JPH04108321A - Greenhouse with underground heat storage - Google Patents

Greenhouse with underground heat storage

Info

Publication number
JPH04108321A
JPH04108321A JP2225313A JP22531390A JPH04108321A JP H04108321 A JPH04108321 A JP H04108321A JP 2225313 A JP2225313 A JP 2225313A JP 22531390 A JP22531390 A JP 22531390A JP H04108321 A JPH04108321 A JP H04108321A
Authority
JP
Japan
Prior art keywords
heat
greenhouse
temperature
underground
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2225313A
Other languages
Japanese (ja)
Other versions
JP2969469B2 (en
Inventor
Kazuhiko Abe
和彦 阿部
Isao Sumida
隅田 勲
Norio Ikemoto
池本 徳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2225313A priority Critical patent/JP2969469B2/en
Publication of JPH04108321A publication Critical patent/JPH04108321A/en
Application granted granted Critical
Publication of JP2969469B2 publication Critical patent/JP2969469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Greenhouses (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To enable the space heating and cooling of a greenhouse in such a way that the entrance and exit of the pipings from a collector are connected to a receiving tank, and also the entrance and exit of the pipings from a underground stored heat exchanger are connected to said tank, and furthermore, the water-side heat exchanger for a heat pump is installed in said tank. CONSTITUTION:A water-side heat exchanger 8 for a heat pump 7 is installed in a receiving tank 6 and the air-side heat exchanger 9 for said heat pump is installed in a greenhouse. A pump 3 will operate when both collector temperature Tc and the difference Tcs between the collector temperature and underground temperature Ts come to each specified value to store the solar thermal energy obtained by a collector 2. Heat pumps 7,8,9 will operate when indoor temperature Ti comes to in the daytime a specified level or higher, and with the combined operation of a pump 5, excess indoor heat is stored underground. During the night, the greenhouse temperature will fall as outdoor temperature falls; in this case, heat is first fed into the greenhouse out of the ground; nonetheless, if the greenhouse temperature falls rapidly to a specified level or lower, the heat pumps will be operated in combination with the pump 5, bringing the thermal energy in the ground into the greenhouse while being raised in temperature, thus accomplishing the space heating of the greenhouse to an appropriate temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱的緩衝機能と省エネルギとに優れた太陽熱
利用の地中蓄熱温室に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an underground thermal storage greenhouse that utilizes solar heat and is excellent in thermal buffering function and energy saving.

〔従来の技術〕[Conventional technology]

従来、太陽熱利用の地中蓄熱温室は、特開昭56−14
4019号、特開昭57−49758号公報に記載のよ
うに、温室床下に埋設した地中熱交換器と、これに配管
接続した室外設置の集熱器とをもつようになっている。
Conventionally, underground heat storage greenhouses using solar heat were developed in Japanese Patent Application Laid-Open No. 56-14.
As described in No. 4019 and Japanese Unexamined Patent Publication No. 57-49758, the greenhouse has an underground heat exchanger buried under the floor of the greenhouse, and a heat collector installed outdoors that is connected to the underground heat exchanger through piping.

これは外部集熱方式であるが、内部集熱方式は、地中熱
交換温室があり、温室設計の基礎と実際(1980)第
240頁から第242頁に論じられているように、温室
床下に空気循環用パイプを埋設し、送風機によって温室
内空気をこのパイプに送るようになっている。
This is an external heat collection method, while an internal heat collection method includes underground heat exchange greenhouses, and as discussed in Greenhouse Design Fundamentals and Practice (1980), pp. 240-242, Air circulation pipes are buried in the greenhouse, and air inside the greenhouse is sent through the pipes using a blower.

これは、地中蓄熱エネルギを強制的に温室内に放出する
方式であるが、この例の他に、特開昭57−12272
1号公報に記載のように、室外集熱器で地中蓄熱し、室
内への放熱は送風機によって強制的に行う例がある。温
室内部で集熱し、地中蓄熱する方式は、地中熱交換温室
の他に、特開昭56−169529号公報に記載のよう
に、ヒートポンプを用いる方式がある。
This is a method of forcibly releasing underground thermal energy into the greenhouse.
As described in Publication No. 1, there is an example in which heat is stored underground using an outdoor heat collector, and the heat is forcibly radiated indoors using a blower. In addition to geothermal heat exchange greenhouses, there is a method of collecting heat inside a greenhouse and storing it underground, which uses a heat pump, as described in Japanese Patent Application Laid-Open No. 56-169529.

