JPS60141732A - Expandable conductive styrene resin beads, foam therefrom and its manufacture - Google Patents

Expandable conductive styrene resin beads, foam therefrom and its manufacture

Info

Publication number
JPS60141732A
JPS60141732A JP25016483A JP25016483A JPS60141732A JP S60141732 A JPS60141732 A JP S60141732A JP 25016483 A JP25016483 A JP 25016483A JP 25016483 A JP25016483 A JP 25016483A JP S60141732 A JPS60141732 A JP S60141732A
Authority
JP
Japan
Prior art keywords
conductive
particles
foam
spread
conductive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25016483A
Other languages
Japanese (ja)
Other versions
JPH0311303B2 (en
Inventor
Yoshihiro Kimura
吉宏 木村
Mikio Bessho
別所 幹夫
Akio Fukushima
福島 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP25016483A priority Critical patent/JPS60141732A/en
Publication of JPS60141732A publication Critical patent/JPS60141732A/en
Publication of JPH0311303B2 publication Critical patent/JPH0311303B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain titled beads and foam useful for conductive cushioning materials and electromagnetic wave absorbers, by spreading specified amount of specific conductive matter on the surface of preliminarily expanded styrene resin beads followed by drying. CONSTITUTION:Styrene resin beads with a size pref. 0.3-3mm. are preliminarily expanded by a factor of 5-60, whose surface being attached with organic polymer emulsion then spread with 6-30(pref. 7-20)g/m<2> of conductive matter (e.g. graphite powder, carbon black, or a mixture thereof) followed by drying, thus obtaining the objective beads. The surface of said beads has an electrical resistance lower than 10<4>OMEGA. The weight ratio of the conductive matter to the emulsion to be used is 3/1-1/3. Said beads are heated to fusion to obtain the other objective foam.

Description

【発明の詳細な説明】 本発明は導電性緩衝材、電磁波吸収材等積々の用途に利
用できる導電性スチレン系樹脂発泡性粒子および発泡体
並びにその製造法に関するものであり、簡便な製造工程
で優れた導電性を有する発泡性粒子又は発泡体を提供す
ることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to conductive styrenic resin expandable particles and foams that can be used for a variety of purposes such as conductive cushioning materials and electromagnetic wave absorbing materials, as well as a method for manufacturing the same, and a simple manufacturing process. The object of the present invention is to provide expandable particles or foams having excellent conductivity.

従来、導電性を有する発泡体としては、(1)カーボン
ブラックを添加した硬質又は軟質のウレタン発泡体が実
用に供されており、又、(2)スチレン系樹脂粒子にカ
ーボンブラックを混合した後ビニル系モノマーを滴化重
合させ、次いで発泡剤を含浸したスチレン系発泡体や、
(3)導電性物質と高分子化合物エマルジョンと分散剤
を水に分散させた分散液を予備発泡粒子表面に塗布した
ポリオレフィン系発泡体が提案されている。
Conventionally, as conductive foams, (1) hard or soft urethane foams with added carbon black have been put into practical use, and (2) styrene resin particles mixed with carbon black have been used in practical use. Styrenic foam made by droplet polymerization of vinyl monomer and then impregnated with a blowing agent,
(3) Polyolefin foams have been proposed in which a dispersion of a conductive substance, a polymer compound emulsion, and a dispersant dispersed in water is coated on the surface of pre-expanded particles.

しかし、(1)はカーボンブラックの添加量に限度があ
り、(2)はビニル系モノマーの重合工程を必要とし、
(3)は分散液の濃度、ひいては導電性物質塗布量に限
界がある、等の問題を有している。更に、かかる方法に
より得られた発泡体の導電性は、最良のものでも表面電
気抵抗が1伊Ωのオーダーであり、必ずしも種々の使用
目的にかなうものではない。
However, (1) has a limit on the amount of carbon black added, and (2) requires a polymerization process of vinyl monomers.
The method (3) has problems such as there is a limit to the concentration of the dispersion liquid and, furthermore, to the amount of conductive material applied. Furthermore, the electrical conductivity of the foam obtained by such a method is such that even the best one has a surface electrical resistance of the order of 1 Ω, which is not necessarily suitable for various purposes.

