JPS6019607B2 - Highly conductive surface resin molded product - Google Patents

Highly conductive surface resin molded product

Info

Publication number
JPS6019607B2
JPS6019607B2 JP4835179A JP4835179A JPS6019607B2 JP S6019607 B2 JPS6019607 B2 JP S6019607B2 JP 4835179 A JP4835179 A JP 4835179A JP 4835179 A JP4835179 A JP 4835179A JP S6019607 B2 JPS6019607 B2 JP S6019607B2
Authority
JP
Japan
Prior art keywords
magnetic field
powder
molded product
molded article
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4835179A
Other languages
Japanese (ja)
Other versions
JPS55139715A (en
Inventor
英夫 柿木
洋美 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Polycarbonate Ltd
Original Assignee
Sumika Polycarbonate Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Polycarbonate Ltd filed Critical Sumika Polycarbonate Ltd
Priority to JP4835179A priority Critical patent/JPS6019607B2/en
Publication of JPS55139715A publication Critical patent/JPS55139715A/en
Publication of JPS6019607B2 publication Critical patent/JPS6019607B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は表面高導電性樹脂成形品に関する。[Detailed description of the invention] The present invention relates to a resin molded article with a highly conductive surface.

従釆、非導電性の合成樹脂成形品に導電性を付与する方
法としては、‘1}銀粉、節粉、アルミ粉、ニッケル粉
のような金属粉を混合する方法、‘2〕ェポキシ樹脂に
グラフアィトを混合する方法、糊ェポキシ樹脂にカルボ
ニルニッケル粉を混合し磁場をかけながら硬化する方法
などが行なわれてきた。しかしながらmの金属粉を混合
する方法においては、一般に導電性プラスチックと呼ば
れている抵抗率1ぴQ・伽〜10‐50・肌の範囲の抵
抗率にするためにはかなりの量を混合する必要があり、
金属粉の価格も高くその結果コストアップと物性低下を
招く。また■のカーボンブラックやグラフアイトを混合
する方法では(11の金属粉よりもカーボンブラックや
グラフアィトの方が安価なために製品自体のコストを低
くおさえることができる。
Accordingly, methods for imparting conductivity to non-conductive synthetic resin molded products include '1) mixing metal powder such as silver powder, knotweed powder, aluminum powder, or nickel powder, '2] mixing epoxy resin with Methods that have been used include mixing graphite, and mixing epoxy resin with carbonyl nickel powder and curing it while applying a magnetic field. However, in the method of mixing metal powder of m, a considerable amount must be mixed in order to achieve a resistivity in the range of 1 to 10-50, which is generally referred to as conductive plastic. There is a need,
The price of metal powder is also high, resulting in increased costs and decreased physical properties. In addition, in the method (2) of mixing carbon black and graphite (carbon black and graphite are cheaper than the metal powder in 11), the cost of the product itself can be kept low.

しかしながら使用量は相変らず多く、金属粉を混合した
ものよりも物性が一段と落ちる。脚で述べたヱポキシ樹
脂にニッケル粉を混合して成形品を作る方法についても
、やはり磁性を持つ粉体の使用量を多くしないと導電性
が不足する。また従来の方法では表面のみの電気抵抗を
下げる目的でも導電性を付与する物質を成形品に均一に
混合する必要があり、全く導霞性を必要としない成形品
の樹脂内部までも導電性を付与する物質が表面と同じ割
合で混合されているため、成形品の物性の低下は大きい
However, the amount used is still large, and the physical properties are much worse than those mixed with metal powder. Even with the method of making molded products by mixing epoxy resin with nickel powder, as described in the previous section, conductivity is insufficient unless a large amount of magnetic powder is used. In addition, with conventional methods, it is necessary to uniformly mix a substance that imparts conductivity into the molded product in order to lower the electrical resistance only on the surface, and it is necessary to make conductivity even inside the resin of the molded product, which does not require any conductivity. Since the applied substance is mixed in the same proportion as the surface, the physical properties of the molded product are significantly reduced.

本発明者らは以上のような従来の成形品の改良を目的と
して研究を重ねた結果、成形品の樹脂表面には多くの導
電性物質を集め電気抵抗を下げ、樹脂内部は導電怪物質
の混合比率を少くして物性を保ち、成形品の表面電気抵
抗の低下と優れた物性を併せもつ従来の成形品では得ら
れなかった成形品を提供することに成功した。
As a result of repeated research aimed at improving the conventional molded products as described above, the inventors of the present invention have found that the resin surface of the molded product collects a large amount of conductive material to lower the electrical resistance, and the inside of the resin is made of a conductive monster. By reducing the mixing ratio and maintaining physical properties, we succeeded in providing a molded product that has both lower surface electrical resistance and excellent physical properties that could not be obtained with conventional molded products.

