JPS60195134A - Electrically-conductive thermoplastic plastic expandable particle and foam consisting thereof - Google Patents

Electrically-conductive thermoplastic plastic expandable particle and foam consisting thereof

Info

Publication number
JPS60195134A
JPS60195134A JP59051528A JP5152884A JPS60195134A JP S60195134 A JPS60195134 A JP S60195134A JP 59051528 A JP59051528 A JP 59051528A JP 5152884 A JP5152884 A JP 5152884A JP S60195134 A JPS60195134 A JP S60195134A
Authority
JP
Japan
Prior art keywords
particles
foam
conductive substance
spread
electrically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59051528A
Other languages
Japanese (ja)
Other versions
JPH0461895B2 (en
Inventor
Yoshihiro Kimura
吉宏 木村
Mikio Bessho
別所 幹夫
Akio Fukushima
福島 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP59051528A priority Critical patent/JPS60195134A/en
Publication of JPS60195134A publication Critical patent/JPS60195134A/en
Publication of JPH0461895B2 publication Critical patent/JPH0461895B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:Expandable particles having improved electrical conductivity and dielectric properties, obtained by dispersing graphite powder, carbon black, and carbon fiber through a specific spreading agent to the surface of preexpanded particles of thermoplastic plastic. CONSTITUTION:An organic high polymer emulsion is attached to the surface of preexpanded particles of styrenic or olefinic plastic, a mixture of graphite powder, carbon black, and carbon fiber (preferably a mixture previously prepared in a weight ratio of 1:1:1-10:1:1) as an electrically-conductive material gradually added, and spread to it. It is then dried to evaporate water in the emulsion, to obtain expandable particles having spread electrically-conductive substance on the surface, having >=6g/m<2>, preferably 7-15g/m<2> spread amount of the electrically-conductive substance, <10<3>OMEGA.cm volume resistance, <10<3>OMEGA surface resistance, >=3 dielectric constant, and >=0.2 dielectric loss. The prepared expandable particles are melted in a mold under heating, to obtain foam.

Description

【発明の詳細な説明】 本発明は、電磁波吸収材、導電性緩衝材等様々の用途に
利用できる導電特性及び誘電特性にずぐれた熱可塑性プ
ラスチック発泡性粒子及びそれからなる発泡体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to thermoplastic foam particles having excellent conductive properties and dielectric properties, which can be used for various purposes such as electromagnetic wave absorbers and conductive cushioning materials, and foams made from the same. .

従来、導電性を有する発泡体としては、(1)カーボン
ブラックを添加した硬質又は軟質のウレタン発泡体が実
用に供されており、又、(2)スチレン系樹脂粒子にカ
ーボンブラックを混合した後ビニル系モノマーを滴下重
合させ、次いで発泡剤を含浸したスチレン系発泡体や、
(3)導電性物質と高分子化合物エマルジョンと分散剤
を水に分散させた分散液を予備発泡粒子表面に塗布した
ポリオレフィン系発泡体が提案されている。
Conventionally, as conductive foams, (1) hard or soft urethane foams with added carbon black have been put into practical use, and (2) styrene resin particles mixed with carbon black have been used in practical use. Styrenic foam made by dropwise polymerizing vinyl monomer and then impregnated with a blowing agent,
(3) Polyolefin foams have been proposed in which a dispersion of a conductive substance, a polymer compound emulsion, and a dispersant dispersed in water is coated on the surface of pre-expanded particles.

しかし、(1)はカーボンブラックの添加量に限度があ
り、(2)はビニル系モノマーの重合工程を必要とし、
(3)は分散液の濃度、ひいては導電性物質塗布量に限
界がある、等の問題を有している。更に、かかる方法に
より得られた発泡体の導電性は、最良のものでも表面電
気抵抗がぽΩのオーダーであり、必ずしも種々の使用目
的にかなうものではない。
However, (1) has a limit on the amount of carbon black added, and (2) requires a polymerization process of vinyl monomers.
The method (3) has problems such as there is a limit to the concentration of the dispersion liquid and, furthermore, to the amount of conductive material applied. Furthermore, the electrical conductivity of the foam obtained by such a method is such that even the best one has a surface electrical resistance of the order of 10Ω, and is not necessarily suitable for various purposes of use.

又、誘電性を有する発泡体としては、従来、スチレン系
発泡体表面に墨汁等カーボン系塗料を塗布したものや発
泡フェライト焼結体等が試作されているが、性能面及び
価格面で必ずしも満足できるものではない。
In addition, as dielectric foams, styrene foams coated with carbon-based paints such as Indian ink, and foamed ferrite sintered bodies have been prototyped, but these have not always been satisfactory in terms of performance and price. It's not possible.

