JPS58138954A - Pneumatic energy accumulating, converting and takeout device - Google Patents

Pneumatic energy accumulating, converting and takeout device

Info

Publication number
JPS58138954A
JPS58138954A JP57021742A JP2174282A JPS58138954A JP S58138954 A JPS58138954 A JP S58138954A JP 57021742 A JP57021742 A JP 57021742A JP 2174282 A JP2174282 A JP 2174282A JP S58138954 A JPS58138954 A JP S58138954A
Authority
JP
Japan
Prior art keywords
air
pipe
energy
heat
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57021742A
Other languages
Japanese (ja)
Other versions
JPS6019424B2 (en
Inventor
Makoto Tsuchiya
信 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57021742A priority Critical patent/JPS6019424B2/en
Publication of JPS58138954A publication Critical patent/JPS58138954A/en
Publication of JPS6019424B2 publication Critical patent/JPS6019424B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/22Wind motors characterised by the driven apparatus the apparatus producing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To improve the efficiency of pneumatic energy collection and to accumulate the collected energy with the minimum of loss so that the energy is taken out at all times as a uniform output by a method wherein the energy of a wind force and the thermal energy of the air are utilized simultaneously. CONSTITUTION:Air supply pipes 22 are connected to the air intake side of a first rotary compressor 21 through an ejector 25 which is adopted to supply selectively either the air from an open air intake port 23 or the air from a compressed air pool 24 depending on the pressure of any one of the airs and a humidifying device 26 for humidifying the air from the ejector 25 and an air supply pipe 29 leading to the compressed air pool 24 is connected to the discharge side of the compressor 21 through a heat exchanger 27 and an expansion valve 28, to thereby provide a pipe line forming a semi-sealed air compression circuit 20. Further, the air supply pipes 22 are connected to the compressor 21 in such a manner that the flow direction of the air from the open air intake port 23 and that of the air from the compressed air pool 24 coincide with each other as shown in the arrow A so that the air is applied through any of the supply pipes having a higher air supply source. Consequently, it is possible to store pneumatic energy as a pressure and heat by utilizing the wind force energy whereby the accumulation of natural energy is accumulated effectively and is taken out as a uniform output at all times.

Description

【発明の詳細な説明】 この発明は空気エネルギ蓄積、転換−並びに取出装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to air energy storage, conversion and extraction devices.

従来、太陽エネルギの利用について種々の試みがなされ
、かつ、いくつかのものはすでに実用化されているもの
が多くある。
Conventionally, various attempts have been made to utilize solar energy, and many of them have already been put into practical use.

この太陽エネルギとしては、太陽熱利用、と空気エネル
ギ利用の二つの場合があり、さらに空気エネルギには、
風力エネルギと空気熱エネルギとがある。
There are two types of solar energy: solar heat usage and air energy usage.
There are wind energy and air thermal energy.

ところで、これらのうち、太陽熱エネルギの利用は、直
接太陽熱を利用するから、有効であるのは晴天の日中、
又はそれに近い気象条件の場合に限られ、又太陽熱の直
接取出し得る装置を設ける場合、日当りの良い平坦な土
地を必要とし、立地条件に一定の制限があるといった問
題があった。
By the way, among these methods, the use of solar thermal energy uses direct solar heat, so it is effective during sunny days.
In addition, when installing a device that can directly extract solar heat, it requires sunny, flat land, and there are certain restrictions on location conditions.

・一方、風力エネルギあるいは空気熱エネルギは、太陽
熱エネルギのように、時間的、立地的な制限がなく、は
るかに普遍性を有し、しかも空気中に含まれる水蒸気の
有する熱エネルギは地表に届く太陽エネルギの大部分を
吸収して成るものであるから、この空気熱エネルギを有
効に利用すれば非常に有効であると言える。
・On the other hand, wind energy or air thermal energy has no temporal or locational restrictions like solar thermal energy, and is far more universal.Moreover, the thermal energy of water vapor contained in the air reaches the earth's surface. Since it absorbs most of the solar energy, it can be said that it is very effective to utilize this air heat energy effectively.

しかしながら、このような空気エネルギ利用が有利であ
ることが知られているにも拘わらずこれらの開発は充分
に実用化されるまで進んでいないのが現状である。
However, although it is known that such air energy utilization is advantageous, the current situation is that the development of these uses has not progressed to the point where they are fully put into practical use.