本発明はかかる実情に鑑み鋭意研究を重ねた結果、スチ
レン系樹脂予備発泡粒子の表面にまずエマルジョンを付
着させ、次いで導電性物質を展着し、しかるのち該展着
粒子を動がしほぐしつつ乾燥する工程を採用することに
より、上記問題点を解決したものである。
The present invention was developed as a result of extensive research in view of the above circumstances. First, an emulsion is attached to the surface of pre-expanded styrene resin particles, a conductive substance is then spread on the surface, and the spread particles are then moved and loosened. By employing a drying process, the above problems are solved.

すなわち本発明の第1は、スチレン系樹脂発泡粒子の表
面に導電性物質を展着してなる導電性発泡性粒子、本発
明の第2はスチレン系樹脂発泡性粒子を金型内で加熱・
融着してなる発泡体があって、該発泡体を構成する発泡
粒子の表面が導電性物質により展着された構造の導電性
発泡体及び本発明の第3はスチレン系樹脂予備発泡粒子
の表面に先づエマルジョンを付着させ、次いで導電性物
質を展着させ、乾燥して導電性物質展着予備発泡粒子を
得、該粒子を型内に充填し加熱発泡させることを特徴と
する発泡体の製造法を内容とするものである。
That is, the first aspect of the present invention is conductive expandable particles made by spreading a conductive substance on the surface of expanded styrene resin particles, and the second aspect of the present invention is to heat and heat expandable styrene resin particles in a mold.
There is a foam formed by fusion, and a conductive foam having a structure in which the surface of foamed particles constituting the foam is spread with a conductive substance, and the third aspect of the present invention is a foam made of pre-expanded styrenic resin particles. A foamed product characterized by first adhering an emulsion to the surface, then spreading a conductive substance, drying to obtain conductive substance-spread pre-expanded particles, filling the particles into a mold and heating and foaming them. The content is the manufacturing method.

本発明で使用するスチレン系樹脂としては、スチレン、
α−メチルスチレン、エチルスチレン、クロルスチレン
、ブロムスチレン、ビニルトルエン等の重合体、又はこ
れらビニル芳香族モノマーを50重量%以上含有する共
重合体等があげられる。スチレン系樹脂は粒径0.3〜
3mmの粒子であることが好ましく、常法によりプロパ
ン、ブタン、フロン等の発泡剤を含浸させたものを5〜
60倍、好ましくは30〜50倍に予備発泡して用いる
The styrenic resin used in the present invention includes styrene,
Examples include polymers such as α-methylstyrene, ethylstyrene, chlorostyrene, bromstyrene, vinyltoluene, and copolymers containing 50% by weight or more of these vinyl aromatic monomers. Styrene resin has a particle size of 0.3~
Preferably, the particles are 3 mm in size, and are impregnated with a blowing agent such as propane, butane, or chlorofluorocarbon by a conventional method.
It is used after being pre-foamed 60 times, preferably 30 to 50 times.

本発明で使用する導電性物質としては、黒鉛粉末、カー
ボンブラック又はこれらの混合物があげられる。黒鉛粉
末は天然、人造のいずれでもよいが鱗片状のものが好ま
しく、その粒径は1〜50μのものが好適に用いられる
。カーボンブラックとしては一般的なもの、熱処理等の
処理を施したもの等を適宜選択使用できるが、特にrケ
ッチェンブラック(商品名、ライオン・アクシー株製)
」が好適である。
The conductive material used in the present invention includes graphite powder, carbon black, or a mixture thereof. The graphite powder may be either natural or artificial, but flake-like graphite powder is preferred, and those with a particle size of 1 to 50 microns are suitably used. As carbon black, general carbon black or carbon black that has been treated with heat treatment etc. can be selected and used as appropriate, but in particular R Ketjen Black (trade name, manufactured by Lion Axie Co., Ltd.)
” is suitable.