本発明は、かかる実情に鑑み鋭意研究の結果、熱可塑性
プラスチック予備発泡粒子の表面に、特定の展着剤を介
して黒鉛粉末、カーボンブラック、炭素繊維又はこれら
の混合物を展着することによりすぐれた導電性及び誘電
性を有する発泡性粒子及びそれからなる発泡体を安価に
提供するものである。
In view of the above circumstances, as a result of extensive research, the present invention has developed an excellent method by spreading graphite powder, carbon black, carbon fiber, or a mixture thereof on the surface of pre-expanded thermoplastic plastic particles using a specific spreading agent. The present invention provides expandable particles having high conductivity and dielectricity, and a foam made of the same at low cost.

すなわち、本発明の第1は、熱可塑性プラスチック発泡
粒子の表面に導電性物質を展着してなる導電性及び誘電
性を有する発泡性粒子、本発明の第2は熱可塑性プラス
チック発泡性粒子を金型内で加熱融着してなる発泡体が
あって、該発泡体を構成する発泡粒子の表面が導電性物
質により展着された構造の導電性及び導電性を有する発
泡体を内容とするものである。
That is, the first aspect of the present invention is expandable particles having conductivity and dielectricity, which are formed by spreading a conductive substance on the surface of foamed thermoplastic plastic particles, and the second aspect of the present invention is expandable particles made of expandable thermoplastic plastic particles. There is a foam formed by heating and fusing in a mold, and the foam has a structure in which the surface of foam particles constituting the foam is spread with a conductive substance, and the foam has conductivity and conductivity. It is something.

本発明で使用する熱可塑性プラスチックとしでは、スチ
レン系、オレフィン系プラスチック等があげられる。ス
チレン系プラスチックとしては、スチレン、α−メチル
スチレン、エチルスチレン、クロルスチレン、ブロムス
チレン、ビニルトルエン等の重合体、又はこれらビニル
芳香族モノマーを50重量%以上含有する共重合体等が
あげられる。スチレン系プラスデックは粒径0.3〜3
mrnの粒子であることが好ましく、常法によりプロパ
ン、ブタン、フし2ン等の発泡剤を含浸させたものを5
〜60倍、好ましくは30〜50倍に予備発泡して用い
る。又、オレフィン系プラスチックとしては、エチレン
、プロピレン、ブテン、ブタジェン等の重合体、又はこ
れらオレフィン系モノマーを50重合%以上含有する共
重合体があげられ、これらは架橋構造を有していてもさ
しつかえない。
Examples of thermoplastic plastics used in the present invention include styrene-based plastics and olefin-based plastics. Examples of styrenic plastics include polymers such as styrene, α-methylstyrene, ethylstyrene, chlorostyrene, bromustyrene, vinyltoluene, and copolymers containing 50% by weight or more of these vinyl aromatic monomers. Styrene-based Plus Deck has a particle size of 0.3 to 3.
Preferably, the particles are particles of mrn, which are impregnated with a blowing agent such as propane, butane, or phthalate by a conventional method.
It is used after being pre-foamed to ~60 times, preferably 30 to 50 times. Examples of olefin plastics include polymers such as ethylene, propylene, butene, butadiene, and copolymers containing 50% or more of these olefin monomers, and these may have a crosslinked structure. do not have.

オレフィン系プラスデックの場合粒径0.3〜61mの
粒子であることが好ましく、常法によりプロパン、ブタ
ン、フロン等の発泡剤を含浸させたものを5〜100倍
、好ましくは10〜50倍に予備発泡して用いる。
In the case of olefin-based Plus Deck, particles with a particle size of 0.3 to 61 m are preferable, and are 5 to 100 times larger, preferably 10 to 50 times larger than those impregnated with a blowing agent such as propane, butane, or chlorofluorocarbon by a conventional method. It is used after pre-foaming.

本発明で使用する導電性物質としては、黒鉛粉末、カー
ボンブラック、炭素繊維及びこれらの混合物があげられ
る。
Conductive materials used in the present invention include graphite powder, carbon black, carbon fibers, and mixtures thereof.

