JPS6019424B2 - Air energy storage, conversion and extraction equipment - Google Patents

Air energy storage, conversion and extraction equipment

Info

Publication number
JPS6019424B2
JPS6019424B2 JP57021742A JP2174282A JPS6019424B2 JP S6019424 B2 JPS6019424 B2 JP S6019424B2 JP 57021742 A JP57021742 A JP 57021742A JP 2174282 A JP2174282 A JP 2174282A JP S6019424 B2 JPS6019424 B2 JP S6019424B2
Authority
JP
Japan
Prior art keywords
air
pipe
compressed air
heat
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57021742A
Other languages
Japanese (ja)
Other versions
JPS58138954A (en
Inventor
信 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57021742A priority Critical patent/JPS6019424B2/en
Publication of JPS58138954A publication Critical patent/JPS58138954A/en
Publication of JPS6019424B2 publication Critical patent/JPS6019424B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/22Wind motors characterised by the driven apparatus the apparatus producing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

【発明の詳細な説明】 この発明は空気ェネルギ蓄積、転換並びに取出装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to air energy storage, conversion and extraction devices.

従来、太陽ェネルギの利用について種々の詠みがなされ
、かつ、いくつかのものはすでに実用化されているもの
が多くある。
Conventionally, various poems have been made regarding the use of solar energy, and many of them have already been put into practical use.

この太陽ェネルギとしては、太陽熱利用と空気ェネルギ
利用の二つの場合があり、さらに空気ェネルギには、風
力ェネルギと空気熱ヱネルギとがある。
There are two types of solar energy: solar thermal energy and air energy, and air energy includes wind energy and air thermal energy.

ところで、これらのうち、太陽熱ェネルギの利用は、直
接太陽熱を利用するから、有効であるのは晴天の日中、
又はそれに近い気象条件の場合に限られ、又太陽熱の直
援取出し得る装置を設ける場合、日当りの良い平坦な土
地を必要とし、立地条件に一定の制限があるといった問
題があった。
By the way, among these methods, the use of solar thermal energy uses direct solar heat, so it is effective during sunny days.
In addition, when installing a device that can directly extract solar heat, it requires sunny, flat land, and there are certain restrictions on location conditions.

一方、風力ェネルギあるいは空気熱ェネルギは、太陽熱
ヱネルギのように、時間的、立地的なタ制限がなく、は
るかに普遍性を有し、しかも空気中に含まれる水蒸気の
有する熱ェネルギは地表に届く太陽ェネルギの大部分を
吸収して成るものであるから、この空気熱ェネルギを有
効に利用すれば非常に有効であると言える。0 しかし
ながら、このような空気ェネルギ利用が有利であること
が知られているにも拘わらずこれらの開発は充分に実用
化されるまで進んでいないのが現状である。
On the other hand, wind energy or air thermal energy has no temporal or locational limitations like solar thermal energy, and is much more universal.Moreover, the thermal energy of water vapor contained in the air reaches the earth's surface. Since it absorbs most of the solar energy, it can be said that it is very effective to utilize this air heat energy effectively. However, although it is known that such use of air energy is advantageous, the current situation is that the development of these uses has not progressed to the point where they are fully put into practical use.