混合物として使用する場合、黒鉛粉末とカーボンブラッ
クの混合比率は特に限定されないが、重量比で1対1〜
10対1の範囲が好適である。
When used as a mixture, the mixing ratio of graphite powder and carbon black is not particularly limited, but is 1:1 to 1 by weight.
A range of 10:1 is preferred.

導電性物質の展着量は、少な過ぎると導電性能が不十分
となり、反対に多過ぎると成形品密度が高くなり、又、
導電性物質が高価なため経済的でなくおのずと限界があ
る。例えばスチレン系樹脂発泡粒子全表面積1d当たり
6〜30gの範囲が適当であり、より好ましくは7〜2
0g、更に好ましくは7〜15g程度である。
If the amount of the conductive substance spread is too small, the conductive performance will be insufficient, and if it is too large, the density of the molded product will be high.
Since conductive materials are expensive, they are not economical and have their own limitations. For example, a range of 6 to 30 g per 1 d of total surface area of the foamed styrene resin particles is appropriate, more preferably 7 to 2 g.
0 g, more preferably about 7 to 15 g.

本発明で使用するエマルジョンとしては有機高分子エマ
ルジョンが好適で、例えばアクリル系、スチレン・アク
リル系、酢酸ビニル系、エチレン・酢酸ビニル系等市販
のものが用いられるが、スチレン系樹脂粒子との親和性
の観点から、スチレン・アクリル系が好ましい。
Organic polymer emulsions are suitable as emulsions used in the present invention, and commercially available emulsions such as acrylic, styrene/acrylic, vinyl acetate, and ethylene/vinyl acetate are used, but they are compatible with styrene resin particles. From the viewpoint of properties, styrene/acrylic is preferred.

導電性物質とエマルジョンの使用比率は、導電性物質の
比率が大き過ぎると成形品の発泡粒子相互融着性が悪く
なり、反対にエマルシコン比率が大き過ぎると導電性能
が低下するので、重量比で3対1〜1対3の範囲(但し
、エマルジョンは固′ 形骨換算)で選択される。スチ
レン系樹脂発泡性粒子の表面電気抵抗はげΩ未満が好適
である。
The ratio of the conductive substance to the emulsion used should be determined based on the weight ratio, because if the ratio of the conductive substance is too large, the mutual fusion of the foam particles in the molded product will deteriorate, and on the other hand, if the emulsion ratio is too large, the conductive performance will decrease. The ratio is selected in the range of 3:1 to 1:3 (however, the emulsion is based on solid bone). The surface electrical resistance of the expandable styrene resin particles is preferably less than Ω.

上記の如くして得られたスチレン系樹脂発泡性粒子を加
熱・融着して得られた発泡体は該発泡体を構成する発泡
粒子の表面が導電性物質により展着された構造からなる
。即ち、該発泡体を形成する粒子の融着面に導電性物質
が展着された構造となる。本発明の発泡体は前記の如く
多量の導電性物質を展着してなるから、表面電気抵抗は
げΩ未満と為し得、更には1c〜103オーダーも可能
となる。
A foam obtained by heating and fusing the foamable styrene resin particles obtained as described above has a structure in which the surface of the foam particles constituting the foam is spread with a conductive substance. That is, the foam has a structure in which a conductive substance is spread on the fused surfaces of the particles forming the foam. Since the foam of the present invention is formed by spreading a large amount of conductive material as described above, it is possible to achieve a surface electrical resistance of less than Ω, and even a value on the order of 1c to 10 3 .

本発明の導電性発泡性粒子は、例えば(1)スチレン系
樹脂粒子の常法による予備発泡、(2)予備発泡粒子表
面へのエマルジョンの付着、(3)導電性物質の展着、
(4)乾燥により得られ、導電性発泡体は更に(5)導
電性発泡粒子の成形用金型への充填と常法による成形に
より得られる。
The conductive expandable particles of the present invention include, for example, (1) pre-foaming of styrene resin particles by a conventional method, (2) adhesion of an emulsion to the surface of the pre-expanded particles, (3) spreading of a conductive substance,
The conductive foam is obtained by (4) drying, and the conductive foam is further obtained by (5) filling the conductive foam particles into a mold and molding by a conventional method.