黒鉛粉末は天然、人造のいずれでもよいが鱗片状のもの
が好ましく、その粒径は0.1〜50μのものが好適に
用いられる。カーボンブラックとしては一般的なもの、
熱処理等の処理を施したもの等を適宜選択使用できるが
、特に「ケッチェンブラック(商品名、ライオン・アク
シー株製)」が好適である。又、炭素繊維としては直(
¥1〜10μ長さ0.1〜3+nのものが適当である。
The graphite powder may be either natural or artificial, but flake-like graphite powder is preferred, and those with a particle size of 0.1 to 50 microns are suitably used. Common carbon black,
Although those treated with heat treatment or the like can be appropriately selected and used, "Ketjen Black (trade name, manufactured by Lion Axie Co., Ltd.)" is particularly suitable. Also, as a carbon fiber, it is straight (
A suitable material is one with a length of 0.1 to 3+n.

黒鉛粉末、カーボンブラック及び炭素繊維の混合物が特
に好適であり、その混合比率は特に限定されないが、重
量比で1対1対1〜lO対1対1の範囲が好適である。
A mixture of graphite powder, carbon black and carbon fiber is particularly suitable, and the mixing ratio thereof is not particularly limited, but a weight ratio of 1:1:1 to 1O:1:1 is suitable.

導電性物質の展着量は、少な過ぎると導電性能が不十分
となり、反対に多過ぎると成形品密度が高くなり、又、
導電性物質が高価なため経済的でなくおのずと限界があ
る。例えばプラスチック発泡粒子全表面積1d当たり6
〜30gの範囲が適当であり、より好ましくは7〜20
g、更に好ましくは7〜15g程度である。
If the amount of the conductive substance spread is too small, the conductive performance will be insufficient, and if it is too large, the density of the molded product will be high.
Since conductive materials are expensive, they are not economical and have their own limitations. For example, 6 per 1 d of total surface area of plastic foam particles.
A range of ~30g is appropriate, more preferably 7~20g.
g, more preferably about 7 to 15 g.

本発明で使用するエマルジョンとしては有機高分子エマ
ルジョンが好適で、例えばアクリル系、スチレン・アク
リル系、酢酸ビニル系、エチレン・酢酸ビニル系等市販
のものが用いられる。
The emulsion used in the present invention is preferably an organic polymer emulsion, such as commercially available emulsions such as acrylic, styrene/acrylic, vinyl acetate, and ethylene/vinyl acetate.

導電性物質とエマルジョンの使用比率は、導電性物質の
比率が大き過ぎると成形品の発泡粒子相互融着性が悪く
なり、反対にエマルジョン比率が大き過ぎると導電性能
が低下するので、重量比で3対1〜1対3の範囲(但し
、エマルジョンは固形分換算)で選択される。
The ratio of the conductive substance to the emulsion used should be determined based on the weight ratio, because if the ratio of the conductive substance is too large, the mutual fusion of the foamed particles of the molded product will deteriorate, and on the other hand, if the emulsion ratio is too large, the conductive performance will decrease. The ratio is selected in the range of 3:1 to 1:3 (for emulsions, in terms of solid content).

上記の如くして得られた熱可塑性プラスチック発泡性粒
子を加熱・融着して得られた発泡体は該発泡体を構成す
る発泡粒子の表面が導電性物質により展着された構造か
らなる。即ち、該発泡体を形成する粒子の融着面に導電
性物質が展着された構造となる。
A foam obtained by heating and fusing the thermoplastic expandable particles obtained as described above has a structure in which the surface of the expanded particles constituting the foam is spread with a conductive substance. That is, the foam has a structure in which a conductive substance is spread on the fused surfaces of the particles forming the foam.

本発明の発泡性粒子は、例えば(1)熱可塑性プラスチ
ック粒子の常法による予備発泡、(2)予備発泡粒子表
面へのエマルジョンの付着、(3)導電性物質の展着、
(4)乾燥により得られ、発泡体は更に(5)発泡性粒
子の成形用金型への充填と常法による成形により得られ
る。
The expandable particles of the present invention include, for example, (1) pre-foaming of thermoplastic particles by a conventional method, (2) adhesion of an emulsion to the surface of the pre-expanded particles, (3) spreading of a conductive substance,
The foam is obtained by (4) drying, and the foam is further obtained by (5) filling expandable particles into a mold and molding by a conventional method.

゛(2)の工程におけるエマルジョンの付着はミキサー
、ブレンダー等を用い、予備発泡粒子上に市販のエマル
ジョンを希釈することなくそのまま滴下しつつ混合する
ことにより行われる。
The adhesion of the emulsion in step (2) is carried out by dropping and mixing the commercially available emulsion as it is without dilution onto the pre-expanded particles using a mixer, blender or the like.