ヒートポンプを用いる方法のうち、地中蓄熱ではなく、
水タンクに蓄熱する方法は、特開昭57−52729号
公報に記載の例がある。なお、直接の太陽熱利用ではな
いが、地下水利用のヒートボンプ方式には、特開昭57
−175832号公報に記載の例がある。
Of the methods using heat pumps, instead of underground heat storage,
An example of a method of storing heat in a water tank is described in JP-A-57-52729. Although it is not a direct use of solar heat, the heat bomb method of using underground water is known from Japanese Patent Application Laid-open No. 57.
There is an example described in JP-A-175832.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術で、特開昭56−144019号、特開昭
57−49758号、の方式は、外部集熱方式であるか
ら大容量の集熱と蓄熱とを得るのに好適であるが、温室
内への放熱は地中熱伝導に依るために、長期的効果の点
ではよいが短期的効果、即ち、気温の急変化に対する即
応容性が不十分であった。また、特開昭57−1227
21号公報の方式は、上記の即応容性を改善したもので
あるが、放熱の温度は、地中温度レベルに左右されるの
で不安定であり、また。
Among the above-mentioned conventional technologies, the methods of JP-A-56-144019 and JP-A-57-49758 are suitable for obtaining a large capacity of heat collection and heat storage because they are external heat collection methods. Because heat radiation into the interior relies on underground heat conduction, it is good in terms of long-term effects, but short-term effects, that is, the ability to quickly respond to sudden changes in temperature, are insufficient. Also, JP-A-57-1227
The method of Publication No. 21 improves the above-mentioned quick response capacity, but the heat radiation temperature is unstable because it depends on the underground temperature level.

室内の高温度レベルの暖房要求に対しては不十分でもあ
る。地中熱交換温室は、即応容性の点は良好であるが、
室内だけの集熱であるので集熱量に限界があるので曇天
が続くと熱量が不足しがちであり、また放熱の温度レベ
ルは地中温度レベルに左右されて、不安定であるなどの
問題があった。
It is also insufficient to meet the heating requirements of indoor high temperature levels. Geothermal heat exchange greenhouses are good in terms of quick response, but
Since heat is collected only indoors, there is a limit to the amount of heat that can be collected, so if it is cloudy for a long time, the amount of heat tends to be insufficient.Also, the temperature level of heat radiation is affected by the underground temperature level, which causes problems such as instability. there were.

特開昭56−169529号公報の方式は、前述の即応
性と温度レベルの点では一見、良好であるが、内部集熱
だげによる集熱量の限界があって、結局は、地中温度レ
ベルも低下してくる。従って、ヒートポンプの成績係数
(COP)も低下しやすいという問題があった。特開昭
57−5279号公報の方式は、水中に蓄熱するため、
即応性は、特開昭56169529号公報の例よりも更
に良好である。しかし、集熱量の限界から来る、成績係
数低下など問題は、上述よりもわるくなる。
The method disclosed in JP-A-56-169529 appears to be good in terms of the above-mentioned quick response and temperature level, but there is a limit to the amount of heat collected due to internal heat collection, and in the end, the underground temperature level is also decreasing. Therefore, there has been a problem in that the coefficient of performance (COP) of the heat pump tends to decrease. The method disclosed in Japanese Patent Application Laid-Open No. 57-5279 stores heat in water, so
The quick response is even better than the example of JP-A-56169529. However, problems such as a decrease in the coefficient of performance due to the limit on the amount of heat collected are worse than those described above.