この原因は、空気ェネルギ(風力ェネルギ、空タ気熱ェ
ネルギ)を同時に利用する適当な手段、並びに得られた
ェネルギを均一な状態に蓄積しておく適当な手段がなく
、例えば、風力ェネルギの利用として風車発電等が行わ
れてはいるが、わずかに、非常用電源程度の利用しか行
われておらず、日常生活における汎用性を発揮するまで
には至っていない。この発明は上記に鑑み「風力ェネル
ギ並びに空気熱ェネルギの同時利用を図り、ェネルギの
補捉効率の向上を図ると共に、得たェネルギを損失少な
く蓄積し、いつでも均一な出力として取り出し得る空気
ェネルギ蓄積、転換並びに取出装置を得ることを目的と
してなされたものであって、風車及び風車回転軸を駆動
源として、この回転軸に第1及び第2の回転式圧縮機が
取付けられ、前記第1の回転式圧縮機の吸入側には送気
管が、外気取入口ないしは圧縮空気溜めよりの空気をい
ずれかの圧力に応じ選択するェジェクター及び該ヱジェ
クターよりの空気を湿潤させる加湿装置を介して接続さ
れ、吐出側には熱交換器及び膨張弁を介して前記圧縮空
気溜めへ至る送気管を接続して成る、全体で半密閉式の
空気圧縮回路を形成する管路が形成され、前記第2の回
転式圧縮機の吸入側には、前記熱交換器で熱交換を受け
た熱媒を給送する管が接続され「又吐出側には水槽内の
基準水面以下に配置された放熱管及び膨張弁を介して前
記熱交換器へ至る熱媒給送管を接続して成る、全体で密
閉式の熱煤循環回路を形成する管路が形成され、前記圧
縮空気溜めには前記回路とは別に先端が分岐した圧縮空
気取出管が取付けられ、この分岐管の一方は開閉弁を介
してタービンに接続され、該タービンは前記風車回転軸
にクラッチを介して断援可能に取付けられ、前記分岐管
のうち、他の一方は逆止弁を介し、前記水槽内に配置さ
れた膨脹コイルを通じ、開閉弁の操作により外部へ開放
可能に構成されて成ることを特徴とするものである。
The reason for this is that there is no suitable means for simultaneously utilizing air energy (wind energy, air heat energy) and for storing the obtained energy in a uniform state. Although wind turbine power generation and the like are being carried out as an alternative, it is only used as an emergency power source and has not reached the point where it can be used in daily life. In view of the above, this invention aims to "simultaneously use wind energy and air thermal energy, improve the energy capture efficiency, accumulate the obtained energy with little loss, and store air energy that can be taken out as uniform output at any time. This was made for the purpose of obtaining a conversion and extraction device, and a wind turbine and a wind turbine rotating shaft are used as a driving source, first and second rotary compressors are attached to this rotating shaft, and the first rotation An air supply pipe is connected to the suction side of the compressor via an ejector that selects air from the outside air intake or compressed air reservoir depending on the pressure, and a humidifier that moistens the air from the ejector. A conduit is formed on the side, which connects an air supply pipe to the compressed air reservoir via a heat exchanger and an expansion valve, forming a semi-hermetic air compression circuit as a whole, and The suction side of the compressor is connected to a pipe for feeding the heat medium that has undergone heat exchange in the heat exchanger, and the discharge side is connected to a heat radiation pipe and an expansion valve arranged below the reference water level in the water tank. A heat medium supply pipe leading to the heat exchanger is connected through the pipe, forming a closed hot soot circulation circuit as a whole, and the compressed air reservoir has a tip end separate from the circuit. A branched compressed air take-off pipe is attached, one of the branch pipes is connected to a turbine via an on-off valve, the turbine is attached to the wind turbine rotating shaft via a clutch so that it can be disconnected, and one of the branch pipes is connected to the turbine through a clutch. The other one is configured to be openable to the outside through a check valve and an expansion coil disposed in the water tank by operating an on-off valve.

以下、この発明を実施例により説明する。This invention will be explained below with reference to Examples.

図面はこの発明の実施例の構成概念図を示すものである
The drawings show a conceptual diagram of the structure of an embodiment of the present invention.