この原因は、空気エネルギ(風力エネルギ、空気熱エネ
ルギ)辱伸参を同時に利用する適当な手段、並びに得ら
れたエネルギを均一な状態に蓄積しておく適当な手段が
なく、例えば、風力エネルギの利用として風車発電等が
行われてはいるが、わずかに、非常用電源程度の利用し
か行われておらず、日常生活における汎用性を発揮する
までには至っていない。
The reason for this is that there is no suitable means for simultaneously utilizing air energy (wind energy, air thermal energy) and for storing the obtained energy in a uniform state. Although windmill power generation and the like are being used, it is only used as an emergency power source, and it has not reached the point where it can be used in daily life.

この発明は上記に鑑み、風力エネルギ並びに空気熱エネ
ルギの同時利用を図り、エネルギの捕捉効率の拘止を図
ると共に、得たエネルギを損失少なく蓄積し、いつでも
均一な出力として取り出し得る空気エネルギ蓄積、転換
並びに取出装置を得ることを目的としてなされたもので
あって、風車及び風車回転軸を駆動源として、この回転
軸に第1及び第2の回転式圧縮機が取付けられ、前記第
1の回転式圧縮機の吸入側には送気管が、外気取入口な
いしは圧縮空気溜めよりの空気をいずれかの圧力に応じ
選択するエジェクター及び該エジェクターよりの空気を
湿潤させる加湿装置を介して接続され、吐出側に   
 ゛は熱交換器及び膨張弁を介して前記圧縮空気溜めへ
至る送気管を接続して成る、全体で半密閉式の空気圧縮
回路を形成する管路が形成され、前記第゛2の回転式圧
縮機の吸入側には、前記熱交換器で熱交換を受けた熱媒
を給送する管が接続され、又吐出側には水槽内の基準水
面以下に配置された放熱管及び膨張弁を介して前記熱交
換器へ至る熱媒給送管を接続して成る、全体で密閉式の
熱媒循環回路を形成する管路が形成され、前記圧縮空気
溜めには前記回路とは別に先端が分岐した圧縮空気取出
管が取付けられ、この分岐管の一方は開閉弁を介してタ
ービンに接続され、該タービンは前記風車回転軸にクラ
ッチを介して断接可能に取付けられ、前記分岐管のうち
、他の一方は逆と弁を介し、前記水槽内に配置された膨
張コイルを通じ、開閉弁の操作により外部へ開放可能に
構成されて成ることを特徴とするものである。
In view of the above, this invention aims to simultaneously utilize wind energy and air thermal energy, to limit the energy capture efficiency, and to store air energy that can store the obtained energy with little loss and extract it as a uniform output at any time. This was made for the purpose of obtaining a conversion and extraction device, and a wind turbine and a wind turbine rotating shaft are used as a driving source, first and second rotary compressors are attached to this rotating shaft, and the first rotation An air supply pipe is connected to the suction side of the compressor via an ejector that selects air from the outside air intake or compressed air reservoir depending on the pressure, and a humidifier that moistens the air from the ejector. to the side
A pipe line is formed by connecting an air supply pipe leading to the compressed air reservoir via a heat exchanger and an expansion valve, forming a semi-hermetic air compression circuit as a whole, and A pipe for feeding the heat medium that has undergone heat exchange in the heat exchanger is connected to the suction side of the compressor, and a heat radiation pipe and an expansion valve arranged below the reference water level in the water tank are connected to the discharge side. A heat medium supply pipe is connected to the heat exchanger through the pipe to form a closed heat medium circulation circuit as a whole, and the compressed air reservoir has a tip end separate from the circuit. A branched compressed air take-off pipe is attached, one of the branched pipes is connected to a turbine via an on-off valve, the turbine is attached to the wind turbine rotation shaft so as to be connectable and disconnectable via a clutch, and one of the branched pipes is connected to the turbine through a clutch. The other one is configured to be openable to the outside by operating an on-off valve through a reverse valve and an expansion coil disposed in the water tank.

以下、この発明を実施例により説明する。This invention will be explained below with reference to Examples.

図面はこの発明の実施例の構成概念図を示すものである
The drawings show a conceptual diagram of the structure of an embodiment of the present invention.

この発明の空気エネルギ蓄積、転換並びに取出装置Wは
、大別して、風力エネルギを回転エネルギに転換する風
車駆動部10、空気熱エネルギの転換並びに取出しを図
る空気圧縮回路20(実線で示す)、空気熱エネルギを
取出すための熱媒循環回路30(一点鎖線で示す)、及
びこの熱媒により運ばれる熱を貯える蓄熱部40(鎖線
で示す)とからなる。
The air energy storage, conversion, and extraction device W of the present invention can be roughly divided into a wind turbine drive section 10 that converts wind energy into rotational energy, an air compression circuit 20 (shown by a solid line) that converts and extracts air thermal energy, and air It consists of a heat medium circulation circuit 30 (shown by a chain line) for extracting thermal energy, and a heat storage section 40 (shown by a chain line) for storing heat carried by the heat medium.

以下、こtらについて構成並びにこれらの作用を説明す
る。
The configurations and effects of these will be explained below.

風車部1oは、地中に脚が堅固に固定され、風圧や地震
などの外力に十分耐え得る構造強度と、十分な風力を捕
え得る−高さとされた鉄骨架台11と、この頂部に回転
可能に軸支した風車12、及びこの風車120回転軸1
3とから構成され、この回転軸13には必要に応じ、回
転伝動を断接するためのクラッチ14が設けられて構成
され、この風車回転軸13を駆動軸として、この軸↓3
に第1の回転式圧縮機21例えばねじ圧縮機、及び第2
の回転式圧縮機31例えばねじ圧縮機が取付けられてい
る。
The wind turbine section 1o has legs firmly fixed in the ground, and has a structural strength that can withstand external forces such as wind pressure and earthquakes, and a steel frame 11 that is raised to a height capable of capturing sufficient wind power. The windmill 12 is pivotally supported by the windmill 12, and the rotation shaft 1 of this windmill
3, and this rotating shaft 13 is provided with a clutch 14 for connecting/disconnecting rotational transmission as necessary. With this wind turbine rotating shaft 13 as a drive shaft, this shaft ↓ 3
a first rotary compressor 21, for example a screw compressor, and a second rotary compressor 21, for example a screw compressor;
A rotary compressor 31 such as a screw compressor is installed.

上記における風車12としては、設置条件により低〜高
速風車が適宜用いられるが、高速風車は均一した強風(
風力4〜5以上)が得られる場合以外は失速しやすく、
又起動性に劣るため、中速風車を用いることが適当であ
る。
As the windmill 12 in the above, a low to high speed windmill is used as appropriate depending on the installation conditions, but a high speed windmill has a uniform strong wind (
It is easy to stall unless a wind force of 4 to 5 or more is obtained.
Also, since starting performance is poor, it is appropriate to use a medium speed wind turbine.

翼 中速風車として、遁直径2.0mのものを用い。wings A medium-speed wind turbine with a diameter of 2.0 m was used.

風速約5.0 m/sとした場合、出力は約8.4に9
−m/s程度のものが得られる。
When the wind speed is approximately 5.0 m/s, the output is approximately 8.4 to 9.
-m/s can be obtained.

次に、上記第1の回転式圧縮機21の吸入側には送気管
22が、外気取入口23ないしは圧縮空気溜め24より
の空気をいずれかの圧力に応じ1選択して送給するエジ
ェクター25、lび該エジェクターよりの空気を湿潤さ
せるための加湿装置26を介して接続され、吐出側には
、熱交換器27及び膨張弁28を介して前記圧縮空気溜
め24へ至る送気管29を接続して成る、全体で半密閉
式の空気圧縮回路20を形成する管路が形成されている
Next, on the suction side of the first rotary compressor 21, an air supply pipe 22 is connected to an ejector 25 which selectively supplies air from the outside air intake port 23 or the compressed air reservoir 24 depending on the pressure. , l and the air from the ejector are connected via a humidifying device 26 for humidifying the air, and an air supply pipe 29 leading to the compressed air reservoir 24 via a heat exchanger 27 and an expansion valve 28 is connected to the discharge side. A conduit is formed which forms a semi-closed air compression circuit 20 as a whole.

上記において、エジェクター25には、外気取入口23
よりの送気方向と、圧縮空気溜め24よりの送気方向が
矢印Aで示すように一致する方向となるように送気管が
接続され、いずれかの送気圧力の強い方の管より給気さ
れるように構成されている。
In the above, the ejector 25 has an outside air intake port 23.
The air supply pipes are connected so that the direction of air supply from the compressed air reservoir 24 and the direction of air supply from the compressed air reservoir 24 are in the same direction as shown by arrow A, and air is supplied from the pipe with the stronger air supply pressure. is configured to be

又、加湿袋、置26は、給水’f 26 ]−から絶え
ず水が滴下し、かつ、空気の通路が保持される水準位置
に溢水管262及びこれに接続してドレーントラップε
63が取付けられている。
In addition, the humidifying bag holder 26 has an overflow pipe 262 and a drain trap ε connected thereto at a level position where water constantly drips from the water supply 'f 26 ]- and an air passage is maintained.
63 is installed.

そして、この空気圧縮回路20においては、外気取入口
く3、あるいは圧縮空気溜め24のいずれか、又は両方
から給送される空気を風車軸13を駆動源とする回転式
圧縮機21により圧縮し、回路20内を循環させる。
In this air compression circuit 20, air supplied from either the outside air intake port 3 or the compressed air reservoir 24, or both, is compressed by a rotary compressor 21 driven by the wind turbine shaft 13. , circulate within the circuit 20.

このとき、圧縮機21の吐出側においては、空気が圧縮
され、気温が上昇する。しかも、この空気は加湿装置2
6により加湿されているから、熱容量も高くされている
At this time, air is compressed on the discharge side of the compressor 21, and the temperature rises. Moreover, this air is
6, the heat capacity is also increased.

この高温加湿空′□気は熱交換器27に入り、後   
 ”述する熱媒と熱交換を行い、急速に冷却される。
This high temperature humidified air'□ air enters the heat exchanger 27 and then
``It exchanges heat with the heat medium described above and is rapidly cooled.

そして、膨張弁28を介して空気溜め24に人る際にさ
らに冷却され、圧縮空気溜め内に圧縮空気として貯蔵さ
れ、そのうちの一部は再び送気管を介してエジェクター
25方向へ導かれて循環し、もって圧縮空気溜め24内
の空気は段階的に低温化され、同時に圧力を増していく
When the air enters the air reservoir 24 via the expansion valve 28, it is further cooled and stored as compressed air in the compressed air reservoir, and a portion of it is again guided toward the ejector 25 via the air pipe and circulated. As a result, the temperature of the air in the compressed air reservoir 24 is gradually lowered, and at the same time, the pressure is increased.

尚、図中241 、291は、圧縮空気溜め24及び送
気管29内に結露する水滴のドレーントラップ、242
は開閉弁、243は安全弁である。
In addition, 241 and 291 in the figure are drain traps for water droplets condensing in the compressed air reservoir 24 and the air supply pipe 29, and 242
is an on-off valve, and 243 is a safety valve.

熱媒循環回路30は、上記した熱交換器27で熱を受は
取った熱媒を風車軸13に取付けられた第2の回転式圧
縮機31の吸入側に接続する管32及び吐出側より水槽
41内の基準水面41“以下に配置された放熱管33及
び膨張弁34を介して前記熱交換器27の受熱回路へ至
る管路35より構成された密閉式循環回路とされ。
The heat medium circulation circuit 30 connects the heat medium that has received and removed heat in the heat exchanger 27 to the suction side of the second rotary compressor 31 attached to the wind turbine shaft 13 and from the discharge side. It is a closed circulation circuit composed of a heat radiation pipe 33 disposed below a reference water level 41'' in the water tank 41 and a pipe line 35 leading to the heat receiving circuit of the heat exchanger 27 via an expansion valve 34.

内部には熱交換に適した気体が封入されている。A gas suitable for heat exchange is sealed inside.

この熱媒循環回路30においては、まず、熱交換器27
により熱媒が加温される。次いで、第2の回転式圧縮[
31により熱媒はさらに加圧、高温化され、これが水槽
41内の放熱管33部分で水と熱交換を行い、水を加温
し同時に熱媒は冷却され、膨張弁34を通って熱交換器
27へ入る際にさらに冷却される。
In this heat medium circulation circuit 30, first, the heat exchanger 27
The heating medium is heated by this. Then a second rotary compression [
31, the heating medium is further pressurized and heated to a high temperature, which exchanges heat with water in the heat radiation pipe 33 section in the water tank 41, warming the water and cooling the heating medium at the same time, passing through the expansion valve 34 and exchanging heat. When entering the vessel 27, it is further cooled.

従って、水槽41内の水温は熱媒との熱交換により順次
高温化されてゆき、しだいに湯とな−る。
Therefore, the temperature of the water in the water tank 41 is gradually increased through heat exchange with the heat medium, and gradually becomes hot water.

尚、図中42は水槽41に対し適当な高さに設けられた
膨張槽兼用受水槽であり、給水管43よりの給水をポー
ルタップ44によって調整し、水槽41内の水位が一定
に保たれるように構成されている。
In addition, 42 in the figure is an expansion tank and water receiving tank installed at an appropriate height with respect to the water tank 41, and the water supply from the water supply pipe 43 is adjusted by a pole tap 44 to keep the water level in the water tank 41 constant. It is configured so that

従って、風車12が風力により被動されれば、それぞれ
の管路20,30によ妙、圧縮空気溜め24には冷却圧
縮空気が蓄積され、又、水槽41内の水は加温され、空
気エネルギがそれぞれ圧力又は熱として、段階的に備え
られていくのである。
Therefore, when the wind turbine 12 is driven by wind power, cooling compressed air is accumulated in the compressed air reservoir 24 in the respective pipes 20 and 30, and the water in the water tank 41 is heated, and the air energy is are prepared step by step as pressure or heat, respectively.

ちなみに、この発明の空気エネルギ蓄積、転換並びに取
出装置による効率、及び得られる熱量等は下表のように
なる。
Incidentally, the efficiency and amount of heat obtained by the air energy storage, conversion, and extraction device of this invention are as shown in the table below.

そして、備えたそれぞれのエネルギは、圧力空気として
取出す場合は、圧縮空気溜め24に設けた分岐管51に
より行われ、この分岐管51ノ一方51Aは、開閉弁5
2を介してタービン53に接続され、このタービン53
、は風車回転軸13に対し、クラッチ54を介し断接可
能に取付けられており、圧縮空気溜め24の空気圧を利
用し、適宜風車12の回転を付勢できるようにされてい
る。尚、このタービン53は、圧縮空気溜め24内の圧
力調整弁、あるいけ安全弁的な目的をもって設けられる
ものであり、強風等により空気溜め24内の圧力が異常
上昇してしまった場合など、この圧力を空気溜め24の
許容圧力限界の範囲内で備えておき、以後風力が低下し
、風車回転が充分得られなくなった場合、漸時開放して
風車12の回転をおぎなうのである。
When each of the stored energies is taken out as compressed air, it is carried out through a branch pipe 51 provided in the compressed air reservoir 24, and one side 51A of this branch pipe 51 is connected to an on-off valve 5.
2 to the turbine 53, and this turbine 53
are attached to the wind turbine rotating shaft 13 so as to be connectable and disconnectable via a clutch 54, so that the rotation of the wind turbine 12 can be appropriately urged using the air pressure of the compressed air reservoir 24. The turbine 53 is provided for the purpose of acting as a pressure regulating valve or a safety valve within the compressed air reservoir 24, and is used when the pressure within the air reservoir 24 increases abnormally due to strong winds, etc. The pressure is kept within the allowable pressure limit of the air reservoir 24, and when the wind power decreases and the wind turbine cannot rotate sufficiently, it is gradually opened to allow the wind turbine 12 to rotate.

これによって、風車12の回転数のある程度の均一化が
図られる。
As a result, the number of rotations of the wind turbine 12 can be made uniform to some extent.

尚、上記タービン53駆動用送気管(51A)は、−た
んタービン53を取巻くように取付けられ、タービン駆
動時に発生する熱を受け、この熱により管路51A内の
空気を膨張させ、駆動圧力を増すようにされている。
The air supply pipe (51A) for driving the turbine 53 is installed so as to surround the -tan turbine 53, receives heat generated when the turbine is driven, expands the air in the pipe 51A with this heat, and increases the driving pressure. It is set to increase.

一方、他方の分岐管51Bは、逆止弁55を介し、望ま
しくは水槽41内に配置された膨張コイル56を通じ、
開閉弁57の操作により外部Sに開放可能に構成され、
この開放部に適宜空気動力装置(図示せず)を接続し、
これら装置を駆動させるのである。
On the other hand, the other branch pipe 51B passes through a check valve 55, preferably an expansion coil 56 disposed in the water tank 41,
It is configured to be openable to the outside S by operating the on-off valve 57,
Connect an appropriate pneumatic power device (not shown) to this opening,
It drives these devices.

この場合、排出される空気は、水槽41内の膨張コイル
56を通過する時点において、水槽41内の温水により
熱を受は圧力を増す。
In this case, when the discharged air passes through the expansion coil 56 in the water tank 41, it receives heat from the hot water in the water tank 41 and its pressure increases.

又、温水を利用する場合は、水槽41に取出し管61を
取付け、この取出し管61に適宜配管(図示せず)を接
続するのである。
Further, when hot water is used, a take-out pipe 61 is attached to the water tank 41, and appropriate piping (not shown) is connected to this take-out pipe 61.

尚、温水の冬を利用する場合、圧縮空気溜め24よりの
過剰圧縮空気は、専らタービン駆動用として利用され、
温水の温度上昇化に消費される。
In addition, when using hot water in winter, the excess compressed air from the compressed air reservoir 24 is used exclusively for driving the turbine.
It is consumed to raise the temperature of hot water.

又、温水温度が上昇しすぎた場合、膨張コイル56の取
出側よりタービン53へ至るバイパス回路62を設けて
おき、このバイパス回路62を通じてタービン53への
送気を行っても良い。
Furthermore, if the hot water temperature rises too much, a bypass circuit 62 leading from the extraction side of the expansion coil 56 to the turbine 53 may be provided, and air may be supplied to the turbine 53 through this bypass circuit 62.

このようにした場合、圧縮空気と温水との間の熱交換が
行われ、温水の温度が下り、一方、送気圧力も増加し、
タービシ駆動力が増加するのでエネルyの有効利用が図
れる。
In this case, heat exchange occurs between the compressed air and the hot water, the temperature of the hot water decreases, while the air supply pressure also increases,
Since the turbidity driving force increases, the energy y can be used effectively.

そして、上記における装置Wは、風車駆動部10を除く
他は、すべて断熱□材によって外部より熱遮断され、無
駄な熱放射は可及的に少なくされている。
The apparatus W described above, except for the wind turbine driving section 10, is entirely thermally isolated from the outside by a heat insulating material, and wasteful heat radiation is minimized.