本発明の目的は、大容量の集熱力と蓄熱力とをもち、所
望の温度レベルで、且つ、長期的にはもちろんのこと即
応的にも、温室の暖冷房が可能な太陽熱利用地中蓄熱温
室を提供することにある。
The object of the present invention is to provide underground thermal storage using solar heat, which has a large capacity for heat collection and heat storage, and is capable of heating and cooling greenhouses at a desired temperature level not only over a long period of time but also on an immediate basis. The purpose is to provide greenhouses.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は温室床下に埋設し
た地中熱交換器と、室外に設置した集熱器とをもつ地中
蓄熱温室において、水槽を設置し、その中に、集熱器か
らの配管の入口部と出口部とを結合し、その中にまた地
中熱交換器からの配管の入力部と出口部とを同様に結合
し、そしてさらにその中に、ヒートポンプの水側熱交換
器を設置した。そして、大量の蓄熱を要するときは、集
熱器とヒートポンプによって、温室内・外から、集熱、
蓄熱するように運転し、また、即応(急速)的に温室を
暖冷房するときには、地中を熱・冷源としてヒートポン
プの運転を行うようにしたものである。
In order to achieve the above object, the present invention installs a water tank in an underground heat storage greenhouse that has a geothermal heat exchanger buried under the greenhouse floor and a heat collector installed outdoors. the inlet and outlet portions of the piping from the heat pump, and the input and outlet portions of the piping from the ground heat exchanger are similarly connected therein; A heat exchanger was installed. When a large amount of heat storage is required, heat collectors and heat pumps are used to collect heat from inside and outside the greenhouse.
The heat pump is operated to store heat, and when rapidly heating and cooling the greenhouse, the heat pump is operated using the underground as the heat/cold source.

〔作用〕[Effect]

集熱器だけでも大容量の集熱が可能であるが、これに加
うるに、温室自体の集熱力を利用して、その余熱をヒー
トポンプによって集熱して、地中に蓄熱するので、更に
大量の熱を取得することができる。同時に、温室余熱を
集熱することは、即、温室を冷房することでもある。夜
間には、温室床下の地中熱の熱伝導に依る暖房も行われ
るが、それのみでは間に合わないときは、ヒートポンプ
によって、地中熱を汲み上げ、かつ、昇温しで温室を急
速的に暖房する。このとき、上述のように、地中熱量は
、膨大であるから、地中温度の低下は小さく、従って、
ヒートポンプの能率(成績係数)は、低下せず、これを
高く維持することができ、この点からも省エネルギ運転
が実現する。
A large amount of heat can be collected with a heat collector alone, but in addition to this, the heat collecting power of the greenhouse itself is used to collect the residual heat with a heat pump and store it underground, so an even larger amount of heat can be collected. heat can be obtained. At the same time, collecting residual heat from the greenhouse also means cooling the greenhouse. At night, heating is performed using heat conduction from the geothermal heat under the greenhouse floor, but when that alone is not enough, a heat pump is used to pump up geothermal heat and raise the temperature to rapidly heat the greenhouse. do. At this time, as mentioned above, since the amount of underground heat is enormous, the decrease in underground temperature is small, and therefore,
The efficiency (coefficient of performance) of the heat pump does not decrease and can be maintained at a high level, which also contributes to energy-saving operation.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。図中
、1は温室、2は集熱器、3はポンプ、4は温室床下地
中に埋設した地中熱交換器、5はポンプである。これら
の配管の入口部と出口部とは、レシーブタンク6に結合
されているにのタンクの中に、ヒートポンプ7のうち水
中側熱交換器8が設置されており、また、ヒートポンプ
7のうち空気偏熱交換!!#9は、温室内に設置する。
An embodiment of the present invention will be described below with reference to FIG. In the figure, 1 is a greenhouse, 2 is a heat collector, 3 is a pump, 4 is an underground heat exchanger buried in the basement of the greenhouse floor, and 5 is a pump. The inlet and outlet of these pipes are connected to the receiving tank 6, where the submersible side heat exchanger 8 of the heat pump 7 is installed, and the air side of the heat pump 7. Unbalanced heat exchange! ! #9 is installed inside the greenhouse.

ポンプ3は、集熱器温度Tcならびに、集熱器温度と地
中温度Tsの温度差ΔTcsの双方が、所定の値の時に
作動し、このときポンプ5も連動する。このようにして
、集熱器で得られた太陽熱を地中に蓄熱する。
The pump 3 operates when both the collector temperature Tc and the temperature difference ΔTcs between the collector temperature and the underground temperature Ts are at predetermined values, and the pump 5 is also operated at this time. In this way, the solar heat obtained from the heat collector is stored underground.