この発明の空気ェネルギ蓄積、転換並びに取出装置Wは
、大別して、風力ェネルギを回転ェネルギに転換する風
車駆動部10、空気熱ェネルギの転換並びに取出しを図
る空気圧縮回路20(実線で示す)、空気熱ェネルギを
取出すための熱煤循環回路30(一点鎖線で示す)、及
びこの熱媒により運ばれる熱を貯える蓄熱部40(鎖線
で示す)とからなる。
The air energy storage, conversion, and extraction device W of the present invention can be roughly divided into a wind turbine drive section 10 that converts wind energy into rotational energy, an air compression circuit 20 (shown by a solid line) that converts and extracts air thermal energy, and air It consists of a hot soot circulation circuit 30 (indicated by a chain line) for extracting heat energy, and a heat storage section 40 (indicated by a chain line) for storing heat carried by this heating medium.

以下、これらについて構成並びにこれらの作用を説明す
る。
Hereinafter, the configuration and operation of these will be explained.

風車部10は、地中に脚が堅固に固定され、風圧や地震
などの外力に十分耐え得る構造強度と、十分な風力を捕
え得る高さとされた鉄骨架台11と、この頂部に回転可
能に麹支した風車12、及びこの風車12の回転軸13
とから構成され、この回転軸13には必要に応じ、回転
伝動を断接するためのクラッチ14が設けられて構成さ
れ、この風車回転軸13を駆動軸として、この軸13に
0第1の回転式圧縮機21例えばねじ圧縮機、及び第2
の回転式圧縮31例えばねじ圧縮機が取付けられている
The wind turbine section 10 has legs firmly fixed in the ground, a steel frame pedestal 11 that has sufficient structural strength to withstand external forces such as wind pressure and earthquakes, and a height that can capture sufficient wind power. A koji-supported windmill 12 and a rotating shaft 13 of this windmill 12
This rotating shaft 13 is provided with a clutch 14 for connecting/disconnecting rotational transmission as necessary, and this wind turbine rotating shaft 13 is used as a drive shaft, and this shaft 13 is provided with a clutch 14 for connecting and disconnecting rotational transmission. type compressor 21, for example, a screw compressor, and a second
A rotary compressor 31, for example a screw compressor, is installed.

上記における風車12としては、設置条件により低〜高
速風車が適宜用いられるが、高速風車はタ均一した強風
(風力4〜5以上)が得られる場合以外は失速しやすく
、又起動性に劣るため、中遠風車を用いることが適当で
ある。
As the wind turbine 12 in the above, a low to high speed wind turbine is appropriately used depending on the installation conditions, but high speed wind turbines tend to stall unless a uniform strong wind (force of 4 to 5 or more) is obtained, and they have poor starting performance. , it is appropriate to use a mid-range wind turbine.

中速風車として、翼直径2.0ののものを用い、風速約
5.0の/sとした場合、出力は約8.4k9一肌/s
o程度のものが得られる。
If a medium-speed wind turbine with a blade diameter of 2.0 is used and the wind speed is approximately 5.0/s, the output will be approximately 8.4k9/s.
o grade can be obtained.

次に、上記第1の回転式圧縮機21の吸入側には送気管
22が、外気取入口23ないいま圧縮空気溜め24より
の空気をいずれかの圧力に応じ選択して送給するェジェ
クター25、及び該ェジェタクタ−よりの空気を湿潤さ
せるための加湿装置26を介して接続され、吐出側には
、熱交換器27及び膨張弁28を介して前記圧縮空気溜
め24へ至る送気管29を接続して成る、全体で半密閉
式の空気圧縮回路20を形成する管路が形成されて○い
る。
Next, on the suction side of the first rotary compressor 21, an air supply pipe 22 is connected to an ejector 25 which selects and supplies air from the outside air intake port 23 or the compressed air reservoir 24 according to either pressure. , and are connected via a humidifying device 26 for humidifying the air from the ejector, and an air supply pipe 29 leading to the compressed air reservoir 24 via a heat exchanger 27 and an expansion valve 28 is connected to the discharge side. A conduit is formed which together forms a semi-closed air compression circuit 20.