すなわち本発明は磁性を持った粉体を導電性を持った粉
体で被覆して得られた粉体を含む樹脂組成物より成形さ
れた成形品において、合成樹脂組成物が溶融状状態ある
いは未硬化の状態において成形品の表面と垂直の強磁場
の影響下におき次いで成形品の表画と平行な磁場の影響
下におくことを特徴として得られた表面高導電性樹脂成
形品である。
That is, the present invention provides a molded article formed from a resin composition containing powder obtained by coating magnetic powder with conductive powder, in which the synthetic resin composition is in a molten state or in an unmolten state. This resin molded article has a high surface conductivity and is characterized by being placed under the influence of a strong magnetic field perpendicular to the surface of the molded article and then under the influence of a magnetic field parallel to the surface image of the molded article in the hardened state.

本発明でいうところの磁性を持って粉体とは、四三酸化
鉄(Fe304)あるいはそれを主成分とする鉄黒が代
表的なものとして挙げられる。
The magnetic powder referred to in the present invention is typically triiron tetroxide (Fe304) or iron black containing it as a main component.

しかしながら導電性を持った粉体で被覆される粉体であ
つて磁性をもつものであれば本発明の思想を疎するもの
ではない。またそれらが単独で使用される必要はなく、
発明の効果を著しく低下させない範囲のものであれば混
合して使用することができる。
However, as long as the powder is coated with conductive powder and has magnetism, the idea of the present invention will not be ignored. Nor do they have to be used alone;
They can be used in combination as long as they do not significantly reduce the effect of the invention.

本発明でいう導電性を持つ粉体とは、カーボンブラック
、グラフアィトなどが挙げられる。
Examples of the electrically conductive powder in the present invention include carbon black and graphite.

合成樹脂としては、ポリ塩化ビニル、ポリエチレン、ポ
リエチレンオキサイド、ポリプロピレン、ポリスチレン
、ハイインパクトポリスチレン、ABS、ポリメチルメ
タクリレートなどの熱可塑性樹脂、尿素ホルムアルデヒ
ド、フェノールホルムァルデヒドなどの熱硬化性樹脂お
よびヱポキシ樹脂やポリウレタンが挙げられる。本発明
で用いられる磁場の強さは成形品の表面と垂直の磁場を
かける時は強い方が望ましくL樹脂組成物の溶融あるい
は未硬化の状態において、磁場の影響を与える時の樹脂
組成物の粘度が低い場合には5000ガウス程度で本発
明を達成できる。
Examples of synthetic resins include thermoplastic resins such as polyvinyl chloride, polyethylene, polyethylene oxide, polypropylene, polystyrene, high impact polystyrene, ABS, and polymethyl methacrylate, thermosetting resins such as urea formaldehyde, phenol formaldehyde, and epoxy resins. Examples include polyurethane. The strength of the magnetic field used in the present invention is preferably strong when applying a magnetic field perpendicular to the surface of the molded product. When the viscosity is low, the present invention can be achieved with a viscosity of about 5000 Gauss.

また成形品の表面と平行な磁場をかける場合の強さは1
000ガウス以上が望ましい。1000ガウス未満では
良い結果が得られない。しかしながら成形品の表面と垂
直にかける磁場より強いものであってはならない。以下
に実施例を示すが、本発明はこれらの実施例によって何
ら限定されるものではない。
Also, when applying a magnetic field parallel to the surface of the molded product, the strength is 1
000 Gauss or more is desirable. Good results cannot be obtained below 1000 Gauss. However, it must not be stronger than the magnetic field applied perpendicular to the surface of the molded product. Examples are shown below, but the present invention is not limited to these Examples in any way.

なお本発明の成形品は一般に用いられている安定剤や老
化防止剤、その他の添加剤を混合してもさしつかえない
Note that the molded article of the present invention may be mixed with commonly used stabilizers, anti-aging agents, and other additives.

実施例 1 四三酸化鉄(Fe304) 8の重量% カーボンブラック 2の重量%の比率となる
ように硫酸第一鉄、硫酸第二鉄およびカーボンブラック
(平均粒径0.1ム、吸油量30cc/100夕)の混
合溶液を縄拝しながらカセイソ−ダを徐々に添加して共
枕ごせた。
Example 1 Ferrous sulfate, ferric sulfate, and carbon black (average particle size 0.1 mm, oil absorption 30 cc Caustic soda was gradually added to the mixture while pouring the mixed solution of 1/100 min.