(2)の工程におけるエマルジョンの付着はミキサー、
ブレンダー等を用い、予備発泡粒子上に市販のエマルジ
ョンを希釈することなくそのまま滴下しつつ混合するこ
とにより行われる。
The adhesion of the emulsion in step (2) is done using a mixer,
This is carried out by dropping and mixing a commercially available emulsion without diluting it onto the pre-expanded particles using a blender or the like.

(3)の工程はエマルジョン付着作業の終了後、直ちに
導電性物質を少量ずつ添加し混合することにより行われ
る。この工程はエマルジョンが乾燥固化する前に、即ち
液状である間に、粉末状の導電性物質を徐々に添加し展
着させるもので、外表面に近いほど導電物質濃度の大き
な展着予備発泡粒子が得られる。導電性物質として黒鉛
粉末とカーボンブラックを併用する場合は、予め両者を
よ<a@t、Cm<(D”1パ・ ) (4)の工程はエマルジョン中の水分を蒸発させ、エマ
ルジョン樹脂粒子の保護コロイド膜を破壊して連続皮膜
を形成させ、導電性物質を予備発泡粒子表面に強固に接
着させるものである。特にこの工程では、導電性物質を
展着した未乾燥予備発泡粒子を流動、振動、かきまぜ等
により動かし解しつつ乾燥することにより、予備発泡粒
子相互のブロッキングを防止することができる叙上の通
り、本発明によれば導電性物質の塗布量を大中に高める
ことができるから、製品の表面抵抗をげΩ未満、更には
ぼ〜がオーダーとすることも可能で、又、本発明ではエ
マルジョンを従来法の如く水に再度分散させたりしない
ので固型分濃度が高く、乾燥時間が短くてすむ利点もあ
る。
Step (3) is carried out by adding and mixing a conductive substance little by little immediately after the emulsion application process is completed. In this process, before the emulsion dries and solidifies, that is, while it is still in liquid form, a powdered conductive substance is gradually added and spread on the pre-expanded particles, with the concentration of the conductive substance being higher nearer to the outer surface. is obtained. When graphite powder and carbon black are used together as conductive substances, they must be mixed in advance <a@t, Cm<(D"1 pa・) (4) Step evaporates the water in the emulsion and forms the emulsion resin particles. This process destroys the protective colloid film to form a continuous film and firmly adheres the conductive substance to the surface of the pre-expanded particles.In particular, in this process, the undried pre-expanded particles on which the conductive substance has been spread are fluidized. By drying the pre-foamed particles while dissolving them by vibration, stirring, etc., mutual blocking of the pre-foamed particles can be prevented.As mentioned above, according to the present invention, it is possible to increase the amount of the conductive material applied. Because of this, it is possible to make the surface resistance of the product less than Ω, or even just above Ω.In addition, in the present invention, the emulsion is not re-dispersed in water as in conventional methods, so the solid content concentration is high. , it also has the advantage of requiring less drying time.

以下、実施例及び比較例を挙げて本発明をさらに詳しく
説明するが、本発明はこれらにより何ら制限をうけない
ことは云うまでもない。
The present invention will be explained in more detail below with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited in any way by these.

実施例1 平均粒径1,2mmの球状の発泡ポリスチレン粒子(鐘
淵化学工業(株)製、商品名「カネパールG M J 
)を水蒸気で加熱し、発泡倍率30倍の予備発泡粒子を
得た。
Example 1 Spherical expanded polystyrene particles with an average particle diameter of 1.2 mm (manufactured by Kanebuchi Kagaku Kogyo Co., Ltd., trade name: "Kanepal G M J")
) was heated with steam to obtain pre-expanded particles with an expansion ratio of 30 times.