上記において、ェジェクター25には、外気取入口23
よりの送気方向と、圧縮空気溜め24よりの送気方向が
矢印Aで示すように一致する方向となるように送気管が
接続され、いずれかの送気タ圧力の強い方の管より給気
されるように構成されている。
In the above, the ejector 25 has an outside air intake port 23.
The air supply pipes are connected so that the direction of air supply from the compressed air reservoir 24 and the direction of air supply from the compressed air reservoir 24 are in the same direction as shown by arrow A, and the air supply is supplied from one of the pipes with the stronger pressure. It is designed to be noticed.

又、加湿装置26は、給水管261から絶えず水が滴下
し、かつ、空気の通路が保持される水準位置に溢水管2
62及びこれに接続してドレーン0トランプ263が取
付けられている。
Furthermore, the humidifying device 26 has the overflow pipe 2 at a level position where water constantly drips from the water supply pipe 261 and an air passage is maintained.
62 and a drain 0 card 263 connected thereto is attached.

そして、この空気圧縮回路201こおいては、外気取入
口23、あるいは圧縮空気溜め24のいずれか、又は両
方から給送される空気を風車軸13を駆動源とする回転
式圧縮機21により圧縮し、回路20内を循環させる。
In this air compression circuit 201, air supplied from either the outside air intake 23 or the compressed air reservoir 24, or both, is compressed by a rotary compressor 21 driven by the wind turbine shaft 13. and circulate within the circuit 20.

このとき、圧縮機21の吐出側においては、空気が圧縮
され、気温が上昇する。しかも、この空気は加湿装置2
6により加湿されているから、熱容量も高くされている
。この高温加湿空気は熱交換器27に入り、後述する熱
媒と熱交換を行い、急速に冷却される。
At this time, air is compressed on the discharge side of the compressor 21, and the temperature rises. Moreover, this air is
6, the heat capacity is also increased. This high-temperature humidified air enters the heat exchanger 27, exchanges heat with a heat medium to be described later, and is rapidly cooled.

そして、膨張弁28を介して空気溜め24に入る際にさ
らに冷却され、圧縮空気溜め内に圧縮空気として貯蔵さ
れ、そのうちの一部は再び送気管を介してェジェクター
25方向へ導かれて循環し、もって圧縮空気溜め24内
の空気は段階的に低温化され、同時に圧力を増していく
。尚、図中241,291は、圧縮空気溜め24及び送
気管29内の結霧する水滴のドレーントラップ、242
は開閉弁、243は安全弁である。
When the air enters the air reservoir 24 via the expansion valve 28, it is further cooled and stored as compressed air in the compressed air reservoir, and a portion of it is again guided toward the ejector 25 via the air pipe and circulated. As a result, the temperature of the air in the compressed air reservoir 24 is gradually lowered, and at the same time, the pressure is increased. In addition, 241 and 291 in the figure are drain traps for water droplets that form in the compressed air reservoir 24 and the air supply pipe 29, and 242
is an on-off valve, and 243 is a safety valve.

熱煤循環回路3川ま、上託した熱交換器27で熱を受け
取った熱媒を風車鞠13に取付けられた第2の回転式圧
縮機31の吸入側に接続する管32及び吐出側より水槽
41内の基準水面41′以下に配置された放熱管33及
び膨張弁34を介して前記熱交換器27の受熱回路へ至
る管路35より構成された密閉式循環回路とされ、内部
には熱交換に通した気体が封入されている。* この熱
媒循環回路30においては、まず、熱交換器27により
熱煤が加溢される。
The hot soot circulation circuit 3 is connected to a pipe 32 that connects the heat medium that has received heat from the entrusted heat exchanger 27 to the suction side of the second rotary compressor 31 attached to the windmill 13 and from the discharge side. It is a closed circulation circuit composed of a heat radiation pipe 33 disposed below the reference water level 41' in the water tank 41 and a pipe line 35 leading to the heat receiving circuit of the heat exchanger 27 via the expansion valve 34. It is filled with gas that has undergone heat exchange. * In this heat medium circulation circuit 30, first, hot soot is flooded by the heat exchanger 27.

