JPS61141762A - Electrically conductive molding material - Google Patents

Electrically conductive molding material

Info

Publication number
JPS61141762A
JPS61141762A JP26343484A JP26343484A JPS61141762A JP S61141762 A JPS61141762 A JP S61141762A JP 26343484 A JP26343484 A JP 26343484A JP 26343484 A JP26343484 A JP 26343484A JP S61141762 A JPS61141762 A JP S61141762A
Authority
JP
Japan
Prior art keywords
aluminum
electrically conductive
molding material
fiber
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26343484A
Other languages
Japanese (ja)
Other versions
JPS6319543B2 (en
Inventor
Yasuo Kishida
岸田 靖雄
Tetsuo Nishikawa
哲生 西川
Yoshiaki Kubota
義昭 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP26343484A priority Critical patent/JPS61141762A/en
Publication of JPS61141762A publication Critical patent/JPS61141762A/en
Publication of JPS6319543B2 publication Critical patent/JPS6319543B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide an electrically conductive molding material which has excellent long-term stable electrical conductivity and is suitable for use as a material for shielding undesired electromagnetic waves, by providing a metallic layer other than Al on the surface of an Al fiber to form an electrically conductive filler and uniformly dispersing the filler in a thermoplastic resin. CONSTITUTION:An aluminum fiber prepd. by drawing or melt spinning is degreased and pickled to roughen the surface of the fiber. A metallic layer (e.g. nickel or chromium layer) other than aluminum is formed on the surface of the aluminum by electroless plating, wet plating or vacuum metallizing to prepare an electrically conductive filler. 5-100pts.wt. said filler is uniformly dispersed in 100pts.wt. thermoplastic resin to obtain the desired electrically conductive molding material. The molding material can be widely used in the fields of articles requiring electrical conductivity or electromagnetic wave shielding properties, such as a planar heating element and a cabinet for electronic equipment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子機器より放射される不要電磁波のシール
ド材料として好適な導電性成形材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a conductive molding material suitable as a material for shielding unnecessary electromagnetic waves emitted from electronic equipment.

(従来の技術) 熱可塑性樹脂に、各種形状を有する導電性充てん材を混
入して導電性を付与することは、従来より広く行われて
いる。
(Prior Art) It has been widely practiced in the past to mix conductive fillers having various shapes into thermoplastic resins to impart conductivity.

例えば、特開昭57−36154号公報には、ポリアミ
ド樹脂にアルミフレークを配合し、更にエチレン系共重
合体を配合することにより、耐衝撃性を向上することが
述べられている。
For example, JP-A-57-36154 describes that impact resistance can be improved by blending aluminum flakes with a polyamide resin and further blending an ethylene copolymer.

又、特開昭68−78499号公報では、金属繊維を樹
脂自暴ζ均一に配合して成形する電磁波シールド用樹脂
材が示されている。
Further, Japanese Patent Application Laid-Open No. 68-78499 discloses a resin material for electromagnetic shielding which is formed by uniformly blending metal fibers with resin self-destruction ζ.

金属繊維素材の代表的なものとして、銅、黄銅、鉄、ア
ルミニウム等が挙げられるが、成形用樹脂材料の長所の
ひとつである軽量性を損わないという点でアルミニウム
が優れている。
Typical metal fiber materials include copper, brass, iron, aluminum, etc., but aluminum is superior in that it does not impair lightweight, which is one of the advantages of molding resin materials.

又、形状の面からは、繊維状の充てん材の方が、フレー
ク状や粉末状のものより、比較的少量の添加で優れた導
電性が得られ、物性の低下も少ないという長所がある。
In addition, in terms of shape, fibrous fillers have the advantage that superior conductivity can be obtained with a relatively small amount of addition, and there is less deterioration in physical properties than fillers in the form of flakes or powders.

これらの点より、樹脂に混入する導電性充てん材の最も
有力なもの−ひとつとして、アルミニウム繊維が挙げら
れる。
From these points, aluminum fibers are one of the most promising conductive fillers to be mixed into resins.

