performed with permeate water, but in order to use permeate water for backwashing, it is necessary to expand it, use a permeate storage tank, a pressure pump for backwashing, or a compressor. Huge equipment is required, including an air source and ancillary equipment to keep it sterile.

(発明の目的) 本発明の主要な目的の一つは、透過膜モジュールにおけ
る原水側の汚れの高濃度の蓄積を、透過水側の微粒子、
生菌、パイロジエンなどによる汚染がきわめて少なく簡
便に防ぐための透過膜モジュールの洗浄方法を提供する
ことにある。
(Objective of the Invention) One of the main objects of the present invention is to prevent the accumulation of high concentration of dirt on the raw water side of the permeable membrane module by reducing the accumulation of fine particles and dirt on the permeated water side.
It is an object of the present invention to provide a method for cleaning a permeable membrane module that can minimize and easily prevent contamination by viable bacteria, pyrodiene, and the like.

(発明の構成) 本発明の構成線、透過膜モジュールの透過水側を、その
透過水側に予めガス体を満たして密閉し、所定時間原水
側の原水圧力を上昇させ、しかる後原水側の原水圧力を
降下させて透過膜の蓄積物を原水側に剥離させることを
特徴とする透過膜モジュールの洗浄方法である。
(Structure of the Invention) The structure of the present invention is to fill the permeated water side of the permeable membrane module with a gas in advance and seal it, to increase the raw water pressure on the raw water side for a predetermined period of time, and then to increase the raw water pressure on the raw water side. This method of cleaning a permeable membrane module is characterized by lowering the pressure of raw water and peeling off accumulated material on the permeable membrane to the raw water side.

すなわち、本発明は、透過膜モジュールの透過水側に予
めガス体を充填し、−万態水側の原水圧力を上昇、次い
で下降することによって、ガス体と原水との圧力関係を
逆転させ、それによって、透過水による逆洗を可能にす
るものである。
That is, in the present invention, the permeated water side of the permeable membrane module is filled with a gas body in advance, and the raw water pressure on the universal water side is increased and then lowered, thereby reversing the pressure relationship between the gas body and the raw water. This enables backwashing with permeated water.

本発明においては、透過膜モジュールの透過水側に予め
ガス体を充填する。ガス体としては、水に対する溶解性
の低いもの、例えば空気、窒素ガスなどが使用でき、特
に空気が簡易に利用できるので好ましい。例えば、透過
膜モジュールを滅菌液で滅菌処理して後、周囲の滅菌ガ
ス体とその滅菌液とを自然に置換すれば、透過膜モジュ
ールの透過水側にガス体を充填できる。更に透過膜モジ
ュールの透過木取出口に滅菌ガス槽を併設し、透過水の
取出しと入れ換え時に滅菌ガスを送シ込んでもよい。な
お、この場合、滅菌ガスを充填した透過膜モジュールの
透過水側を密閉するには、透過木取出口と滅菌ガス槽の
結合口を閉じる。
In the present invention, the permeated water side of the permeable membrane module is filled with a gas body in advance. As the gas, a gas having low solubility in water, such as air or nitrogen gas, can be used, and air is particularly preferred because it can be easily used. For example, if the permeable membrane module is sterilized with a sterilizing liquid and then the surrounding sterilizing gas and the sterilizing liquid are naturally replaced, the permeated water side of the permeable membrane module can be filled with the gas. Furthermore, a sterilizing gas tank may be provided at the permeable wood outlet of the permeable membrane module, and sterilizing gas may be pumped in when taking out and replacing the permeated water. In this case, in order to seal the permeated water side of the permeable membrane module filled with sterilizing gas, the connecting port between the permeable wood outlet and the sterilizing gas tank is closed.

本発明において杜、透過膜モジニールの透過水側をガス
体を満して密閉後、原水側の原水圧力を所定時間上げる
。具体的には、例えば、原水圧力を通常の透過膜使用時
と同等(1〜3に/Iゲージ)にまで上げる。次いで原
水側の圧力を降下させる(例えば0〜0.5 Kg/d
ゲージ)。
In the present invention, after the permeated water side of the permeable membrane Modineal is filled with a gas and sealed, the raw water pressure on the raw water side is increased for a predetermined period of time. Specifically, for example, the raw water pressure is raised to the same level as when using a normal permeable membrane (1 to 3/I gauge). Next, lower the pressure on the raw water side (for example, 0 to 0.5 Kg/d
gauge).