ヒートポンプ7.8.9は、日中、室内温度Tiが所定
の温度(例えば25℃)以上になったとき、作動し、こ
のときポンプ5も連動する(冷房・蓄熱運転)。このよ
うにして、室内の余熱は9→7→8→6→4のっように
地中へ蓄えられる。
The heat pump 7.8.9 operates during the day when the indoor temperature Ti reaches a predetermined temperature (for example, 25° C.) or higher, and at this time the pump 5 also operates (cooling/heat storage operation). In this way, residual heat inside the room is stored underground in the order of 9 → 7 → 8 → 6 → 4.

これら、温度検知、演算9機器作動指令などの一連の処
理はコントローラ10によって自動的に行う。
A series of processes such as temperature detection and instruction to operate the arithmetic device 9 are automatically performed by the controller 10.

本実施例によれば、集熱器によって大量の太陽熱を、大
容量の地中蓄熱部へ、蓄熱することを基本とした上で、
温室自体で集熱した太陽熱の余分をも有効に地中蓄熱部
へ蓄熱することができるので、更に大きな蓄熱効果を発
揮する。あるいは、温室余熱を集・蓄熱できる分に相当
して、室外集熱器の面積を減少させる効果が期待できる
According to this embodiment, the basic idea is to store a large amount of solar heat using a heat collector into a large-capacity underground heat storage section, and
The excess solar heat collected in the greenhouse itself can also be effectively stored in the underground heat storage section, resulting in an even greater heat storage effect. Alternatively, the area of the outdoor heat collector can be expected to be reduced by the amount of heat that can be collected and stored in the greenhouse.

日中、ヒートポンプを作動することによって、温室内気
温を適温に維持できる効果もあり、更に、このとき、温
室は密閉してよいから、炭酸ガスを所望の濃度に保つよ
うに施肥できるので、植物の光合成を最適に維持するこ
とができる。併せて、温室を密閉しているので、防虫、
防疫、防塵によって、植物の品質を向上する効果もある
Operating the heat pump during the day has the effect of maintaining the temperature inside the greenhouse at an appropriate temperature.Furthermore, since the greenhouse can be sealed at this time, fertilization can be applied to maintain the desired concentration of carbon dioxide gas, which helps the plants. photosynthesis can be maintained optimally. In addition, since the greenhouse is sealed, it prevents insects.
It also has the effect of improving plant quality by preventing epidemics and dust.

大量の太陽熱を得るので大幅な省エネルギ効果をもつこ
とが当然であるが、地中蓄熱部が大容量であるため、熱
の畠し入れにともなう地中温度の変化は大きくはなく、
そのため、ヒートポンプ運転における成績係数は長時間
、低下しない。従って、省エネ運転ができる効果がある
Naturally, it has a significant energy-saving effect because it receives a large amount of solar heat, but because the underground heat storage unit has a large capacity, the change in underground temperature due to the heat being stored in the field is not large.
Therefore, the coefficient of performance during heat pump operation does not decrease for a long time. Therefore, there is an effect of enabling energy-saving operation.

夜間には、外気温の低下に伴い、室温も低下してくるが
、それに応じて先ず、地中から熱伝導によって室内に熱
が供給される。この熱は、長期にわたって地中熱交換器
から地中に蓄熱された分と、日中、温室床面から地中浅
部に貯熱された分とから成る。それでも室温が急速に低
下して、所定の温度以下になるときには、ヒートポンプ
を作動し、ポンプ5も連動させる(暖房・放熱運転)。
At night, as the outside temperature drops, so does the room temperature, and in response, heat is first supplied indoors from underground through heat conduction. This heat consists of heat stored underground from the underground heat exchanger over a long period of time, and heat stored shallowly underground from the greenhouse floor during the day. However, when the room temperature rapidly decreases to below a predetermined temperature, the heat pump is activated and the pump 5 is also operated (heating/heat dissipation operation).

これによって、地中の蓄熱エネルギが、昇温さ九つつ、
温室内に運ばれるので、室内は適温に暖房される効果を
もつ。前述のように、大容量地中蓄熱であるから、大幅
な省エネルギ暖房の効果をもつ。また、大容量の故に、
地中温度の変化は大きくはなく、そのため、ヒートポン
プの成績係数は長時間にわたって低下せず、従って、省
エネルギ運転の効果がある。
As a result, the thermal energy stored underground increases in temperature,
Since it is transported into the greenhouse, it has the effect of heating the room at an appropriate temperature. As mentioned above, since it is a large-capacity underground heat storage, it has a significant energy-saving heating effect. In addition, due to its large capacity,
The change in underground temperature is not large, so the coefficient of performance of the heat pump does not decrease over a long period of time, and therefore has the effect of energy-saving operation.