次いで、第2の回転式圧縮機31により熱煤はさらに加
圧、高温化され、これが水槽41内の放熱管33部分で
水と熱交換を行い、水を加溢し同時に熱煤は冷却され、
膨張弁34を通って熱交換器27へ入る際にさらに冷却
される。従って、水槽41内の水温は熱媒との熱交換に
より日頃次高温化されてゆき、しだいに湯となる。
Next, the hot soot is further pressurized and heated to a high temperature by the second rotary compressor 31, and this exchanges heat with water in the heat radiation pipe 33 section in the water tank 41, flooding the water and cooling the hot soot at the same time. ,
It is further cooled as it passes through the expansion valve 34 and into the heat exchanger 27. Therefore, the temperature of the water in the water tank 41 increases day by day due to heat exchange with the heating medium, and gradually becomes hot water.

尚、図中42は水槽41に対し適当な高さに設けられた
膨張槽兼用受水槽であり、給水管43よりの給水をボー
ルタップ44によって調整し、水槽41内の水位が一定
に保たれるように構成されている。従って、風車12が
風力により被動されれば、それぞれの管路20,30に
より、圧縮空気溜め24には冷却圧縮空気が蓄積され、
又、水槽41内の水は加溢され、空気ェネルギがそれぞ
れ圧力又は熱として、段階的に備えられていくのである
In addition, 42 in the figure is an expansion tank/water receiving tank installed at an appropriate height with respect to the water tank 41, and the water supply from the water supply pipe 43 is adjusted by a ball tap 44, so that the water level in the water tank 41 is kept constant. It is configured as follows. Therefore, when the wind turbine 12 is driven by wind power, cooling compressed air is accumulated in the compressed air reservoir 24 by the respective pipes 20 and 30.
Also, the water in the water tank 41 is flooded, and air energy is provided in stages as pressure or heat, respectively.

ちなみに、この発明の空気ェネルギ蓄積、転換並びに取
出装置による効率、及び得られる熱量等は下表のように
なる。
Incidentally, the efficiency and amount of heat obtained by the air energy storage, conversion, and extraction device of this invention are as shown in the table below.

注1.空気蓄積量=吸込量×60 2.与え得る熱量i蓄積空気の圧縮による熱と摩擦熱を
含む。
Note 1. Air accumulation amount = suction amount x 60 2. The amount of heat that can be given i includes the heat due to the compression of the accumulated air and the heat of friction.

与え得る熱量3.熱媒圧縮機負荷= 熱煤圧縮機能力 そして、備えたそれぞれのェネルギは、圧力空気として
取出す場合は、圧縮空気溜め24に設けた分岐管51に
より行われ、この分岐管51の一方51Aは、開閉弁5
2を介してタービン53に接続され、このタービン53
は風車回転軸13に0対し、クラッチ54を介し断接可
能に取付けられており、圧縮空気溜め24の空気圧を利
用し、適宜風車12の回転を付勢できるようにされてい
る。
Amount of heat that can be given3. Heat medium compressor load = Hot soot compression function When each of the provided energies is taken out as compressed air, it is carried out through a branch pipe 51 provided in the compressed air reservoir 24, and one of the branch pipes 51 51A is Open/close valve 5
2 to the turbine 53, and this turbine 53
is attached to the wind turbine rotating shaft 13 so as to be connectable/disconnectable via a clutch 54, and the rotation of the wind turbine 12 can be appropriately urged using the air pressure of the compressed air reservoir 24.