次に本発明の構成を具体的な例をあげてさらに詳しく説
明する。
Next, the configuration of the present invention will be explained in more detail using specific examples.

この発明においては、原水側の水圧を利用した圧力の制
御によシ逆洗する手段が用いられる。この圧力の制御の
具体的な例としては、電磁弁、リレー、タイマー、等を
用いた時間制御の例を以下に示すが、他の例として透過
側の直接の圧力制御、あるいは、透過側の液面制御など
が挙げられる。
In this invention, means for backwashing is used by controlling the pressure using the water pressure on the raw water side. As a specific example of this pressure control, an example of time control using a solenoid valve, relay, timer, etc. is shown below, but other examples include direct pressure control on the permeate side, or Examples include liquid level control.

次に具体的な組み合せ例として、時間制御の例を第1図
の構成で示す。一定の圧力のががっている都市上水道(
2)と本発明の1例である無菌水供給装置−を連結する
Next, as a specific example of a combination, an example of time control will be shown using the configuration shown in FIG. Urban water supply with constant pressure (
2) and a sterile water supply device which is an example of the present invention.

フットスイッチ(2)をふむことによシ、コントロール
部側を介して、原水流入用電磁弁(1)と、透過水通路
の最下部に設けられた透過氷取出し口の透過氷取出し電
磁弁(3)とが開き、透過氷取出し配管αaから無菌空
気下で無菌水が供給される。無菌水供給の必要がなくな
った時、もう一度フットスイツチ(2)を踏むことによ
シ、コントロール部側を介して電磁弁(3)が即座に閉
じ、原水排出電磁弁(2)が任意のインターバルで開閉
をくシ返す。このとき原水側の膜表面の洗浄が行なわれ
る。洗浄モードになってから一定時間経過後、コントロ
ール部側のタイマー(図示省略)を介して原水流入用電
磁弁(1)と原水排出用電磁弁(2)が閉じられて停止
状Pそとで、洗浄時の状態を第2図によシ詳しく説明す
る。フットスイッチが2回目に踏まれた直後、透過木取
シ出し電磁弁(3)が閉じる。このとき原水は、開いて
いる原水流入用電磁弁(1)から透過膜モジュール(9
)の原水側を流れ膜を透過して、ガス体を圧縮しながら
透過側へたまってい〈0このため透過側の水位は上昇し
、圧力が高くなっていく。
By pressing the foot switch (2), the solenoid valve for raw water inflow (1) and the solenoid valve for removing permeated ice at the permeated ice outlet provided at the bottom of the permeated water passage ( 3) is opened, and sterile water is supplied from the permeated ice extraction pipe αa under sterile air. When it is no longer necessary to supply sterile water, by stepping on the foot switch (2) again, the solenoid valve (3) will be immediately closed via the control section, and the raw water discharge solenoid valve (2) will be closed at an arbitrary interval. Press to open and close. At this time, the membrane surface on the raw water side is cleaned. After a certain period of time has passed after entering the cleaning mode, the solenoid valve for raw water inflow (1) and the solenoid valve for raw water discharge (2) are closed via a timer on the control unit side (not shown), and a stop message is issued. The state during cleaning will be explained in detail with reference to FIG. Immediately after the foot switch is stepped on for the second time, the solenoid valve (3) for removing the transparent wood is closed. At this time, raw water flows from the open raw water inflow solenoid valve (1) to the permeable membrane module (9).
) flows on the raw water side and permeates the membrane, compressing the gas and accumulating on the permeate side (<0) Therefore, the water level on the permeate side rises and the pressure increases.

このままこの状態を維持すると、原水側の圧力と透過側
の圧力紘等しくなシ釣シ合いがとれるようKなる。原水
側の圧力と透過側の圧力が釣り合ってからか、あるいは
その前に、原水排出電磁弁(2)が開くと、原水側の圧
力は一気に低下し、原水側よシ透過側の方が圧力が高く
なる。この圧力差によシ透過水側にたまっていた透過水
が透過側から原水側へ、透過側で圧縮されていたガス体
の膨張力によシ流れ逆洗が行なわれる。ガス体が膨張し
て透過側の圧力が徐々に低下していき、最終的には原水
側と透過側の圧力は約9合うようになる。
If this state is maintained as it is, the pressure on the raw water side and the pressure on the permeate side will be balanced to be equal. If the raw water discharge solenoid valve (2) opens after or before the pressure on the raw water side and the pressure on the permeate side are balanced, the pressure on the raw water side will drop at once, and the pressure on the permeate side will be lower than that on the raw water side. becomes higher. Due to this pressure difference, the permeated water accumulated on the permeated water side flows from the permeated side to the raw water side, and backwashing is performed by the expansion force of the gas body compressed on the permeated side. As the gas body expands, the pressure on the permeate side gradually decreases, and eventually the pressures on the raw water side and the permeate side match approximately 9.

このとき、ガス体は膜面を通過せず、透過側に留まるが
、この理由は、水で濡れた透過膜はバブルポイント(起
泡点)以上の圧力差が働かない限シ、ガス体を通過させ
ないからである。このときの逆洗によシ膜面上に堆積し
ていた微小な懸濁物は膜表面から浮かび上がシ(剥離)
、原水側の流れにのって系外に排出され、膜面が洗浄さ
れる。原水排出電磁弁(2)の開閉によシこの操作を数
回〈シ返した後、コントロール部αQのタイマー等によ
シ、原水流入用電磁弁(1)及び原水排出用電磁弁(2
)が閉じられ停止の状態になるC この説明では無菌水供給後に洗浄を行なったが、無菌水
供給前に洗浄を行なってもよい。またこの説明では、逆
洗時に原水側に原水を流して行なったが、逆洗時には原
水の流入を止めても行゛なうことができる。また逆洗時
には水面よシ下の部分のみからの透過水が逆洗に使われ
ると一般的には考えられるかもしれないが、水面よυ上
でも透過膜の外側には付着水がついており、この付着水
が逆洗の初期には透過側から原水側へ流れると考えられ
るので、逆洗は透過膜全長に及ぶものと考えられる。も
ちろん時々、透過膜モジュールの上下をとシ)・えて逆
にすることによシ、つまシ水面より下の部分を変えてや
ることによシ逆洗の効果を保障することができる。
At this time, the gas does not pass through the membrane surface and remains on the permeate side. The reason for this is that a permeable membrane wet with water will not allow the gas to pass through unless a pressure difference greater than the bubble point acts. This is because they will not be allowed to pass. During backwashing at this time, the fine suspended particles that had accumulated on the membrane surface are lifted up (peeled off) from the membrane surface.
, and is discharged out of the system along with the flow of raw water, and the membrane surface is cleaned. After repeating this operation several times to open and close the raw water discharge solenoid valve (2), the solenoid valve for raw water inflow (1) and the solenoid valve for raw water discharge (2)
) is closed and becomes in a stopped state C. In this explanation, cleaning was performed after supplying sterile water, but cleaning may be performed before supplying sterile water. Furthermore, in this explanation, raw water was flowed to the raw water side during backwashing, but backwashing can also be performed by stopping the flow of raw water. Also, during backwashing, it may be generally thought that permeated water from only the area below the water surface is used for backwashing, but even above the water surface, there is water attached to the outside of the permeable membrane. Since this adhered water is thought to flow from the permeate side to the raw water side in the early stage of backwashing, backwashing is thought to extend over the entire length of the permeable membrane. Of course, sometimes the effect of backwashing can be ensured by turning the permeable membrane module upside down and changing the part below the water surface.

また透過氷取出し電磁弁(3)よシ上流の透過水ライン
にアキュムレーター(エアーチャンバー)ヲとシつけれ
ば、利用できるガス体の体積が大きくなシ、透過水の逆
洗量が大きくなる。
Furthermore, if an accumulator (air chamber) is installed in the permeate water line upstream of the permeate ice extraction solenoid valve (3), the volume of the usable gas body will be large and the amount of backwash of permeate water will be increased.

また、この洗浄方法の効果の主因が、透過水の逆洗であ
るとしたが、もう1つの原因として原水排出用電磁弁(
2)の開閉による圧力ショック(急激な圧力変化のこと
)が透過膜を動揺させ、また、透過膜が内圧と外圧を併
せて受けることがあるわけで、このショックが透過膜か
ら汚染物を浮かびあがらせることも考えられる。
Although the main reason for the effectiveness of this cleaning method is the backwashing of permeated water, another cause is the solenoid valve for raw water discharge (
The pressure shock (rapid pressure change) caused by the opening and closing of 2) causes the permeable membrane to sway, and the permeable membrane may be subject to both internal and external pressure, and this shock causes contaminants to float away from the permeable membrane. It is also possible to raise it.

マイクロフィルトレージョン膜モジュールヲ用いて以上
のごとき洗浄方法を適応すると、膜中から微小な懸濁物
がとシ去られ、透水速度が長期に渡シ高いレベルで維持
される。
When the above cleaning method is applied to a microfiltration membrane module, minute suspended matter is removed from the membrane, and the water permeation rate is maintained at a high level over a long period of time.

また限外濾過膜モジュールを用いて同じく洗浄方法を適
応すると、膜表面から、パイロジエンや微小な懸濁物が
とシ去られ、定期的に洗浄することによシ、はぼ一定の
透水速度で非常に大量の無菌水を供給することができる
In addition, if the same cleaning method is applied to an ultrafiltration membrane module, pyrogens and minute suspended substances are removed from the membrane surface, and by cleaning regularly, the water permeation rate remains constant. It can supply very large quantities of sterile water.

(実施例) 以下に実施例を比較例と共にあけて本発明を説明する。(Example) The present invention will be explained below with reference to Examples and Comparative Examples.

実施例1 純水透水速度4t/(分・d・気圧)のポリエーテルス
ルホン製中空糸限外濾過M(中空糸内径600μm、外
径800μm)5900本を用いて長さ32倒、有効部
長27 an 、シェル内径92+w。
Example 1 Using 5,900 polyethersulfone hollow fiber ultrafiltration M (hollow fiber inner diameter 600 μm, outer diameter 800 μm) with a pure water permeation rate of 4 t/(min/d/atm), the length was 32 and the effective length was 27. an, shell inner diameter 92+w.

有効膜面積3tt?、透過水側体積994−のモジュー
ルを作成し、第1図に構成を示すような装置を組み立て
た。
Effective membrane area 3tt? , a module with a permeated water side volume of 994- was created, and an apparatus having the configuration shown in FIG. 1 was assembled.

この装置を姫路市水道と直結し、水道人口圧力1気圧で
1日9時間滅菌水供給の運転を行ない、運転の最後の1
分間洗浄を行なった。洗浄は滅菌水供給時と同じ原水流
量で実施した。この洗浄は、原水排出用電磁弁(2)を
3秒間閉とし12秒間開とするサイクルを4回くシ返し
て1分間行なった。この運転を1週間に5日間ずつ長期
にゎたシ実施した。
This device is directly connected to the Himeji city water supply and operated to supply sterilized water for 9 hours a day at a water supply pressure of 1 atm.
Washing was performed for minutes. Cleaning was performed at the same raw water flow rate as when sterile water was supplied. This cleaning was carried out for 1 minute by repeating the cycle of closing the raw water discharge solenoid valve (2) for 3 seconds and opening it for 12 seconds four times. This operation was carried out for a long period of time for 5 days a week.

比較例1゜ 実施例1で使ったモジュールと同じ中空繊維、同じ寸法
のモジュールを作成し、これを姫路市水道と直結し、水
道人口圧力1気圧で1日9時間全量透過させ、これを1
週間に5日づつ長期にゎたシ実施した。
Comparative Example 1 A module with the same hollow fibers and the same dimensions as the module used in Example 1 was created, and this was directly connected to the Himeji city water supply, and the entire amount was allowed to permeate for 9 hours a day at a water pressure of 1 atm.
The exercise was carried out for a long period of time, five days a week.

比較例2゜ 滅菌水供給用として市販されているマイクロスイルトレ
ージョン装置を姫路市水道と直結し、入口圧力1気圧で
1日9時間運転し、これを1週間に5日づつ長期に渡シ
実施した。な訃このマイク 。
Comparative Example 2 A commercially available micro-sillage system for supplying sterilized water was directly connected to the Himeji City water supply, operated for 9 hours a day at an inlet pressure of 1 atm, and operated for a long period of time 5 days a week. carried out. What a shame this Mike.

ロフイルトレーション装置社内径270 Jim外径3
90μmのポリエチレン製マイクロフィルター中空繊維
膜約6−を使用したモジュールを2本直 4、列につな
ぎ、2本とも全量透過で使用し、2本目の透過水を滅菌
水として使うものである。
Lofiltration equipment internal diameter 270 Jim outer diameter 3
Two modules using 90 μm polyethylene microfilter hollow fiber membranes are connected in a row 4, and both modules are used for total permeation, and the permeated water from the second module is used as sterilized water.

以上のごとく並列的に行った上記3つの実施例及び比較
例につい1て、透過水量毎の透水速度、透過水中の生菌
数及びパイロジエンの検出試験を行った。サンプル水の
採取は当日の運転開始1分後と3分後に行なった。
Regarding the three Examples and Comparative Example 1, which were conducted in parallel as described above, tests were conducted to detect the water permeation rate for each amount of permeated water, the number of viable bacteria in the permeated water, and the detection of pyrogen. Sample water was collected 1 minute and 3 minutes after the start of operation on the day.

生菌水の測定は採取した水1−をトリプトンーヤ寒天■
培地と混釈して37℃48時間培養したのちコロニー数
を計数した。
To measure viable bacterial water, collect the collected water 1- and tryptonya agar■
After the mixture was mixed with a medium and cultured at 37°C for 48 hours, the number of colonies was counted.

パイロジエンの測定紘採取した水にリム2ステストワコ
−■を所定量加え37℃1時間靜置し装のち光学的に検
量した。
Measurement of Pyrodiene: A predetermined amount of Rim 2 Test Wako-■ was added to the sampled water, allowed to stand at 37°C for 1 hour, and then optically calibrated.

表示1i o、 、1 + 1グラム(ng)/d以上
を+、0.01〜0. l n17−を十0.01 n
&−以下を−とした。
Display 1io, , 1 + 1 gram (ng)/d or more +, 0.01 to 0. l n17-100.01 n
&− and below were designated as −.

なお原水の姫路市水中に紘パイロジエンが、約10 n
g/−程度台まれていた0以上の結果を第1表に示す。
Approximately 10 n of Hiropyrogien is present in the Himeji City water source.
Table 1 shows the results of 0 or more, which were lowered by about g/-.

第1表 比較例1 比較例2 かくして第1表から次のことがわかる00 全量透過の
場合、限外濾過膜及びマイク四フィルトレージョン膜と
もに透水速度は経時的に低下し、またパイロジエンは、
比較例1では30−付近から、比較例2では、2本のモ
ジュールが直列になっているにもかかわらず20−付近
からリークが#1まる。
Table 1 Comparative Example 1 Comparative Example 2 Thus, from Table 1, the following can be seen.
In Comparative Example 1, leakage occurred from around 30-, and in Comparative Example 2, leak #1 started around 20- even though the two modules were connected in series.

■ 限外濾過膜を使って洗浄した場合(実施例1)は透
過速度は20m付近ではぼ落ち着き5t7H−気圧以上
を100−を越えて維持する。パイロジエンa100/
−1でマイナスで維持される。
(2) In the case of cleaning using an ultrafiltration membrane (Example 1), the permeation rate stabilizes around 20 m and maintains a pressure of 5t7H-atm or higher and over 100-. Pyrogen a100/
-1 keeps it negative.

■ 細菌に関しては実試例、比較例ともに無菌が保たれ
ている。
■ Regarding bacteria, sterility is maintained in both the actual example and the comparative example.

以上から、中空糸型限外濾過モジュールを本発明の方法
で洗浄することにより、微小懸濁物、パイロジエンの高
濃度の蓄積が防がれ、透水速度はへは一定となり、無菌
で無パイルジエンの水を大量にしかも安価につくること
ができるようになった0 (発明の効果) 本発明唸、主として透過膜モジュールの透過水側のガス
体と、原水側の圧力変化を利用して透過水による逆洗を
可能にし、それによって、パイロジエンなどを含まない
安価な透過水を長期的に得ることができるようにするも
のである。
From the above, by cleaning the hollow fiber type ultrafiltration module with the method of the present invention, the accumulation of high concentrations of micro-suspended particles and pyrodiene is prevented, the water permeation rate is constant, and the sterile and pile-free diene is maintained. Water can now be produced in large quantities at low cost (Effects of the invention) The present invention mainly utilizes the gas body on the permeated water side of the permeable membrane module and the pressure change on the raw water side to generate water by permeated water. This enables backwashing, thereby making it possible to obtain inexpensive permeate water that does not contain pyrogens or the like over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図線、本発明に係る透過膜モジュールの洗浄方法を
実施するための装置例を示す機能説明図、第2図は、そ
の装置の各部の圧力変化を示すグラフである。 (財)・・・・・・・・・無菌水供給装置、(1)・・
・・・・・・・原水流入用電磁弁、(2)−・・・・・
・・・原水排出用電磁弁、(3)・・・・・・・・・透
過氷取出し用電磁弁、(4)・・・・・・・・・原水流
入口、(5)・・・・・・・・・原水排出口、(6)・
・・・・・・・・透過氷取出し口、(7)−・・・・・
・・・透過膜モジュール、(8)−・・・・・・・−ガ
ス体り滞留部、(9)・・・・・・・・・透過膜、叫・
・・・・・・・・コントロール部、■・・・・・・・・
・電気配線、@・・・・・・7・・フットスイッチ、(
2)・・・・・・・・・都市上水道、αΦ・・・・・・
・・・滅菌水取出し口、(至)−・・・・・・・・透過
水。
The line in FIG. 1 is a functional explanatory diagram showing an example of an apparatus for carrying out the method of cleaning a permeable membrane module according to the present invention, and FIG. 2 is a graph showing changes in pressure at each part of the apparatus. (Foundation)... Sterile water supply equipment, (1)...
・・・・・・Solenoid valve for raw water inflow, (2)・・・・・・
... Solenoid valve for raw water discharge, (3) ... Solenoid valve for removing permeated ice, (4) ... Raw water inlet, (5) ...・・・・・・Raw water outlet, (6)・
...... Permeated ice removal port, (7) -...
...Permeable membrane module, (8)--Gas body retention section, (9)......Permeable membrane,
・・・・・・・・・Control section,■・・・・・・・・・
・Electrical wiring, @...7...Foot switch, (
2)・・・・・・Urban water supply, αΦ・・・・・・
...Sterilized water outlet, (to) - ... Permeated water.

Claims (1)

【特許請求の範囲】 l 透過膜モジュールの透過水側を、その透過水側に予
めガス体を満たして密閉し、所定時間原水側の原水圧力
を上昇させ、しかる後原水側の原水圧力を降下させて透
過膜の蓄積物を原水側に剥離させることを特徴とする透
過膜モジュールの洗浄方法0 2 原水圧力の降下が、透過膜モジュールの原水排出口
から原水を排出して得られる特許請求の範囲第1項に記
載の方法。 3 ガス体が滅菌した空気である特許請求の範囲第1項
又は第2項に記載の方法。 ダ 透過膜モジュールが限外濾過膜モジュールである特
許請求の範囲第1項又紘第2項、に記載の方法。 5 透過膜モジュールが中空糸膜モジュールである特許
請求の範囲第1項又社第2項に記載の方法0
[Scope of Claims] l The permeated water side of the permeable membrane module is sealed by filling the permeated water side with a gas in advance, increasing the raw water pressure on the raw water side for a predetermined period of time, and then decreasing the raw water pressure on the raw water side. A method for cleaning a permeable membrane module, characterized in that the accumulated material on the permeable membrane is peeled off to the raw water side. The method described in Scope No. 1. 3. The method according to claim 1 or 2, wherein the gas body is sterilized air. The method according to claim 1 or 2, wherein the permeable membrane module is an ultrafiltration membrane module. 5. The method according to claim 1 or claim 2, wherein the permeable membrane module is a hollow fiber membrane module.
JP5201284A 1984-03-16 1984-03-16 Washing method of permeable membrane module Granted JPS60197206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5201284A JPS60197206A (en) 1984-03-16 1984-03-16 Washing method of permeable membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5201284A JPS60197206A (en) 1984-03-16 1984-03-16 Washing method of permeable membrane module

Publications (2)

Publication Number Publication Date
JPS60197206A true JPS60197206A (en) 1985-10-05
JPH0122005B2 JPH0122005B2 (en) 1989-04-25

Family

ID=12902901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5201284A Granted JPS60197206A (en) 1984-03-16 1984-03-16 Washing method of permeable membrane module

Country Status (1)

Country Link
JP (1) JPS60197206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268303A (en) * 1985-05-21 1986-11-27 Asahi Chem Ind Co Ltd Method for preventing negative pressure in steam sterilizing system of filter apparatus
JP2011104488A (en) * 2009-11-13 2011-06-02 Central Filter Mfg Co Ld Washing method of filtration apparatus
CN105692795A (en) * 2016-03-31 2016-06-22 佛山市顺德区美的饮水机制造有限公司 Ultra-filtration water purifying system and control method of ultra-filtration water purifying system
CN109012206A (en) * 2018-10-30 2018-12-18 杭州老板电器股份有限公司 filter core and water purifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246908A (en) * 1975-10-13 1977-04-14 Hitachi Seiko Kk Ink feeder for printing press
JPS5335038A (en) * 1976-09-10 1978-04-01 Hamana Tekko Wire twister
JPS5717407A (en) * 1980-07-01 1982-01-29 Akira Murata Ozonizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246908A (en) * 1975-10-13 1977-04-14 Hitachi Seiko Kk Ink feeder for printing press
JPS5335038A (en) * 1976-09-10 1978-04-01 Hamana Tekko Wire twister
JPS5717407A (en) * 1980-07-01 1982-01-29 Akira Murata Ozonizer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268303A (en) * 1985-05-21 1986-11-27 Asahi Chem Ind Co Ltd Method for preventing negative pressure in steam sterilizing system of filter apparatus
JPH047253B2 (en) * 1985-05-21 1992-02-10 Asahi Chemical Ind
JP2011104488A (en) * 2009-11-13 2011-06-02 Central Filter Mfg Co Ld Washing method of filtration apparatus
CN105692795A (en) * 2016-03-31 2016-06-22 佛山市顺德区美的饮水机制造有限公司 Ultra-filtration water purifying system and control method of ultra-filtration water purifying system
CN105692795B (en) * 2016-03-31 2019-06-14 佛山市顺德区美的饮水机制造有限公司 The control method of ultrafiltration water purification system and ultrafiltration water purification system
CN109012206A (en) * 2018-10-30 2018-12-18 杭州老板电器股份有限公司 filter core and water purifier
CN109012206B (en) * 2018-10-30 2024-04-09 杭州老板电器股份有限公司 Filter element and water purifier

Also Published As

Publication number Publication date
JPH0122005B2 (en) 1989-04-25

Similar Documents

Publication Publication Date Title
Nakatsuka et al. Drinking water treatment by using ultrafiltration hollow fiber membranes
AU718839B2 (en) Process and installation for in situ testing of the integrity of filtration membranes
JPH01270906A (en) Microporous membrane for filtering beer
US20080197077A1 (en) Low pressure drinking water purifier
JPS62502452A (en) Variable volume filter or concentrator
MXPA01004926A (en) Ultrafiltration and microfiltration module and system.
JPH05184885A (en) Method for cleaning meso-porous tubular membrane of ultrafiltration
CN106830187A (en) With the water purifier for preventing reverse osmosis membrane secondary pollution function
CN112251333A (en) Device and method for purifying cell exosomes
JPS60197206A (en) Washing method of permeable membrane module
JPS58163490A (en) Method and apparatus for purification of water
CN102586088A (en) Sterile ultrafiltration concentration enzymic preparation fermentation broth post-extraction production line
JPH05154356A (en) Membrane filter module
JP2001038165A (en) Filtration process
RU2323036C2 (en) Method and device for concentrating water solutions of biology-active agents
CN202201898U (en) Sterility ultrafiltration concentrated type post extraction product line for fermentation liquor of enzymic preparations
CN205803210U (en) Spring water automatic producing device
CN213680665U (en) Cell exosome purification device
CN208279391U (en) Nanofiltration water system
CN207271072U (en) Protect the ultrafiltration system of air purge film wire
JPH0716567A (en) Ultrafiltration type drinking water device
CN206142934U (en) Water purifier and water dispenser
JP3049086U (en) Water purification equipment
FR2677895A1 (en) Membrane filtration plant with unblocking control
JPH11165046A (en) Defect detecting method of hollow fiber membrane module

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term