もし、蓄熱量が小容量であると、地中温度は、すぐに低
下し、ヒートポンプの成績係数は、著しくわるくなり、
省エネ運転の効果がなくなる。なお、暖房運転における
地中温度と成績係数との関係は第2図に示すようになり
、地温の高低によって成績係数は変動する。それ故、省
エネルギ運転のためには、地温は、できるだけ高温で、
且つ、一定であることが望ましく、そのためには、蓄熱
容量は、大きく、且つ、集熱量も大きく、あるべきであ
り、本実施例はこれに適うものである。
If the amount of heat storage is small, the underground temperature will drop quickly and the coefficient of performance of the heat pump will deteriorate significantly.
The effect of energy-saving driving is lost. The relationship between the underground temperature and the coefficient of performance during heating operation is shown in Figure 2, and the coefficient of performance varies depending on the height of the soil temperature. Therefore, for energy-saving operation, the soil temperature must be as high as possible.
Moreover, it is desirable that it be constant, and for that purpose, the heat storage capacity and the amount of heat collection should be large, and this embodiment is suitable for this purpose.

ヒートポンプで、暖房運転と冷房運転との切換は四方弁
の操作によって行うなどがある。ヒートポンプなど機器
の駆動エネルギをも、自然エネルギ、例えば、中小河川
や農業用水路などの水力(機械的に、又は、電気的に)
に依ると、ランニングコストは、ゼロに近い、極小値に
し得て、システム全体として、自立的、完全省エネルギ
施設とすることができる。
In some heat pumps, switching between heating operation and cooling operation is performed by operating a four-way valve. Energy for driving equipment such as heat pumps can also be derived from natural energy, such as hydraulic power (mechanically or electrically) from small and medium-sized rivers and agricultural canals.
According to this, the running cost can be reduced to an extremely low value, close to zero, and the entire system can be made into a self-sustaining and completely energy-saving facility.

集熱器は、夏期には、深夜、ポンプ3と5とを運転する
ことによって、地中を冷房するための放熱器としても使
用することができる。
The heat collector can also be used as a radiator for cooling underground in the summer by operating pumps 3 and 5 late at night.

〔発明の効果〕〔Effect of the invention〕

本発明は、大容量の地中蓄熱部をもち、これに集熱器に
よる外部集熱と、ヒートポンプによる内部集熱とで大量
の集熱を行うように構成されているので、大量の熱源を
長期にわたって確保できるので、大幅な省エネルギ効果
をもつ。また、ヒートポンプによる。急速な、暖房・冷
房と、自然の地中熱伝導による、貯熱・放熱とが、相乗
的に作用して、長期的・短期的に理想的な温室環境の制
御ができる。そして、ヒートポンプの運転中でも地中温
度の変化は大きくないから、成績係数は低下することな
く、はぼ一定で、省エネ運転ができる。さらに、ヒート
ポンプなどの駆動源をも自然エネルギで代替すると、ラ
ンニングコストもゼロのシステムが実現できる。
The present invention has a large-capacity underground heat storage section, and is configured to collect a large amount of heat by external heat collection by a heat collector and internal heat collection by a heat pump. Since it can be secured over a long period of time, it has a significant energy saving effect. Also by heat pump. Rapid heating/cooling and heat storage/radiation through natural underground heat conduction work synergistically to control the ideal greenhouse environment in both the long and short term. Since the underground temperature does not change significantly even when the heat pump is in operation, the coefficient of performance remains almost constant without decreasing, allowing for energy-saving operation. Furthermore, by replacing drive sources such as heat pumps with natural energy, it is possible to create a system with zero running costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は地中温度
と成績係数との関係を示す特性図である。 1・・・温室、2・・・集熱器、3・・・ポンプ、4・
・・地中熱交換器、5・・・ポンプ、6・・・レシーブ
タンク、7・・・ヒートポンプ、 8・・・水側熱交換器、 9・・空気側熱 交換器、 10・・・コントローラ。
FIG. 1 is an explanatory diagram of one embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between underground temperature and coefficient of performance. 1... Greenhouse, 2... Heat collector, 3... Pump, 4...
...Ground heat exchanger, 5...Pump, 6...Receive tank, 7...Heat pump, 8...Water side heat exchanger, 9...Air side heat exchanger, 10... controller.