この粒子500gをミキサーに入れ、ミキサーを回転し
つつ、スチレン・アクリル系エマルジョン〔カネボウ・
エヌエスシー(株)製、商品名「ヨドゾールGF−IJ
、固型分46重量%〕 735gを徐々に滴下し、予備
発泡粒子表面にエマルジョンを付着させた。別に、天然
鱗片状黒鉛粉末〔日本黒鉛工業(株)製、商品名rcs
PEJ粒度範囲1〜15μ)169gとrケッチェンブ
ラックJ 56gを予め混合しておき、ミキサーを回転
しつつ、エマルジョン付着予備発泡粒子上に徐々に添加
し、導電性物質展着粒子を得た。この粒子の導電性物質
展着量は約9g/rrrであった。
Put 500g of these particles into a mixer, and while rotating the mixer, create a styrene-acrylic emulsion [Kanebo
Manufactured by NSC Co., Ltd., product name “Yodozol GF-IJ”
, solid content: 46% by weight] was gradually dropped to adhere the emulsion to the surface of the pre-expanded particles. Separately, natural flaky graphite powder [manufactured by Nippon Graphite Industries Co., Ltd., trade name: rcs]
169 g of PEJ particle size range 1 to 15 μ) and 56 g of R Ketjenblack J were mixed in advance, and while rotating a mixer, the mixture was gradually added onto the emulsion-adhered pre-expanded particles to obtain conductive substance-spread particles. The amount of conductive material spread on these particles was approximately 9 g/rrr.

次いで、この粒子をミキサーから取出し、ポリエチレン
フィルム上にひろげ、ヘラで時々かきまぜながら室温下
で乾燥させた。5時間後にほぼ乾燥状態に達し、そのま
ま−夜装置した。
The particles were then removed from the mixer, spread on a polyethylene film, and dried at room temperature with occasional stirring with a spatula. After 5 hours, the mixture reached a nearly dry state and was left in the apparatus overnight.

上記の如くして得られた乾燥粒子を用い、通常の発泡ス
チレン成形機により600X370X5Qmmの板を成
形した。この板は粒子の融着が完全で密度が68g/I
であった。J I SK6911に基づき測定した表面
抵抗および体積抵抗を第1表に示した。
Using the dry particles obtained as described above, a plate of 600 x 370 x 5 Q mm was molded using an ordinary styrene foam molding machine. This board has completely fused particles and has a density of 68g/I
Met. Table 1 shows the surface resistance and volume resistance measured based on J I SK6911.

実施例2 実施例1の条件のうち、「カネパールG M Jの予備
発泡倍率を50倍に、「ヨドゾールGF−IJの滴下量
を410gに、導電性物質を人造黒鉛粉末〔日本カーボ
ン(株)製、商品名’GA−5J粒度範囲1〜44μ)
281gとrケッチェンブラック」94gに、各々変更
した以外は実施例1と同様にして、密度42g/Iの板
を成形した。
Example 2 Among the conditions of Example 1, the pre-expansion ratio of Kanepal GM J was 50 times, the dropping amount of Yodozol GF-IJ was 410 g, and the conductive material was artificial graphite powder [Nippon Carbon Co., Ltd.]. Manufacturer, product name 'GA-5J particle size range 1-44μ)
A plate having a density of 42 g/I was molded in the same manner as in Example 1, except that the samples were changed to 281 g and 94 g of R Ketjen Black.

この場合、導電性物質展着量は約Log/n(であった
。実施例1と同様に測定した成形板の表面抵抗および体
積抵抗を第1表に示した。
In this case, the amount of conductive material spread was approximately Log/n. Table 1 shows the surface resistance and volume resistance of the molded plate, which were measured in the same manner as in Example 1.

比較例1 rカネパールG M Jを発泡倍率30倍の予備発泡粒
子とし、導電物質を展着せずに、600x370X50
mmの板を成形した。この板は密度が33 g / l
であり、表面抵抗および体積抵抗は第1表のようであっ
た。
Comparative Example 1 Pre-foamed particles of R Kanepar G M J with a foaming ratio of 30 times, without spreading a conductive material, were made into 600 x 370 x 50 particles.
A plate of mm was molded. This board has a density of 33 g/l
The surface resistance and volume resistance were as shown in Table 1.

1 比較例2 実施例1と同し条件で、導電性物質展着粒子を得、ミキ
サーから取出しポリエチレンフィルム上にひろげたまま
室温下で一夜放置して乾燥させた。
1 Comparative Example 2 Conductive substance-spread particles were obtained under the same conditions as in Example 1, taken out from the mixer, spread on a polyethylene film, and left overnight at room temperature to dry.