尚、このタービン53は、圧縮空気溜め24内の圧力調
整弁、あるいは安全弁的な目的をもつて設けられるもの
であり、強風等により空気溜め24内の圧力が異常上昇
してしまった場合など、この圧力を空気溜め24の許容
圧力限界の範囲内で備えておき、以後風力が低下し、風
車回転が充分得られなくなった場合、漸時開放して風車
12の回転をおぎなうのである。これによって、風車1
2の回転数のある程度の均一化が図られる。
Note that this turbine 53 is provided for the purpose of acting as a pressure regulating valve or a safety valve within the compressed air reservoir 24, and is used in cases where the pressure within the air reservoir 24 increases abnormally due to strong winds, etc. This pressure is kept within the allowable pressure limit of the air reservoir 24, and when the wind power decreases and sufficient rotation of the wind turbine cannot be achieved thereafter, the air reservoir 24 is gradually opened to allow the rotation of the wind turbine 12. As a result, windmill 1
The number of revolutions of the two rotations can be made uniform to some extent.

尚、上記タービン53駆動用送気管51Aは、一たんタ
ービン53を取巻くように取付けられ、タービン駆動時
に発生する熱を受け、この熱により管路51A内の空気
を膨張させ、駆動圧力を増すようにされている。
The air supply pipe 51A for driving the turbine 53 is once installed so as to surround the turbine 53, and receives the heat generated when the turbine is driven, and this heat expands the air in the pipe 51A to increase the driving pressure. It is being done.

一方、他方の分岐管518は、逆止弁55を介し、望ま
しくは水槽41内に配置された膨張コイル56を通じ、
開閉弁57の操作により外部Sに開放可能に構成され、
この開放部に適宜空気動力装置(図示せず)を接続し、
これら装置を駆動させるのである。
On the other hand, the other branch pipe 518 passes through a check valve 55 and preferably an expansion coil 56 disposed within the water tank 41.
It is configured to be openable to the outside S by operating the on-off valve 57,
Connect an appropriate pneumatic power device (not shown) to this opening,
It drives these devices.

この場合、排出される空気は、水槽41内の膨張コイル
56を通過する時点において、水槽41内の温水により
熱を受け圧力を増す。
In this case, when the discharged air passes through the expansion coil 56 in the water tank 41, it receives heat from the hot water in the water tank 41 and increases its pressure.

又、溢水を利用する場合は、水槽41に取出し管61を
取付け、この取出し管61に適宜配管(図示せず)を薮
続するのである。
In addition, when overflowing water is used, a take-out pipe 61 is attached to the water tank 41, and appropriate piping (not shown) is connected to the take-out pipe 61.

尚、温水のみを利用する場合、圧縮空気溜め24よりの
過剰圧縮空気は、専らタービン駆動用として利用され、
温水の温度上昇化に消費される。
In addition, when only hot water is used, the excess compressed air from the compressed air reservoir 24 is used exclusively for driving the turbine.
It is consumed to raise the temperature of hot water.

又、温水温度が上昇しすぎた場合、膨張コイル56の取
出側よりタービン53へ至るバイパス回路62を設けて
おき、このバイパス回路62を通じてタービン53への
送気を行っても良い。このようにした場合、圧縮空気と
温水との間の熱交換が行われ、温水の温度が下り、一方
、送気圧力も増加し、タービン駆動力が増加するのでェ
ネルギの有効利用が図れる。そして、上記における装置
Wは、風車駆動部10を除く他は、すべて断熱材によっ
て外部より熱遮断され、無駄な熱放射は可及的に少なく
されている。
Furthermore, if the hot water temperature rises too much, a bypass circuit 62 leading from the extraction side of the expansion coil 56 to the turbine 53 may be provided, and air may be supplied to the turbine 53 through this bypass circuit 62. In this case, heat exchange is performed between the compressed air and the hot water, and the temperature of the hot water is lowered. On the other hand, the air supply pressure is also increased, and the turbine driving force is increased, so that energy can be used effectively. The apparatus W described above, except for the wind turbine driving section 10, is entirely thermally isolated from the outside by a heat insulating material, and wasteful heat radiation is minimized as much as possible.

この発明は以上のように構成されているので、風力ェネ
ルギを駆動源とし、空気ェネルギを圧力、及び熱として
貯え保存しておくことができるので、例えば風力発電の
ように、その時々に応じた風力に比例した発電しかでき
ず、一定の電力を得ることが困難であるといった問題が
なく、しかも、少なくとも風車が回転していればわずか
であってもェネルギの蓄積は行われるので、自然ェネル
ギの蓄積が無駄なく、かつ有効に行え、又、日照の有無
は問わないから、設置のための立地条件が極めてゆるや
かであり、例えば降水、降雪の多い地域であっても十分
に実施可能であり、利用範囲も広いなどの利点を有し、
具体的用途として、圧縮空気によるものについては、発
電、空気夕−ビンによる機械駆動、揚水、ェャレーショ
ン(河川、湖沼の浄化、養魚)塗装に用い得、又、圧縮
空気、又は温水によるものとして、冷暖房、給湯、製塩
、製糖、醸造、手工業的地場産業(手すき和紙、寒天製
造、のり製造、そうめん製造、でん粉製造)、養魚地の
水温保持、温室裁塔、土壌の保温、雛雪等、数多くのも
のに用い得ることができる。
Since this invention is configured as described above, wind energy can be used as a driving source, and the air energy can be stored and stored as pressure and heat. Since the power can only be generated in proportion to the wind power, there is no problem such as difficulty in obtaining a constant amount of power, and at least as long as the windmill is rotating, even a small amount of energy can be stored, so it is a natural energy source. Storage can be carried out effectively and without waste, and since it does not matter whether there is sunlight or not, the location conditions for installation are extremely flexible, and it can be carried out even in areas with heavy rainfall and snowfall, for example. It has advantages such as wide range of use,
As specific applications, those using compressed air can be used for power generation, mechanical drive using air turbines, water pumping, aeration (purification of rivers, lakes and marshes, fish farming), and coatings using compressed air or hot water. Heating and cooling, hot water supply, salt production, sugar production, brewing, local handicraft industries (handmade Japanese paper, agar production, seaweed production, somen production, starch production), water temperature maintenance in fish farms, greenhouse cutting towers, soil heat preservation, snowdrops, etc., and many more. It can be used for many things.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例の説明概念図である。 The drawings are explanatory conceptual diagrams of embodiments of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 風車及び風車回転軸を駆動源として、この回転軸に
第1及び第2の回転式圧縮機が取付けられ、前記第1の
回転式圧縮機の吸入側には送気管が、外気取入口ないし
は圧縮空気溜めよりの空気をいずれかの圧力に応じ選択
するエジエクター及び該エジエクターよりの空気を湿潤
させる加湿装置を介して接続され、吐出側には熱交換器
及び膨張弁を介して前記圧縮空気溜めへ至る送気管を接
続して成る、全体で半密閉式の空気圧縮回路を形成する
管路が形成され、前記第2の回転式圧縮機の吸入側には
、前記熱交換器で熱交換を受けた熱媒を給送する管が接
続され、又吐出側には水槽内の基準水面以下に配置され
た放熱管及び膨張弁を介して前記熱交換器へ至る熱媒給
送管を接続して成る、全体で密閉式の熱媒循環回路を形
成する管路が形成され、前記圧縮空気溜めには前記回路
とは別に先端が分岐した圧縮空気取出管が取付けられ、
この分岐管の一方は開閉弁を介してタービンに接続され
、該タービンは前記風車回転軸にクラツチを介して断接
可能に取付けられ、前記分岐管のうち、他の一方は逆止
弁を介し、前記水槽内に配置された膨張コイルを通じ、
開閉弁の操作により外部へ開放可能に構成されて成るこ
とを特徴とする空気エネルギ蓄積、転換並びに取出装置
1. A wind turbine and a wind turbine rotating shaft are used as a driving source, and first and second rotary compressors are attached to the rotating shaft, and an air supply pipe is connected to the intake side of the first rotary compressor, and an outside air intake port or It is connected via an ejector that selects air from a compressed air reservoir according to one of the pressures and a humidifier that moistens the air from the ejector, and the compressed air reservoir is connected to the compressed air reservoir via a heat exchanger and an expansion valve on the discharge side. A conduit is formed that forms a semi-hermetic air compression circuit as a whole by connecting the air supply pipes leading to the second rotary compressor. A pipe for feeding the received heat medium is connected, and a heat medium feed pipe leading to the heat exchanger via a heat radiation pipe and an expansion valve arranged below the reference water level in the water tank is connected to the discharge side. A pipe line is formed which forms a closed heat medium circulation circuit as a whole, and a compressed air take-off pipe with a branched tip is attached to the compressed air reservoir separately from the circuit,
One of the branch pipes is connected to a turbine via an on-off valve, and the turbine is connected to the wind turbine rotating shaft via a clutch so as to be connectable and disconnectable, and the other branch pipe is connected to the turbine via a check valve. , through an expansion coil placed in the water tank;
An air energy storage, conversion and extraction device characterized by being configured to be openable to the outside by operating an on-off valve.
JP57021742A 1982-02-12 1982-02-12 Air energy storage, conversion and extraction equipment Expired JPS6019424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57021742A JPS6019424B2 (en) 1982-02-12 1982-02-12 Air energy storage, conversion and extraction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57021742A JPS6019424B2 (en) 1982-02-12 1982-02-12 Air energy storage, conversion and extraction equipment

Publications (2)

Publication Number Publication Date
JPS58138954A JPS58138954A (en) 1983-08-18
JPS6019424B2 true JPS6019424B2 (en) 1985-05-16

Family

ID=12063522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57021742A Expired JPS6019424B2 (en) 1982-02-12 1982-02-12 Air energy storage, conversion and extraction equipment

Country Status (1)

Country Link
JP (1) JPS6019424B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074346A (en) * 1993-06-17 1995-01-10 Kyocera Corp Air energy-utilizing apparatus
WO2010125568A2 (en) * 2009-04-28 2010-11-04 Technion- Research And Development Foundation Ltd. A system for wind energy harvesting and storage wising compressed air and hot water

Also Published As

Publication number Publication date
JPS58138954A (en) 1983-08-18

Similar Documents

Publication Publication Date Title
US4455834A (en) Windmill power apparatus and method
US2539862A (en) Air-driven turbine power plant
US7937955B2 (en) Solar and wind hybrid powered air-conditioning/refrigeration, space-heating, hot water supply and electricity generation system
US4433552A (en) Apparatus and method for recovering atmospheric moisture
AU2009267802B2 (en) Generation and use of high pressure air
WO2010125568A2 (en) A system for wind energy harvesting and storage wising compressed air and hot water
EP2060787A2 (en) Wind turbine geothermal heating and cooling system
US20090212560A1 (en) Heating System, Wind Turbine Or Wind Park, Method For Utilizing Surplus Heat Of One Or More Wind Turbine Components And Use Hereof
JP2009138555A (en) Wind power generation apparatus
CN104633980A (en) Solar energy and geothermal energy complementation type wind energy heat pump system
US4212168A (en) Power producing dry-type cooling system
US4261176A (en) Thermodynamic assembly
WO2011073628A1 (en) A heating or cooling system and method
CN207404876U (en) A kind of natural energy resources formula desalination plant
JPS6019424B2 (en) Air energy storage, conversion and extraction equipment
SU1710824A1 (en) Wind power plant
CN202627066U (en) Wind power air condensation water intake device
WO2004076359A1 (en) Water desalination
US4328674A (en) Power station
CN109368726B (en) Floating island type coupled wind power sea water desalination system
WO2019094941A1 (en) Hybrid power generator
CN105863877A (en) Novel river regulation ship
CA3125517A1 (en) Wind-powered energy generator system
Clark et al. Wind turbines for irrigation pumping
CN220539777U (en) Automatic control seawater temperature difference power generation system