Claims (1)

【特許請求の範囲】 1、温室床下に埋設した地中蓄熱交換器と、室外に設置
した集熱器とを含む地中蓄熱温室において、 室内にレシーブタンクを設置し、その中に、前記集熱器
からの配管の入口部と出口部とを結合し、その中にまた
、前記地中蓄熱交換器からの配管の入口部と、出口部と
を同様に結合し、その中に、ヒートポンプの水側熱交換
器を設置したことを特徴とする地中蓄熱温室。
[Scope of Claims] 1. In an underground heat storage greenhouse that includes an underground heat storage exchanger buried under the greenhouse floor and a heat collector installed outdoors, a receive tank is installed indoors, and the receiver tank is placed inside the greenhouse. The inlet and outlet of the piping from the heat generator are connected together, and the inlet and outlet of the piping from the underground heat storage exchanger are similarly connected, and the heat pump is connected therein. An underground heat storage greenhouse characterized by installing a water-side heat exchanger.
JP2225313A 1990-08-29 1990-08-29 Underground thermal storage greenhouse Expired - Fee Related JP2969469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225313A JP2969469B2 (en) 1990-08-29 1990-08-29 Underground thermal storage greenhouse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225313A JP2969469B2 (en) 1990-08-29 1990-08-29 Underground thermal storage greenhouse

Publications (2)

Publication Number Publication Date
JPH04108321A true JPH04108321A (en) 1992-04-09
JP2969469B2 JP2969469B2 (en) 1999-11-02

Family

ID=16827398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225313A Expired - Fee Related JP2969469B2 (en) 1990-08-29 1990-08-29 Underground thermal storage greenhouse

Country Status (1)

Country Link
JP (1) JP2969469B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0965264A1 (en) * 1998-06-18 1999-12-22 Martin Buchholz Device and method for transferring and using heat and/or waste water from greenhouses and solid-state fermentators
GB2455773A (en) * 2007-12-21 2009-06-24 Hugh Breeden Verey Energy Recovery System
CN102138463A (en) * 2011-03-19 2011-08-03 于彦国 Solar energy-saving greenhouse plant and manufacturing method
US8525864B2 (en) 2010-03-18 2013-09-03 Ricoh Company, Ltd. Semiconductor laser driver and image forming apparatus incorporating same
WO2014021330A1 (en) * 2012-07-31 2014-02-06 二枝 美枝 Agricultural/horticultural greenhouse
US8724082B2 (en) 2010-03-04 2014-05-13 Ricoh Company, Ltd. Semiconductor laser driver and image forming apparatus incorporating same
CN104012345A (en) * 2014-06-13 2014-09-03 中国农业大学 Winter sunlight greenhouse dehumidification device and method
CN104170688A (en) * 2014-09-01 2014-12-03 湖南省烟草公司衡阳市公司 Heat insulation dehumidifier for seedling growing greenhouse
US8928714B2 (en) 2010-03-18 2015-01-06 Ricoh Company, Ltd. Semiconductor laser driver and image forming apparatus incorporating same
JP2015064163A (en) * 2013-09-26 2015-04-09 積水化学工業株式会社 Heat storage type heating system and building
CN111108983A (en) * 2020-01-23 2020-05-08 上海孙桥溢佳农业技术股份有限公司 Heat storage and release system and method for sunlight greenhouse
CN111189233A (en) * 2020-02-28 2020-05-22 中国农业大学 Surface cooler-heat pump combined heat collection system and operation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749758A (en) * 1980-09-10 1982-03-23 Hitachi Ltd Heat accumulating apparatus
JPS57138326A (en) * 1981-02-16 1982-08-26 Maekawa Seisakusho Kk Temperature adjustment of greenhouse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749758A (en) * 1980-09-10 1982-03-23 Hitachi Ltd Heat accumulating apparatus
JPS57138326A (en) * 1981-02-16 1982-08-26 Maekawa Seisakusho Kk Temperature adjustment of greenhouse