乾燥後の粒子はブロッキングがひどく、団魂状を呈し、
発泡スチレン成形機の金型内に充填することができない
ものであった。
After drying, the particles are severely blocked and have a cluster-like shape.
It was impossible to fill the mold of a styrene foam molding machine.

第1表 2Table 1 2

Claims (1)

【特許請求の範囲】 1、スチレン系樹脂発泡性粒子の表面に導電性物質を展
着してなる導電性発泡性粒子。 2、導電性物質が黒鉛粉末、カーボンブラック、及びこ
れらの混合物から選択される特許請求の範囲第1項記載
の導電性発泡性粒子。 3、導電性物質の展着量が6g/rd以上である特許請
求の範囲第1項又は第2項記載の導電性発泡性粒子。 4、表面電気抵抗かがΩ未満である特許請求の範囲第1
項記載の導電性発泡性粒子。 5、展着剤が有機高分子エマルジョンである特許請求の
範囲第1項記載の導電性発泡性粒子。 6、スチレン系樹脂予備発泡粒子の表面にエマルジョン
を付着させ、次いで導電性物質を展着させ乾燥してなる
導電性発泡性粒子。 7、導電性物質を展着した予備発泡粒子を動かし解しな
がら乾燥してなる特許請求の範囲第6項記載の導電性発
泡性粒子。 8、スチレン系樹脂発泡性粒子を金型内で加熱・融着し
てなる発泡体があって、該発泡体を構成する発泡粒子の
表面が導電性物質により展着された構造の導電性発泡体
。 9、導電性物質が黒鉛粉末、カーボンブラック、及びこ
れらの混合物から選択される特許請求の範囲第8項記載
の導電性発泡体。 10、導電性物質の展着量が6 g/rd以上である特
許請求の範囲第8項又は第9項記載の導電性発泡体。 11、展着剤が高分子エマルジョンである特許請求の範
囲第8項記載の導電性発泡体。 12、スチレン系樹脂予備発泡粒子の表面に先づエマル
ジョンを付着させ、次いで導電性物質を展着させ、乾燥
して導電性物質展着予備発泡粒子を得、該粒子を型内に
充填し加熱発泡させることを特徴とする発泡体の製造法
。 13、導電性物質展着予備発泡粒子を動かし解しながら
乾燥する特許請求の範囲第12項記載の製造法。 14、導電性物質の展着量が6g/rd以上である特許
請求の範囲第12項記載の製造法。 15、導電性発泡体の表面電気抵抗が101Ω未満であ
る特許請求の範囲第12項記載の製造法。
[Claims] 1. Conductive expandable particles obtained by spreading a conductive substance on the surface of expandable styrene resin particles. 2. The conductive expandable particles according to claim 1, wherein the conductive substance is selected from graphite powder, carbon black, and mixtures thereof. 3. The conductive expandable particles according to claim 1 or 2, wherein the spread amount of the conductive substance is 6 g/rd or more. 4. Claim 1 in which the surface electrical resistance is less than Ω
Conductive expandable particles as described in . 5. The conductive expandable particles according to claim 1, wherein the spreading agent is an organic polymer emulsion. 6. Conductive expandable particles obtained by attaching an emulsion to the surface of pre-expanded styrene resin particles, then spreading a conductive substance and drying. 7. The conductive expandable particles according to claim 6, which are obtained by drying pre-expanded particles spread with a conductive substance while moving and dissolving them. 8. There is a foam made by heating and fusing styrene-based resin foam particles in a mold, and the conductive foam has a structure in which the surface of the foam particles constituting the foam is spread with a conductive substance. body. 9. The conductive foam according to claim 8, wherein the conductive material is selected from graphite powder, carbon black, and mixtures thereof. 10. The conductive foam according to claim 8 or 9, wherein the amount of the conductive substance spread is 6 g/rd or more. 11. The conductive foam according to claim 8, wherein the spreading agent is a polymer emulsion. 12. First, an emulsion is attached to the surface of the pre-expanded styrene resin particles, then a conductive substance is spread thereon, the conductive substance is dried to obtain pre-expanded particles, and the particles are filled into a mold and heated. A method for producing a foam, characterized by foaming. 13. The manufacturing method according to claim 12, wherein the pre-expanded particles spread with a conductive substance are dried while being moved and broken down. 14. The manufacturing method according to claim 12, wherein the amount of the conductive substance spread is 6 g/rd or more. 15. The manufacturing method according to claim 12, wherein the conductive foam has a surface electrical resistance of less than 101Ω.
JP25016483A 1983-12-28 1983-12-28 Expandable conductive styrene resin beads, foam therefrom and its manufacture Granted JPS60141732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25016483A JPS60141732A (en) 1983-12-28 1983-12-28 Expandable conductive styrene resin beads, foam therefrom and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25016483A JPS60141732A (en) 1983-12-28 1983-12-28 Expandable conductive styrene resin beads, foam therefrom and its manufacture