(3)の工程はエマルジョン付着作業の終了後、直ちに
導電性物質を少量ずつ添加し混合することにより行われ
る。この工程はエマルジョンが乾燥固化する前に、即ち
液状である間に、粉末状の導電性物質を徐々に添加し展
着させるもので、外表面に近いほど導電物質濃度の大き
な展着予備発泡粒子が得られる。導電性物質として黒鉛
粉末、カーボンブラック及び炭素繊維の混合物を用いる
場合は、予めよく混合しておくのがよい。
Step (3) is carried out by adding and mixing a conductive substance little by little immediately after the emulsion application process is completed. In this process, before the emulsion dries and solidifies, that is, while it is still in liquid form, a powdered conductive substance is gradually added and spread on the pre-expanded particles, with the concentration of the conductive substance being higher nearer to the outer surface. is obtained. When using a mixture of graphite powder, carbon black, and carbon fiber as the conductive substance, it is preferable to mix them thoroughly in advance.

(4)の工程はエマルジョン中の水分を蒸発させ、エマ
ルジョン樹脂粒子の保護コロイド膜を破壊して連続皮膜
を形成さゼ、導電性物質を予備発泡粒子表面に強固に接
着させるものである。特にこの工程では、導電性物質を
展着した未乾燥予備発泡粒子を流動、振動、かきまぜ等
により動かし解しつつ乾燥することにより、予備発泡粒
子相互のブロッキングを防止することができる。
Step (4) evaporates the water in the emulsion, destroys the protective colloid film of the emulsion resin particles to form a continuous film, and firmly adheres the conductive substance to the surface of the pre-expanded particles. Particularly in this step, blocking of the pre-expanded particles with each other can be prevented by drying the undried pre-expanded particles on which the conductive substance has been spread while moving and dissolving them by flowing, vibrating, stirring or the like.

以下、実施例及び比較例を挙げて本発明をさらに詳しく
説明するが、本発明はこれらにより何ら制限をうけない
ことは云うまでもない。
The present invention will be explained in more detail below with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited in any way by these.

実施例1 平均粒径0.8 m mの球状の発泡ポリスチレン粒子
〔鐘淵化学工業(株)M、商品名「カネバールGBJ)
を水蒸気で加熱し、発泡倍率50倍の予備発泡粒子を得
た。
Example 1 Spherical expanded polystyrene particles with an average particle diameter of 0.8 mm [Kanebuchi Kagaku Kogyo Co., Ltd. M, trade name "Kanevar GBJ"]
was heated with steam to obtain pre-expanded particles with an expansion ratio of 50 times.

この粒子300gをミキサーに入れ、ミキサーを回転し
つつ、スチレン・アクリル系エマルジョン〔カネボウ・
ニスニスシー(株)製、商品名「ヨドゾールGF−IJ
、固型分46重量%〕490gを徐々に滴下し、予備発
泡粒子表面にエマルジョンを付着させた。別に、天然鱗
片状黒鉛粉末〔日本黒鉛工業(株)製、商品名’C3P
EJ粒度範囲1〜15μ)135gと「ケッチェンブラ
ックJ 45g及び炭素繊維〔東邦レーヨンa1製、商
品明rcFミルドファイバー」直径7μ長さ0.2〜0
.3 ms) 4’5 gを予め混合しておき、ミキサ
ーを回転しつつ、エマルジョン付着予備発泡粒子上に徐
々に添加し、導電性物質展着粒子を得た。
Put 300g of these particles into a mixer, and while rotating the mixer, create a styrene-acrylic emulsion [Kanebo
Manufactured by Nisniscy Co., Ltd., product name "Yodozol GF-IJ"
, solid content: 46% by weight] was gradually dropped to adhere the emulsion to the surface of the pre-expanded particles. Separately, natural flaky graphite powder [manufactured by Nippon Graphite Industries Co., Ltd., product name 'C3P]
EJ particle size range 1-15μ) 135g and "Ketjen Black J 45g and carbon fiber [manufactured by Toho Rayon A1, product rcF milled fiber" diameter 7μ length 0.2-0
.. 3 ms) 4'5 g were mixed in advance and gradually added to the emulsion-adhered pre-expanded particles while rotating the mixer to obtain conductive substance-spread particles.

この粒子の導電性物質展着量は約8.5g/%であった
The amount of conductive material spread on these particles was approximately 8.5 g/%.

次いで、この粒子をミキサーから取出し、ポリエチレン
フィルム上にひろげ、へうで時々かきまぜながら室温下
で乾燥させた。5時間後にほぼ乾燥状態に達し、そのま
ま−夜装置した。
The particles were then removed from the mixer, spread on a polyethylene film, and dried at room temperature with occasional stirring in a oven. After 5 hours, the mixture reached a nearly dry state and was left in the apparatus overnight.