この発明は以上のように構成されているので、風力エネ
ルギを駆動源とし、空気エネルギを圧力、及び熱として
貯え保存しておくことができるので、例えば風力発電の
ように、その時々に応じた風力に比例した発電しかでき
ず、一定の電力を得ることが困難であるといった問題が
なく、しかも、少なくとも風車が回転していればわずか
であってもエネルギの蓄積は行われるので、自然エネル
ギの蓄積が無駄なく、かつ有効に行え、又、日照の有無
は問わないから、設置のための立地条件が極めてゆるや
かであり、例えば降水・、降雪の多い地域であっても十
分に実施可能であり、利用範囲も広いなどの利点を有し
、具体的用途として、圧縮空気によるものについては、
発電、空気タービンによる機械駆動、揚水、エヤレーシ
ョン(河川、湖沼の浄化、養魚)塗装に用い得、又、圧
縮空気、又は温水によるものとして、冷暖房、給湯、製
塩、製糖、醸造、手工業的地場産業(手すき和紙、寒天
製造、のり製造、そうめん製造、でん粉製造)、養魚池
の水温保持、温室栽培、土壌の保温、融雪等、数多くの
ものに用い得ることができる。
Since this invention is configured as described above, wind energy can be used as a driving source, and air energy can be stored and stored as pressure and heat. It is possible to generate power only in proportion to the wind power, so there is no problem of difficulty in obtaining a constant amount of power, and at least as long as the windmill is rotating, energy will be stored even if it is small, so it is a natural energy source. Storage can be carried out efficiently and without waste, and since it does not matter whether there is sunlight or not, the location conditions for installation are extremely flexible, and it can be carried out even in areas with heavy rainfall or snowfall. , it has the advantage of wide range of use, and as a specific application, it uses compressed air.
It can be used for power generation, mechanical drive by air turbines, water pumping, aeration (purification of rivers and lakes, fish farming), and painting, and can also be used for heating and cooling, hot water supply, salt production, sugar production, brewing, and handicraft production using compressed air or hot water. It can be used for many purposes such as industry (handmade Japanese paper, agar production, glue production, somen noodles production, starch production), maintaining water temperature in fish ponds, greenhouse cultivation, soil heat preservation, snow melting, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の詳細な説明概念図である。 W・・・空気エネルギ蓄積、転換並びに取出装置、10
・・・風車駆動部、11・・・架台、12・・・風車、
13・・・風車回転軸、14・・・クラッチ、20・・
・空気圧縮回路、21・・・第1の回転式圧縮機、22
゜29・・・送気管、23・・・外気取入口、24・・
・圧縮空気溜め、25・・・エジェクター、26・・・
加湿装置、27・・・熱交換器、28・・・膨張弁、3
o・・・熱媒循環回路、31・・・第2の回転式圧縮機
、32゜35・・・管路、33・・・放熱管、34・・
・膨張弁、4゜・・・蓄熱部、41・・・水槽、41゛
・・・水槽の基準水線面、51・・・分岐管、51A・
・・一方の分岐管、51B・・・他方の分岐管、52・
・・開閉弁、53・・・タービン、54・・・クラッチ
The drawings are conceptual diagrams for explaining the invention in detail. W...Air energy storage, conversion and extraction device, 10
... Wind turbine drive unit, 11... Frame, 12... Wind turbine,
13... Wind turbine rotating shaft, 14... Clutch, 20...
-Air compression circuit, 21...first rotary compressor, 22
゜29...Air pipe, 23...Outside air intake, 24...
・Compressed air reservoir, 25... Ejector, 26...
Humidifier, 27... Heat exchanger, 28... Expansion valve, 3
o... Heat medium circulation circuit, 31... Second rotary compressor, 32° 35... Pipe line, 33... Heat radiation pipe, 34...
・Expansion valve, 4゜... Heat storage part, 41... Water tank, 41゛... Reference water line surface of water tank, 51... Branch pipe, 51A・
...One branch pipe, 51B...The other branch pipe, 52.
... Opening/closing valve, 53... Turbine, 54... Clutch.

Claims (1)

【特許請求の範囲】[Claims] (1)風車及び風車回転軸を駆動源として、この回転軸
に第1及び第2の回転式圧縮機が取付けられ、前記第1
の回転式圧縮機の吸入側には送気管が、外気取入口ない
しは圧縮空気溜めよりの空気をいずれかの圧力に応じ選
択するエジェクター及び該エジェクターよりの空気を湿
潤させる加湿装置を介して接続され、吐出側には熱交換
器及び膨張弁を介して前記圧縮空気溜めへ至る送気管を
接続して成る、全体で半密閉式の空気圧縮回路を形成す
る管路が形成され、前記第2の回転式圧縮機の吸入側に
は、前記熱交換器で熱交換を受けた熱媒゛を給送する管
が接続され、又吐出側には水槽内の基準水面以下に配置
された放熱管及び膨張弁を介して前記熱交換器へ至る熱
媒給送管を接続して成る。全体で密閉式の熱媒循環回路
を形成する管路が形成され、前記圧縮空気溜めには前記
回路とけ別に先端が分岐した圧縮空気取出管が取付けら
れ、この分岐管の一方は開閉弁を介してタービンに接続
され、該タービンは前記風車回転軸にクラッチを介して
断接可能に取付けられ、前記分岐管のうち、他の一方は
逆止弁を介し、前記水槽内に配置された膨張コイルを通
じ、開閉弁の操作により外部へ開放可能に構成されて成
ることを特徴とする空気エネルギ蓄積、転換並びに取出
装置。
(1) A wind turbine and a wind turbine rotating shaft are used as a driving source, and first and second rotary compressors are attached to the rotating shaft, and the first and second rotary compressors are attached to the rotating shaft.
An air supply pipe is connected to the suction side of the rotary compressor via an ejector that selects air from an outside air intake or a compressed air reservoir depending on the pressure, and a humidifier that moistens the air from the ejector. , a pipe line is formed on the discharge side, which connects an air supply pipe leading to the compressed air reservoir via a heat exchanger and an expansion valve, forming a semi-hermetic air compression circuit as a whole; The suction side of the rotary compressor is connected to a pipe for feeding the heat medium that has undergone heat exchange in the heat exchanger, and the discharge side is connected to a heat radiation pipe and a heat dissipation pipe arranged below the reference water level in the water tank. A heat medium supply pipe leading to the heat exchanger is connected via an expansion valve. A pipe line is formed that forms a closed heat medium circulation circuit as a whole, and a compressed air take-off pipe with a branched tip is attached to the compressed air reservoir separately from the circuit, and one of the branch pipes is connected to the pipe through an on-off valve. The turbine is connected to the wind turbine rotating shaft through a clutch so as to be connectable and disconnectable, and the other branch pipe is connected to an expansion coil disposed in the water tank through a check valve. An air energy storage, conversion and extraction device characterized in that it is configured to be openable to the outside by operating an on-off valve.
JP57021742A 1982-02-12 1982-02-12 Air energy storage, conversion and extraction equipment Expired JPS6019424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57021742A JPS6019424B2 (en) 1982-02-12 1982-02-12 Air energy storage, conversion and extraction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57021742A JPS6019424B2 (en) 1982-02-12 1982-02-12 Air energy storage, conversion and extraction equipment