Publications (2)

Publication Number Publication Date
JPS60141732A true JPS60141732A (en) 1985-07-26
JPH0311303B2 JPH0311303B2 (en) 1991-02-15

Family

ID=17203769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25016483A Granted JPS60141732A (en) 1983-12-28 1983-12-28 Expandable conductive styrene resin beads, foam therefrom and its manufacture

Country Status (1)

Country Link
JP (1) JPS60141732A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232130A (en) * 1985-08-05 1987-02-12 Shinto Paint Co Ltd Expanded plastic bead
JPS6236436A (en) * 1985-08-09 1987-02-17 Shinto Paint Co Ltd Impartation of electroconductivity to expanded plastic bead
JPH03167237A (en) * 1989-11-28 1991-07-19 Nippon Kasei Kk Production of flame-retardant polystyrene resin foam
EP0821432A2 (en) * 1996-07-24 1998-01-28 Mitsubishi Cable Industries, Ltd. Wave absorber and method for production thereof
KR20020023816A (en) * 2001-12-20 2002-03-29 이재식 Durable Microcapsule Styropole Beads
WO2009015661A2 (en) * 2007-07-28 2009-02-05 Glatt Systemtechnik Gmbh Method for producing an absorber for microwaves and absorber produced according to the method
JP2010245022A (en) * 2009-03-31 2010-10-28 Korea Inst Of Science & Technology Conductive particle, and anisotropic conductive film containing the same
WO2016017813A1 (en) * 2014-07-31 2016-02-04 積水化成品工業株式会社 Styrene resin foamable particles and production method for same, foam particles, foam molded body, and use for foam molded body
JP2016191033A (en) * 2015-03-30 2016-11-10 積水化成品工業株式会社 Foam and method for producing the same
US20180051171A1 (en) * 2015-03-13 2018-02-22 Basf Se Electrically conductive particle foams based on thermoplastic elastomers
CN109291300A (en) * 2017-07-24 2019-02-01 中国石油化工股份有限公司 Compound foamed polystyrene bead and its formed body and preparation method
CN111378202A (en) * 2018-12-27 2020-07-07 株式会社Jsp Expanded particles and expanded particle molded article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130868A (en) * 1976-04-23 1977-11-02 Reuter Technologie Gmbh Molded conductive foam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130868A (en) * 1976-04-23 1977-11-02 Reuter Technologie Gmbh Molded conductive foam