上記の如くして得られた乾燥粒子を用い、通常の発泡ス
チレン成形機により600x370x50mmの板を成
形した。この板は粒子の融着が完全で密度が49 g 
/ jlであった。この板の電気抵抗、誘電特性、圧縮
特性、熱伝導率を第1表に示した。
Using the dry particles obtained as described above, a plate of 600 x 370 x 50 mm was molded using a conventional expanded styrene molding machine. This board has completely fused particles and has a density of 49 g.
/ jl. The electrical resistance, dielectric properties, compression properties, and thermal conductivity of this plate are shown in Table 1.

実施例2 実施例1の条件のうち、エマルジョンを酢酸ビニル系〔
ダイセル化学工業(11M、商品名「セビアンA221
26」、固型分40重量%)560gに変更した以外は
実施例1と同様にして、粒子の融着が完全で密度が47
g/nの板を成形した。
Example 2 Among the conditions of Example 1, the emulsion was prepared using vinyl acetate [
Daicel Chemical Industries (11M, product name: Cevian A221
26'', solid content 40% by weight) 560 g, the particles were completely fused and the density was 47.
A plate of g/n was molded.

この板の電気抵抗、誘電特性等を第1表に示した。The electrical resistance, dielectric properties, etc. of this plate are shown in Table 1.

実施例3 導電性物質として、粒径の異なる天然燐片状黒鉛粉末を
3種(M用[■日本カーボン側層、商品名r R−i 
」粒度範囲1〜44μを45g、0日本黒鉛工業(I’
ll ′!A、商品名rcsPEJ粒度範囲1〜15μ
を45g、■l」本黒鉛工業((IM、商品名r CS
 S l) j粒度範囲0.1〜5μを45g)L、こ
れに1ケツチエンブラツク」45g及びrCFミルドフ
ァイバー」45gを混合したものを用いた以外は実施例
1と同様にして粒子の融着が完全で密度が50 g/j
!の板を成形した。この板の電気抵抗、誘電特性等を第
1表に示した。
Example 3 Three types of natural scaly graphite powders with different particle sizes were used as conductive substances (for M [■ Nippon Carbon side layer, product name r R-i
'Particle size range 1~44μ 45g, 0 Nippon Graphite Industries (I'
ll'! A, Product name rcsPEJ particle size range 1-15μ
45g, 1" Hon Graphite Kogyo ((IM, product name r CS
Particles were fused in the same manner as in Example 1, except that 45 g of S l)j particle size range 0.1 to 5μ was used, mixed with 45 g of ``1 Ketchen Black'' and 45 g of ``rCF Milled Fiber''. is perfect and the density is 50 g/j
! A board was formed. The electrical resistance, dielectric properties, etc. of this plate are shown in Table 1.

実施例1 導電性物質として、rcsPEJ 169 gと「ケッ
チェンブラック」56gを混合使用し炭素繊維は用いず
にその他の条件を実施例1と同様にして粒子の融着が完
全で密度が43 g/pの板を成形した。この板の電気
抵抗、誘電特性等は第1表のようであった。
Example 1 A mixture of 169 g of rcsPEJ and 56 g of "Ketjen black" was used as the conductive material, and the other conditions were the same as in Example 1 without using carbon fiber, so that the particles were completely fused and the density was 43 g. /p plate was molded. The electrical resistance, dielectric properties, etc. of this plate were as shown in Table 1.

比較例1 「カネパールGBJを発泡倍率50倍の予備発泡粒子と
し、導電性物質を展着せずに600X370 X 50
 amの板を成形した。この坂は密度が21g/βであ
り、電気抵抗、誘電特性等は第1表のようであった。
Comparative Example 1 "Canepal GBJ was used as pre-expanded particles with a foaming ratio of 50 times, and the size was 600 x 370 x 50 without spreading a conductive substance.
am plate was molded. The density of this slope was 21 g/β, and the electrical resistance, dielectric properties, etc. were as shown in Table 1.

及びそれからなる発泡体 3、?di正をする者 事件との関係:特許出願人 住所、大阪市北区中之島三丁目2番4号名称: (09
4) f!i!1jil化学工業株式会社代表者二代表
取締役 高 1) 敞 4、代理人 住所 大阪市北区西天高3丁目2番4号明細書の「発明
の9丁、綱な説明」の欄の記載を下記の通り補正する; ■明細書の第10頁、第6行目に「商品間」とあるを“
商品名パに訂正する。
and a foam 3 consisting of it? Relationship with the person who commits di-correction: Patent applicant address: 3-2-4 Nakanoshima, Kita-ku, Osaka Name: (09
4) f! i! 1jil Chemical Industry Co., Ltd. Representative 2 Representative Director Takashi 1) Sho 4, Agent address 3-2-4 Nishitendaka, Kita-ku, Osaka City The description in the column "9th section of the invention, detailed explanation" of the specification is as follows. Amend as follows: ■ On page 10, line 6 of the specification, replace the phrase “between products” with “
Correct the product name to PA.

■明♀lIl書の第12頁、第1行目に「実施例1」と
あるをパ実施例4パ4こ訂正する。
■Correct "Example 1" in the first line of page 12 of the book.

■明細書の第14頁、第1行目、「特許出願人鐘淵化学
工業株式会社」の前に下記内容を挿入する; 実施例5 密度0.9241! / C%、Ml値1.5、平均粒
径1゜3mmの低密度ポリエチレン粒子をパーオキサイ
ド架橋により架橋度50%の架橋ポリエチレンとした後
、60°Cの飽和フロン12(C1!21ち)ガス中に
60分放置してフロン12を含浸させた。この架橋発泡
性ポリエチレン粒子を水蒸気で加メ;ハし、発泡倍率3
5倍の予Ojη発泡粒子を得た。
■Insert the following content in the first line of page 14 of the specification before "Patent applicant Kanebuchi Chemical Industry Co., Ltd."; Example 5 Density 0.9241! /C%, Ml value 1.5, low density polyethylene particles with an average particle size of 1°3 mm were made into crosslinked polyethylene with a degree of crosslinking of 50% by peroxide crosslinking, and then saturated Freon 12 (C1!21) was heated at 60°C. It was left in the gas for 60 minutes to be impregnated with Freon 12. The cross-linked foamable polyethylene particles are heated with water vapor, and the expansion ratio is 3.
5 times pre-Ojη foamed particles were obtained.

この粒子300gをミキサーに入れ、ミキサーを回転し
つつ、スチレン・−1クリル系エマルジヨン〔カネボウ
 ニスニスシー(株)製、商品名「ヨドゾールGF−I
J、固型物46重量%〕490gを徐々に滴下し、予備
発泡粒子表面にエマルジョンを付着さ・ヒた。別に、天
然−1片]k黒鉛粉末〔日本黒鉛工業(4’1M、商品
名’C3PEJ粒度範囲1〜15μ)135gとrケッ
チェンブラックj45g及び炭素繊維〔東邦レーヨン+
+11!、商品名「CFミルドファイバー」直i条7μ
長さ0.2〜0.3mm)45gを予めl捏合しておき
、ミキサーを回転しつつ、エマルジョン(=J着予備発
泡粒子上に徐々に添加し、導電性物質展着粒子をiMた
Put 300 g of these particles into a mixer, and while rotating the mixer, add a styrene-1-acrylic emulsion [manufactured by Kanebo Nisnishi Co., Ltd., product name: "Yodozol GF-I"].
J, 490 g of solid matter (46% by weight) was gradually dropped to adhere the emulsion to the surface of the pre-expanded particles. Separately, 1 piece of natural graphite powder [Nippon Graphite Industries (4'1M, trade name 'C3PEJ particle size range 1-15μ) 135g and R Ketjen Black J 45g and carbon fiber [Toho Rayon +
+11! , Product name: "CF Milled Fiber" Straight i-thread 7μ
45 g (length: 0.2 to 0.3 mm) were kneaded in advance, and while rotating the mixer, the emulsion (=J) was gradually added onto the pre-expanded particles to form conductive substance-spread particles.

この粒子の導電性物質展着量は約8− J IZ / 
’であった。
The amount of conductive material spread on these particles is approximately 8- J IZ /
'Met.

次いで、この粒子をミキサーから取出し、ポリエチレン
フィルム」二にひるけ゛、ヘラで時々かきまぜながら室
温下で乾燥さ−1た。5時間後にほぼ乾燥状態に達し、
そのまま−夜装置した。
The particles were then taken out from the mixer, spread over a polyethylene film, and dried at room temperature while occasionally stirring with a spatula. After 5 hours, it reached almost dry condition,
I set it up overnight.

上記の如くして得られた乾燥粒子を用い、通當の発泡ポ
リエチレン成形機により600X370×501の板を
成形した。この板は粒子の融着が完全で密度が60g/
ffであった。この板の電気抵抗、誘電特性、圧縮特性
、熱伝導率を第2表に示し)こ。
Using the dry particles obtained as described above, a plate of 600 x 370 x 50 mm was molded using a conventional foamed polyethylene molding machine. This board has completely fused particles and has a density of 60g/
It was ff. The electrical resistance, dielectric properties, compressive properties, and thermal conductivity of this plate are shown in Table 2).