(発明が解決しようとする問題点) しかしながら、アルミニウム繊維を導電性充てん材とし
て使用した場合には、鉄繊維や黄銅繊維に比較して導電
性の長期安定性が之しく、又、同一レベルの導電性を得
るためには、添加量を多くしなければならないという欠
点を有していた。
(Problem to be solved by the invention) However, when aluminum fiber is used as a conductive filler, the long-term stability of conductivity is lower than that of iron fiber or brass fiber, and It has the disadvantage that in order to obtain conductivity, it is necessary to add a large amount.

特に長期安定性という点に関しては、環境温度条件を変
動させた場合の導電性の低下が著しく、大きな問題点の
ひとつとなっている。
Particularly in terms of long-term stability, the conductivity decreases significantly when the environmental temperature conditions are varied, which is one of the major problems.

これに対して、シラン系やチタネート系のカップリング
剤を用いて、金属繊維表面を処理することもなされてい
るが、未だ充分満足すべき結果は得られていない。
In contrast, attempts have been made to treat the surface of metal fibers using silane-based or titanate-based coupling agents, but satisfactory results have not yet been obtained.

(問題点を解決するための手段) 本発明者らは、か\る従来技術の有する欠点を改良すべ
く鋭意研究した結果、本発明を達成した。
(Means for Solving the Problems) The present inventors have achieved the present invention as a result of intensive research to improve the drawbacks of the prior art.

即ち、本発明は、アルミニウム繊維の表面にアルミニウ
ム以外の金属層を形成してなる導電性充てん材を熱可塑
性樹脂1こ均一分散せしめてなる導電性成形材料よりな
るものである。
That is, the present invention is a conductive molding material made by uniformly dispersing a conductive filler formed by forming a metal layer other than aluminum on the surface of aluminum fibers in a thermoplastic resin.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に使用する熱可塑性樹脂としては、例えば、ポリ
エステル、ポリアミド、ポリカーボネート、ポリオレフ
ィン、ポリフェニレンオキサイド、ポリフェニレンサル
ファイド、アクリロニトリル−スチレン共重合体、アク
リロニトリル−ブタジェン−スチレン共重合体等のIJ
I又は2種以上が挙げられる。
Examples of the thermoplastic resin used in the present invention include IJ such as polyester, polyamide, polycarbonate, polyolefin, polyphenylene oxide, polyphenylene sulfide, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, etc.
I or two or more types can be mentioned.

本発明に使用するアルミニウム繊維は、アルミニウム分
を主成分とするものであれば特に制限を受けないが、軽
量性という面より、通糸、アルミニウム分を90重量%
以上含有するものを使用する。
The aluminum fiber used in the present invention is not particularly limited as long as it has aluminum as its main component;
Use one containing the above.

アルミニウム繊維の製造法としては、引き抜き法、溶融
紡糸法、切削法等が挙げられる。
Examples of methods for producing aluminum fibers include a drawing method, a melt spinning method, and a cutting method.

アルミニウム繊維の形状は樹脂への混入、及び成形加工
、特に射出成形加工が出来るものであればよく、通常、
繊維径100μ以下、繊維長5w以下の形状のものを使
用する。
The shape of the aluminum fibers may be any shape as long as it can be mixed into resin and molded, especially injection molded.
Use fibers with a diameter of 100μ or less and a fiber length of 5w or less.

アルミニウム繊維の表面へ形成する金属層としては、ア
ルミニウム以外であれば特に制限されず、金、銀、銅、
クロム、ニッケル等が挙げられる。
The metal layer formed on the surface of the aluminum fiber is not particularly limited as long as it is other than aluminum, and may include gold, silver, copper,
Examples include chromium and nickel.

これらの金属の中では、特にニッケルが好ましい。Among these metals, nickel is particularly preferred.

アルミニウム金員表面へ金属層を形成する方法としては
、化学メッキと呼ばれる無電解メッキや電解メッキに代
表されるウェットブレーティング法、或は、真空蒸着、
イオンブレーティング、スパッタリング等に代表される
ドライブレーティング法等が挙げられるが、通常の場合
、無電解メッキ法が用いられる。
Methods for forming a metal layer on the aluminum metal surface include wet blating, which is typified by electroless plating called chemical plating and electrolytic plating, vacuum evaporation,
Examples include dry brating methods such as ion blating and sputtering, but electroless plating is usually used.