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232130A (en) * 1985-08-05 1987-02-12 Shinto Paint Co Ltd Expanded plastic bead
JPS6236436A (en) * 1985-08-09 1987-02-17 Shinto Paint Co Ltd Impartation of electroconductivity to expanded plastic bead
JPH03167237A (en) * 1989-11-28 1991-07-19 Nippon Kasei Kk Production of flame-retardant polystyrene resin foam
EP0821432A2 (en) * 1996-07-24 1998-01-28 Mitsubishi Cable Industries, Ltd. Wave absorber and method for production thereof
EP0821432A3 (en) * 1996-07-24 2000-05-10 Mitsubishi Cable Industries, Ltd. Wave absorber and method for production thereof
KR20020023816A (en) * 2001-12-20 2002-03-29 이재식 Durable Microcapsule Styropole Beads
WO2009015661A2 (en) * 2007-07-28 2009-02-05 Glatt Systemtechnik Gmbh Method for producing an absorber for microwaves and absorber produced according to the method
WO2009015661A3 (en) * 2007-07-28 2009-04-02 Glatt Systemtechnik Gmbh Method for producing an absorber for microwaves and absorber produced according to the method
JP2010245022A (en) * 2009-03-31 2010-10-28 Korea Inst Of Science & Technology Conductive particle, and anisotropic conductive film containing the same
WO2016017813A1 (en) * 2014-07-31 2016-02-04 積水化成品工業株式会社 Styrene resin foamable particles and production method for same, foam particles, foam molded body, and use for foam molded body
JP2016180089A (en) * 2014-07-31 2016-10-13 積水化成品工業株式会社 Styrene resin foamable particles and production method for same, foam particles, foam molding, and use therefor
JP2019049011A (en) * 2014-07-31 2019-03-28 積水化成品工業株式会社 Foamable particle of styrenic resin, manufacturing method thereof, forming particle, foam product and use thereof
US20180051171A1 (en) * 2015-03-13 2018-02-22 Basf Se Electrically conductive particle foams based on thermoplastic elastomers
JP2018510958A (en) * 2015-03-13 2018-04-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Electrically conductive foamed particles based on thermoplastic elastomers
JP2016191033A (en) * 2015-03-30 2016-11-10 積水化成品工業株式会社 Foam and method for producing the same
CN109291300A (en) * 2017-07-24 2019-02-01 中国石油化工股份有限公司 Compound foamed polystyrene bead and its formed body and preparation method
CN111378202A (en) * 2018-12-27 2020-07-07 株式会社Jsp Expanded particles and expanded particle molded article
CN111378202B (en) * 2018-12-27 2023-02-21 株式会社Jsp Expanded particles and expanded particle molded article

Also Published As

Publication number Publication date
JPH0311303B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
KR920001625B1 (en) Process for producing foamable polyolefin particles
JPS60141732A (en) Expandable conductive styrene resin beads, foam therefrom and its manufacture
JP2001522383A (en) Production of expandable styrene polymer containing graphite particles
KR19990063960A (en) Additive-coated resin composition
JPS5855231A (en) Manufacture of polyolefinic resin prefoamed particle
WO2004069901A2 (en) Coating composition for thermoplastic resin particles for forming foam containers
JPS597729B2 (en) Method for producing expandable thermoplastic resin particles
JP2000510182A (en) Expandable polystyrene beads
WO2004085528A1 (en) Expandable resin beads of styrene-modified, straight -chain, and low-density polyethylene, process for production thereof, pre-expanded beads, and foams
US3429955A (en) Method of making a shaped article from coated multicellular glass nodules
EP2106417A2 (en) Polymeric foam containing long carbon nano-tubes
JPH04356543A (en) Conductive and dielectric thermoplastic resin particle, foam made therefrom, and its production
JP4685788B2 (en) Styrene-modified polyethylene-based resin particles, styrene-modified polyethylene-based expandable resin particles, methods for producing them, pre-expanded particles, and foamed molded products
US6007905A (en) Wave absorber and method for production thereof
JPH0461895B2 (en)
JP2004018773A (en) Functional foamed particle
JP3311398B2 (en) Expandable styrene resin particles and method for producing the same
GB1588314A (en) Processes for producing material by bonding expanded plastics granules
JPS5842211B2 (en) Method for producing non-agglomerating expandable styrene polymer
JP2001250423A (en) Heat-resistant dielectric foam
JPS6369844A (en) Expandable styrene based resin particle and production thereof
JPS58111838A (en) Conductive foamable styrene resin particle and preparation of same
JPH01289841A (en) Expanded styrene resin particle and its production
JPH0867762A (en) Pre-expanded thermoplastic resin particle having low thermal conductivity and molding made thereof
JPH06860B2 (en) Method for producing expandable resin particles having antistatic ability