得られた黒色の共沈物を観察すると四、三酸化鉄が完全
にカーボンブラックで被覆されており、充分な被覆強度
を持っていた。
Observation of the obtained black coprecipitate revealed that iron tetraoxide and trioxide were completely coated with carbon black, and had sufficient coating strength.

得られた英沈物4重量部とェポキシ9母重量部とを混合
し、硬化剤を加えて5000ガウスの磁場の影響下で5
分、次いで表面に平行に1500ガウスの磁場の影響下
で60午○、50分で硬化させ、厚さ1.0弧の平板を
作成した。
4 parts by weight of the obtained epoxy precipitate and 9 parts by weight of epoxy were mixed, a curing agent was added, and the mixture was heated under the influence of a magnetic field of 5000 Gauss.
It was then cured for 50 minutes at 60 pm under the influence of a 1500 Gauss magnetic field parallel to the surface to produce a flat plate with a thickness of 1.0 arc.

得られた平板から一辺の長さ1.0肌の立方体を作成し
た。
A cube with a side length of 1.0 skin was created from the obtained flat plate.

立方体の側面で1500ガウスの磁場に垂直な互いに平
行な面に導電性物質(シルバーペイント)を塗布乾燥後
上方から1肋間隔でカッターナイフを用いて平行線を引
いた。平行線は導電性物質を1肌間隔で完全に分離して
いた。上部から番号をつけ恥.1〜M.10とした。そ
れぞれ相対する番号の電気抵抗値を測定しこれを実施例
とした。
A conductive material (silver paint) was applied to mutually parallel surfaces perpendicular to a 1500 gauss magnetic field on the sides of the cube, and after drying, parallel lines were drawn from above using a cutter knife at intervals of one rib. Parallel lines perfectly separated the conductive material by one skin distance. It's a shame to number them from the top. 1~M. It was set as 10. The electrical resistance values of the opposing numbers were measured and used as examples.

実施例と同じ組成で共沈物とェポキシを混合し、硬化剤
を加え5000ガウスの磁場の影響下で60℃、1時間
で硬化させ厚さ1.0伽の平板を得た。
A coprecipitate and epoxy were mixed with the same composition as in the example, a curing agent was added, and the mixture was cured at 60° C. for 1 hour under the influence of a 5000 Gauss magnetic field to obtain a flat plate with a thickness of 1.0 cm.

得られた平板から一辺1.0弧の立方体を作り磁場と平
行な相対する2面に導電性塗料(シルバーペイント)を
塗布し乾燥後磁力線と直角になるようにカッターナイフ
で1肋間隔で平行線を引いた。シルバーペイントは完全
に1肋間隔で独立していた。上部から番号をつけ船.1
〜恥.10とし実施例と同様に電気抵抗値を測定した。
これを比較例1とした。比較例1とは磁場を1500ガ
ウスにした他は全く同じにして比較例1と同機に電気抵
抗値を測定しこれを比較例2とした。
A cube with a side of 1.0 arc is made from the obtained flat plate, and conductive paint (silver paint) is applied to two opposite sides parallel to the magnetic field, and after drying, the cube is made parallel to the lines of magnetic force with a spacing of 1 rib so that they are perpendicular to the lines of magnetic force. I drew a line. The silver paint was completely independent at one rib interval. Ships numbered from the top. 1
~shame. 10, and the electrical resistance value was measured in the same manner as in the example.
This was designated as Comparative Example 1. Comparative Example 2 was obtained by measuring the electrical resistance value of the same machine as Comparative Example 1 using the same method as Comparative Example 1 except that the magnetic field was set to 1500 Gauss.

結果を第一表に示す。The results are shown in Table 1.

第1表 実施例 2 実施例1で得られた黒色共沈物を用いてポリエチレン9
4重量部、黒色共沈物6重量部を混合して160qoの
温度、8000ガウスの磁場の影響下で4分、次に磁場
を900回転させ3000ガウスの磁場の影響下2分間
で厚さ1.0弧の平板を成形した。
Table 1 Example 2 Using the black coprecipitate obtained in Example 1, polyethylene 9
4 parts by weight and 6 parts by weight of black coprecipitate were mixed and heated at a temperature of 160 qo for 4 minutes under the influence of a magnetic field of 8000 gauss.Then, the magnetic field was rotated at 900 rpm and 2 minutes under the influence of a magnetic field of 3000 gauss to obtain a thickness of 1. A flat plate with an arc of .0 was molded.

得られた平板を実施例1と同様にして上部から下部を1
僕等分してそれぞれの電気抵抗値を測定した。次に磁場
を8000ガウスのみにした以外は実施例2と同様にし
て比較例3とした。
The obtained flat plate was treated in the same manner as in Example 1, and the upper and lower parts were separated by 1
I divided it into equal parts and measured the electrical resistance of each. Next, Comparative Example 3 was prepared in the same manner as in Example 2 except that the magnetic field was set to only 8000 Gauss.

同様に磁場を3000ガウスのみにした以外は比較例3
と同様にして比較例4とした。
Comparative Example 3, except that the magnetic field was set to only 3000 Gauss.
Comparative example 4 was prepared in the same manner as above.

結果を第2表に示す。The results are shown in Table 2.

第2表Table 2

Claims (1)

【特許請求の範囲】[Claims] 1 磁性を持つた粉体を導電性を持つた粉体で被覆して
得られた粉体を含む合成樹脂組成物より成形された成形
品において、該合成樹脂組成物が溶融状態あるいは未硬
化の状態において、成形品の表面と垂直の強磁場の影響
下におき、次いで成形品の表面と平行な磁場の影響下に
おくことを特徴として得られた表面高導電性樹脂成形品
1 In a molded article made from a synthetic resin composition containing powder obtained by coating magnetic powder with conductive powder, the synthetic resin composition may be in a molten or uncured state. 1. A resin molded article with a high surface conductivity obtained by subjecting the article to a strong magnetic field perpendicular to the surface of the molded article and then to a magnetic field parallel to the surface of the molded article.
JP4835179A 1979-04-18 1979-04-18 Highly conductive surface resin molded product Expired JPS6019607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4835179A JPS6019607B2 (en) 1979-04-18 1979-04-18 Highly conductive surface resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4835179A JPS6019607B2 (en) 1979-04-18 1979-04-18 Highly conductive surface resin molded product

Publications (2)

Publication Number Publication Date
JPS55139715A JPS55139715A (en) 1980-10-31
JPS6019607B2 true JPS6019607B2 (en) 1985-05-17

Family

ID=12800943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4835179A Expired JPS6019607B2 (en) 1979-04-18 1979-04-18 Highly conductive surface resin molded product

Country Status (1)

Country Link
JP (1) JPS6019607B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614445B2 (en) * 1988-12-20 1994-02-23 東海カーボン株式会社 Anisotropically conductive rubber composition
CN102408680A (en) * 2011-09-01 2012-04-11 西北工业大学 Thermosetting resin able to realize high temperature heating and curing in high frequency magnetic field and preparation method thereof

Also Published As

Publication number Publication date
JPS55139715A (en) 1980-10-31

Similar Documents

Publication Publication Date Title
US3359145A (en) Electrically conducting adhesive
US2683669A (en) Conductive plastics and method of making the same
JPS5814457B2 (en) Conductive plastic composition for shielding electromagnetic waves
JPS6320270B2 (en)
JPS6019607B2 (en) Highly conductive surface resin molded product
US3416992A (en) Molded plastic article
DE1720977B2 (en) Electrically conductive additive to polymer compounds
JPS6364007B2 (en)
JPH0254864B2 (en)
JPS62138537A (en) Electrically-conductive thermoplastic resin composition
JPH0237947B2 (en)
JPS5986638A (en) Resin composition having excellent electromagnetic wave shielding property and rigidity
AT274965B (en) Method for producing an electrical resistance mass
JPS5975927A (en) Production of conductive composition material
JPS6258514A (en) Highly conducting compound resin film
JPS6074497A (en) Electromagnetic wave shielding material
ES8406947A1 (en) Process and apparatus for producing organometallic composites, especially for friction articles.
EP0282909B1 (en) Article with a permanent antielectrostatic coating
JPS60162792A (en) Method for plating plastic article
JPS61141762A (en) Electrically conductive molding material
JPS6268854A (en) Electrically conductive resin composition
SU1109456A1 (en) Material for simulating geoelectric structures
JPS6082332A (en) Molding method of conductive synthetic resin
KR950014108B1 (en) Conductive plastic flat type material manufactural method
JPS6031549A (en) Electromagnetic wave-shielding resin composition and production thereof