比較例2 実施例5の架橋ポリエチレン予備発泡粒子を用い、導電
性物質を展着−Uずに密度が32 g#!の板を成形し
た。
Comparative Example 2 Using the crosslinked polyethylene pre-expanded particles of Example 5, the density was 32 g# without spreading a conductive substance. A board was formed.

この板の電気抵抗、d)つ型持性等は第2表の通りであ
った。
The electrical resistance, shape retention, etc. of this plate were as shown in Table 2.

Claims (1)

【特許請求の範囲】 工、熱可塑性プラスチック発泡性粒子の表面に導電性物
質を展着してなる発泡性粒子。 2、熱可塑性プラスチックがスチレン系又はオレフィン
系プラスデックである特許請求の範囲第1項記載の発泡
性粒子。 3、導電性物質が黒鉛粉末、カーボンブラック及び炭素
繊維の混合物からなる特許請求の範囲第1項又は第2項
記載の発泡性粒子。 4、導電性物質の展着量が6g/rd以上である特許請
求の範囲第1項記載の発li性粒子。 5、体積抵抗がIQ’Ω・cm未満かつ表面抵抗が10
3Ω未満である特許請求の範囲第1項記載の発泡性粒子
。 6、比誘電率が3以上かつ誘電損失が0.2以上7−ふ
ス枯量値jn歩の妬ITII領1頂91uの春湘々ルt
hヱ7、展着剤が有機高分子エマルジョンである特許請
求の範囲第1項記載の発泡性粒子。 8、熱可塑性プラスチック発泡性粒子を金型内で加熱融
着してなる発?m体であって、該発泡体を構成する発泡
粒子の表面が導電性物質により展着された構造の発泡体
。 9、熱可塑性プラスチックがスチレン系又はオレフィン
系プラスチックである特許請求の範囲第8項記載の発泡
体。 10、導電性物質が黒鉛粉末、カーボンブラック及び炭
素繊維の混合物からなる特許請求の範囲第一8項又は第
9項記載の発泡体。 11、導電性物質の展着量が6 g / n(以」二で
ある特許請求の範囲第8項記載の発泡体。 12、体積抵抗がIQ’Ω・ω未満かつ表面抵抗がlo
3Ω未満である特許請求の範囲第8項記載の発泡体。 13、比誘電率が3以上かつ誘電損失が0.2以上であ
る特許請求の範囲第8項記載の発泡体。 14、展着剤が有機高分子エマルジョンである特許請求
の範囲第8項記載の発泡体。
[Claims] Expandable particles obtained by spreading a conductive substance on the surface of expandable thermoplastic particles. 2. The expandable particles according to claim 1, wherein the thermoplastic is styrene-based or olefin-based PlusDeck. 3. The expandable particles according to claim 1 or 2, wherein the conductive substance is a mixture of graphite powder, carbon black, and carbon fiber. 4. The li-forming particles according to claim 1, wherein the amount of the conductive substance spread is 6 g/rd or more. 5. Volume resistance is less than IQ'Ω・cm and surface resistance is 10
The expandable particles according to claim 1, which have a resistance of less than 3Ω. 6. The relative dielectric constant is 3 or more and the dielectric loss is 0.2 or more.
7. The expandable particles according to claim 1, wherein the spreading agent is an organic polymer emulsion. 8. Is it made by heating and fusing thermoplastic expandable particles in a mold? A foam having a structure in which the surface of foamed particles constituting the foam is spread with a conductive substance. 9. The foam according to claim 8, wherein the thermoplastic plastic is a styrene-based or olefin-based plastic. 10. The foam according to claim 18 or 9, wherein the conductive material is a mixture of graphite powder, carbon black, and carbon fibers. 11. The foam according to claim 8, wherein the amount of the conductive substance spread is 6 g/n (or less). 12. The foam has a volume resistance of less than IQ'Ω·ω and a surface resistance of lo
9. The foam according to claim 8, which has a resistance of less than 3Ω. 13. The foam according to claim 8, which has a dielectric constant of 3 or more and a dielectric loss of 0.2 or more. 14. The foam according to claim 8, wherein the spreading agent is an organic polymer emulsion.
JP59051528A 1984-03-16 1984-03-16 Electrically-conductive thermoplastic plastic expandable particle and foam consisting thereof Granted JPS60195134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59051528A JPS60195134A (en) 1984-03-16 1984-03-16 Electrically-conductive thermoplastic plastic expandable particle and foam consisting thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59051528A JPS60195134A (en) 1984-03-16 1984-03-16 Electrically-conductive thermoplastic plastic expandable particle and foam consisting thereof