Publications (2)

Publication Number Publication Date
JPS58138954A true JPS58138954A (en) 1983-08-18
JPS6019424B2 JPS6019424B2 (en) 1985-05-16

Family

ID=12063522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57021742A Expired JPS6019424B2 (en) 1982-02-12 1982-02-12 Air energy storage, conversion and extraction equipment

Country Status (1)

Country Link
JP (1) JPS6019424B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074346A (en) * 1993-06-17 1995-01-10 Kyocera Corp Air energy-utilizing apparatus
WO2010125568A3 (en) * 2009-04-28 2011-06-23 Technion- Research And Development Foundation Ltd. A system for wind energy harvesting and storage wising compressed air and hot water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074346A (en) * 1993-06-17 1995-01-10 Kyocera Corp Air energy-utilizing apparatus
WO2010125568A3 (en) * 2009-04-28 2011-06-23 Technion- Research And Development Foundation Ltd. A system for wind energy harvesting and storage wising compressed air and hot water

Also Published As

Publication number Publication date
JPS6019424B2 (en) 1985-05-16

Similar Documents

Publication Publication Date Title
US4433552A (en) Apparatus and method for recovering atmospheric moisture
CN104633980B (en) Solar energy ground can complementary wind energy heat pump system
CN101304950A (en) Solar atmospheric water harvester
CN109258219B (en) A efficient light and heat utilization of resources device for wheat is planted
CN102132043A (en) Generation and use of high pressure air
CN207568778U (en) A kind of cooling heating and power generation system based on regenerative resource
CN106857110A (en) A kind of agricultural greenhouse plant seasonal comprehensive temperature control system and temperature control method
CN108353700A (en) Scientific and technological greenhouse for agricultural
CN108005162B (en) A kind of island wind, Chu Lianhe fresh water device for making
CN207350992U (en) Hydrogen Energy and the heat pump system of solar energy complementation
CN207404876U (en) A kind of natural energy resources formula desalination plant
CN104556278B (en) A kind of solar energy and wind energy combine passive vacuum type sea water desalinating unit
CN212806110U (en) Energy storage device and carbon dioxide heat pump coupling system utilizing natural energy
GB1593100A (en) Thermodynamic installation
KR200360435Y1 (en) Hybrid heat-pump system using solar-heat and air-heat
JPH04108321A (en) Greenhouse with underground heat storage
CN111981709A (en) Energy storage device and carbon dioxide heat pump coupling system and method utilizing natural energy
JPS58138954A (en) Pneumatic energy accumulating, converting and takeout device
CN209688997U (en) Solar thermal collector and heating system
CN208047478U (en) Scientific and technological greenhouse for agricultural
CN202328898U (en) Hot water and air-conditioning system of underground water type ground source heat pump
WO2004076359A1 (en) Water desalination
CN108847814A (en) A kind of nested type photovoltaic illumination energy storage mould group with elastic roller structure
CN107294475A (en) Moveable photovoltaic power generation apparatus
CN114532122A (en) Comprehensive system combining solar photo-thermal cross-season storage and agriculture