金属層の形成に際しては、アンカー効果を高め、密着力
を増加させるため、脱脂及び酸洗を施してアルミニウム
繊維表面を粗面化した後に行うことが好ましい。
When forming the metal layer, it is preferable to roughen the surface of the aluminum fibers by degreasing and pickling in order to enhance the anchoring effect and increase adhesion.

通常の場合、脱脂処理は、トリクレン蒸気浴で行い、酸
洗は硝酸と弗化水素酸の混合水溶液及び硝酸水溶液を用
いて行う。
Usually, the degreasing treatment is carried out in a triclene steam bath, and the pickling is carried out using a mixed aqueous solution of nitric acid and hydrofluoric acid and an aqueous nitric acid solution.

又、金属層を形成したアルミニウム繊維に対して、15
0℃×1時間程度の熱処理を施すことは、密着力と耐蝕
性を向上させる点で好ましい。
In addition, for aluminum fibers with a metal layer formed, 15
It is preferable to perform heat treatment at 0° C. for about 1 hour in terms of improving adhesion and corrosion resistance.

熱可塑性樹脂に対するアルミニウムの添加量は通常熱可
塑性樹脂100重量部に対しアルミニウム繊維5〜10
0重量部、好ましくは10〜80重量部である。
The amount of aluminum added to the thermoplastic resin is usually 5 to 10 parts by weight of aluminum fiber per 100 parts by weight of the thermoplastic resin.
0 parts by weight, preferably 10 to 80 parts by weight.

又、雨着の均一分散の方法1才特に限定されないが、例
えば単軸又は多軸押出機を用いて溶融混練してもよく、
或いは成型時に直接混練してもよい。
In addition, the method for uniformly dispersing the raincoat is not particularly limited, but may be melt-kneaded using a single-screw or multi-screw extruder, for example.
Alternatively, it may be directly kneaded during molding.

(発明の効果) 本発明の4電性成形材料は、導電性や電磁波シールド性
を必要とする用途、例えば、面発熱体として使用したり
或は、通信装置、計測器及び計算機のような電子機器用
のキャビネット等に対し広く使用し得るものである。
(Effects of the Invention) The four-electroconductive molding material of the present invention can be used in applications that require conductivity and electromagnetic shielding properties, for example, as a surface heating element, or in electronic applications such as communication devices, measuring instruments, and computers. It can be widely used for equipment cabinets, etc.

(実施例) 以下、実施例を用いて本発明の更に詳細な説明実施例1 アクリロニトリル−ブタジェン−スチレン共重合体樹脂
100重量部に対して、平均膜厚5μmのニッケル層で
被覆された繊維径30μm、繊維長2冒のアルミニウム
繊維40重量部を配合し、フルフライト半軸スクリュー
押出機を用いて、シリンダ一温度220℃で溶融混練し
てベレットを得た。次いで、得られたペレットを用いて
、通常実施されているアクリロニトリル−ブタジェン−
スチレン共重合体樹脂の条件で射出成形した。
(Example) Hereinafter, the present invention will be described in more detail using Examples. 40 parts by weight of aluminum fibers with a fiber length of 30 μm and a fiber length of 2 mm were blended and melt-kneaded using a full-flight semi-screw extruder at a cylinder temperature of 220° C. to obtain pellets. Next, using the obtained pellet, acrylonitrile-butadiene-
Injection molding was performed under the conditions of styrene copolymer resin.

得られた成形品の諸物性、及び、85℃X1時間。Physical properties of the obtained molded product and 1 hour at 85°C.

28℃×1時間、−30℃×1時間、28℃×1時間の
ヒートサイクル処理を繰返した場合の体積比較例1 アクリロニトリル−ブタジェン−スチレン共重合体樹脂
100重量部に対して、繊維径80μm。
Volume comparison example 1 when heat cycle treatment of 28°C x 1 hour, -30°C x 1 hour, and 28°C x 1 hour was repeated 1 Fiber diameter 80 μm based on 100 parts by weight of acrylonitrile-butadiene-styrene copolymer resin .

繊維長2mのアルミニウム繊維40重量部を配合し、以
下、実施例Iに記載されたのと同様の方法で、ペレット
化し成形品を得た後、諸物性及びヒートサイクル処理を
繰返した場合の体積固有抵抗の変化を測定した。
After blending 40 parts by weight of aluminum fibers with a fiber length of 2 m and pelletizing them in the same manner as described in Example I to obtain a molded product, the physical properties and volume when heat cycle treatment is repeated are determined. Changes in resistivity were measured.

表−2 〃   カネボウ合繊株式会社Table-2 Kanebo Gosen Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム繊維の表面にアルミニウム以外の金
属層を形成してなる導電性充てん材を熱可塑性樹脂に均
一分散せしめてなる導電性成形材料。
(1) A conductive molding material made by uniformly dispersing a conductive filler made by forming a metal layer other than aluminum on the surface of aluminum fibers in a thermoplastic resin.
(2)アルミニウム以外の金属層がニッケル層である特
許請求の範囲第1項記載の材料。
(2) The material according to claim 1, wherein the metal layer other than aluminum is a nickel layer.
JP26343484A 1984-12-12 1984-12-12 Electrically conductive molding material Granted JPS61141762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26343484A JPS61141762A (en) 1984-12-12 1984-12-12 Electrically conductive molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26343484A JPS61141762A (en) 1984-12-12 1984-12-12 Electrically conductive molding material

Publications (2)

Publication Number Publication Date
JPS61141762A true JPS61141762A (en) 1986-06-28
JPS6319543B2 JPS6319543B2 (en) 1988-04-22

Family

ID=17389449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26343484A Granted JPS61141762A (en) 1984-12-12 1984-12-12 Electrically conductive molding material

Country Status (1)

Country Link
JP (1) JPS61141762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153752A (en) * 1987-12-11 1989-06-15 Mitsubishi Metal Corp Electrically conductive resin composition
WO2009158045A1 (en) * 2008-06-23 2009-12-30 Parker-Hannifin Corporation Emi shielding materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149514A (en) * 1981-03-10 1982-09-16 Fukuda Kinzoku Hakufun Kogyo Kk Metal fiber for filling synthetic resins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149514A (en) * 1981-03-10 1982-09-16 Fukuda Kinzoku Hakufun Kogyo Kk Metal fiber for filling synthetic resins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153752A (en) * 1987-12-11 1989-06-15 Mitsubishi Metal Corp Electrically conductive resin composition
WO2009158045A1 (en) * 2008-06-23 2009-12-30 Parker-Hannifin Corporation Emi shielding materials

Also Published As

Publication number Publication date
JPS6319543B2 (en) 1988-04-22

Similar Documents

Publication Publication Date Title
Tzeng et al. EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites
KR101212671B1 (en) Emi/rfi shielding polymer composite
JPS6320270B2 (en)
JPS61141762A (en) Electrically conductive molding material
JPH01284000A (en) Composite element containing metallized fiber and manufacture of electromagnetic shielding molded product by employing the element
JPS6129083B2 (en)
EP0304435A1 (en) Electrically conductive material for molding.
JPS5986637A (en) Electrically conductive inorganic powder
JPS62138537A (en) Electrically-conductive thermoplastic resin composition
JPS61228065A (en) Electrically conductive high polymer composition
JPS60179204A (en) Manufacture of chip for shielding electromagnetic wave composition
JPS5986638A (en) Resin composition having excellent electromagnetic wave shielding property and rigidity
JPH0653688A (en) Molded form for electromagnetic shield
JPS63272536A (en) Manufacture of conductive resin molded product
JP2000327815A (en) Preparation of electroconductive track on plastic by laser energy
JPH04279638A (en) Electrically conductive fiber-reinforced thermoplastic
JPS61258875A (en) Electrically conductive paint
JP2002020519A (en) Electroconductive resin molding
JPS61150299A (en) Composite conductive resin
JP2004027097A (en) Thermoplastic resin composition
JPS6166755A (en) Electromagnetic wave-shielding resin composition
JPH01140800A (en) Molding for emi shield
JPS6368649A (en) Electromagnetic wave shielding polypropylene resin composition
JPH01139647A (en) Electromagnetic wave shielding material composition
JPS62229999A (en) Electromagnetic shielding polyamide resin molding material