Publications (2)

Publication Number Publication Date
JPS60195134A true JPS60195134A (en) 1985-10-03
JPH0461895B2 JPH0461895B2 (en) 1992-10-02

Family

ID=12889513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051528A Granted JPS60195134A (en) 1984-03-16 1984-03-16 Electrically-conductive thermoplastic plastic expandable particle and foam consisting thereof

Country Status (1)

Country Link
JP (1) JPS60195134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192465A (en) * 1992-10-22 1994-07-12 Hein Farben Gmbh Treatment of foamed polyolefin particle
EP0821432A2 (en) * 1996-07-24 1998-01-28 Mitsubishi Cable Industries, Ltd. Wave absorber and method for production thereof
JP2002003634A (en) * 2000-06-23 2002-01-09 Asahi Kasei Corp Functional polyolefin resin foam particle and molded article thereof
JP2015000907A (en) * 2013-06-14 2015-01-05 旭化成ケミカルズ株式会社 Foaming particle and foaming particle molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130868A (en) * 1976-04-23 1977-11-02 Reuter Technologie Gmbh Molded conductive foam
JPS5889624A (en) * 1981-11-24 1983-05-28 Karitasu Kogyo Gijutsu Kaihatsu Center:Kk Manufacture of polystyrene foam molded product capable of preventing and eliminating static electricity
JPS5892540A (en) * 1981-11-30 1983-06-01 Fujimori Kogyo Kk Conductive foam molding body and manufacture therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130868A (en) * 1976-04-23 1977-11-02 Reuter Technologie Gmbh Molded conductive foam
JPS5889624A (en) * 1981-11-24 1983-05-28 Karitasu Kogyo Gijutsu Kaihatsu Center:Kk Manufacture of polystyrene foam molded product capable of preventing and eliminating static electricity
JPS5892540A (en) * 1981-11-30 1983-06-01 Fujimori Kogyo Kk Conductive foam molding body and manufacture therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192465A (en) * 1992-10-22 1994-07-12 Hein Farben Gmbh Treatment of foamed polyolefin particle
EP0821432A2 (en) * 1996-07-24 1998-01-28 Mitsubishi Cable Industries, Ltd. Wave absorber and method for production thereof
EP0821432A3 (en) * 1996-07-24 2000-05-10 Mitsubishi Cable Industries, Ltd. Wave absorber and method for production thereof
JP2002003634A (en) * 2000-06-23 2002-01-09 Asahi Kasei Corp Functional polyolefin resin foam particle and molded article thereof
JP2015000907A (en) * 2013-06-14 2015-01-05 旭化成ケミカルズ株式会社 Foaming particle and foaming particle molding

Also Published As

Publication number Publication date
JPH0461895B2 (en) 1992-10-02

Similar Documents

Publication Publication Date Title
Vyas et al. Characterization of heterogeneous anion-exchange membrane
KR100196539B1 (en) A process and a device for preparation of expanded thermoplastic microspheres
JP2908024B2 (en) Pressure-sensitive composite material and method of using same
US3615972A (en) Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
JPS5855231A (en) Manufacture of polyolefinic resin prefoamed particle
JPH1067981A (en) Heat-storing substance heatable with microwave
KR19990063960A (en) Additive-coated resin composition
GB1044680A (en) Expandable thermoplastic polymer particles containing volatile fluid foaming agent and method of making the same
JPS5953290B2 (en) Method for drying and expanding microspheres
JPS60141732A (en) Expandable conductive styrene resin beads, foam therefrom and its manufacture
US3429955A (en) Method of making a shaped article from coated multicellular glass nodules
JPS60195134A (en) Electrically-conductive thermoplastic plastic expandable particle and foam consisting thereof
JPH04356543A (en) Conductive and dielectric thermoplastic resin particle, foam made therefrom, and its production
WO1993000390A1 (en) Insulating articles
GB1588314A (en) Processes for producing material by bonding expanded plastics granules
US6007905A (en) Wave absorber and method for production thereof
JP2001250423A (en) Heat-resistant dielectric foam
JPS58111838A (en) Conductive foamable styrene resin particle and preparation of same
JPS56143229A (en) Fine sphere expandable when heated
JPS5578029A (en) Preparation of foamable self-extinguishing thermoplastic resin particle
JPH01289841A (en) Expanded styrene resin particle and its production
JPH0867762A (en) Pre-expanded thermoplastic resin particle having low thermal conductivity and molding made thereof
JPH02113984A (en) Foamed regist film and structure thereof
JPH06860B2 (en) Method for producing expandable resin particles having antistatic ability
JPH0532217B2 (en)