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0965264A1 (en) * 1998-06-18 1999-12-22 Martin Buchholz Device and method for transferring and using heat and/or waste water from greenhouses and solid-state fermentators
GB2455773B (en) * 2007-12-21 2012-08-08 Hugh Breeden Verey Energy recovery system
GB2455773A (en) * 2007-12-21 2009-06-24 Hugh Breeden Verey Energy Recovery System
US8724082B2 (en) 2010-03-04 2014-05-13 Ricoh Company, Ltd. Semiconductor laser driver and image forming apparatus incorporating same
US8525864B2 (en) 2010-03-18 2013-09-03 Ricoh Company, Ltd. Semiconductor laser driver and image forming apparatus incorporating same
US8928714B2 (en) 2010-03-18 2015-01-06 Ricoh Company, Ltd. Semiconductor laser driver and image forming apparatus incorporating same
CN102138463A (en) * 2011-03-19 2011-08-03 于彦国 Solar energy-saving greenhouse plant and manufacturing method
WO2014021330A1 (en) * 2012-07-31 2014-02-06 二枝 美枝 Agricultural/horticultural greenhouse
JP2014113138A (en) * 2012-07-31 2014-06-26 Takaharu Futaeda Agricultural and horticultural greenhouse
JP2015064163A (en) * 2013-09-26 2015-04-09 積水化学工業株式会社 Heat storage type heating system and building
CN104012345A (en) * 2014-06-13 2014-09-03 中国农业大学 Winter sunlight greenhouse dehumidification device and method
CN104170688A (en) * 2014-09-01 2014-12-03 湖南省烟草公司衡阳市公司 Heat insulation dehumidifier for seedling growing greenhouse
CN111108983A (en) * 2020-01-23 2020-05-08 上海孙桥溢佳农业技术股份有限公司 Heat storage and release system and method for sunlight greenhouse
CN111189233A (en) * 2020-02-28 2020-05-22 中国农业大学 Surface cooler-heat pump combined heat collection system and operation method thereof
CN111189233B (en) * 2020-02-28 2024-05-28 中国农业大学 Surface cooler-heat pump combined heat collection system and operation method thereof

Also Published As

Publication number Publication date
JP2969469B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
Mekhilef et al. The application of solar technologies for sustainable development of agricultural sector
US4373573A (en) Long term storage and use of solar energy
KR100915701B1 (en) Airconditioning apparatus of house using earth heat-heat pump
KR101319080B1 (en) Geothermal energy- heating and cooling system of hybrid type using extra heating source of available surplus heat
JPH04108321A (en) Greenhouse with underground heat storage
US3910490A (en) Solar energy heat and cooling system
KR101348922B1 (en) Cooling and heating cultivation system using heat pump in protected house
CN1804488A (en) Air conditioning system utilizing underground cold and heat source
CN214593170U (en) Solar heating greenhouse
Rocamora et al. Aspects of PV/T solar system application for ventilation needs in greenhouses
JP5483051B2 (en) Residential ventilation system
WO2015094102A1 (en) Construction comprising a building structure and a ground-based heat storage
KR101303576B1 (en) Soil heating apparatus using remainded Heat of house and heat pump
CN114097496A (en) Solar active and passive phase-change heat storage ventilation wall heat pump system suitable for greenhouse
Gorjian et al. Solar Powered Greenhouses
Yildiz et al. Simulated performances of a heat pump system for energy and water conservation in open and confined greenhouse systems
RU2645203C1 (en) Microclimate automatic control system in the animals placement rooms
JP2021136977A (en) Air-cooled heat pump cold and hot water system and plant raising agricultural house system
KR20060092448A (en) Cooling and heating system of the indoor house
RU2738527C1 (en) Heat pump system for heating and cooling of rooms
CN218072692U (en) Off-grid type agricultural facility solar energy comprehensive energy system
Ozgener et al. Modelling and assessment of ground-source heat pump systems using exergoeconomic analysis for building applications
CN220986885U (en) Greenhouse system
JP5848424B2 (en) Air conditioning equipment for house for plant cultivation
KR102251895B1 (en) Green Energy system with suppling water and geothermal heat

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees