JPS60194211A - Pulverized coal burner with arc type igniting torch - Google Patents

Pulverized coal burner with arc type igniting torch

Info

Publication number
JPS60194211A
JPS60194211A JP4705984A JP4705984A JPS60194211A JP S60194211 A JPS60194211 A JP S60194211A JP 4705984 A JP4705984 A JP 4705984A JP 4705984 A JP4705984 A JP 4705984A JP S60194211 A JPS60194211 A JP S60194211A
Authority
JP
Japan
Prior art keywords
pulverized coal
flame
torch
arc
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4705984A
Other languages
Japanese (ja)
Other versions
JPH059684B2 (en
Inventor
Kiyoshi Narato
清 楢戸
Mitsuaki Haneda
光明 羽田
Yoshinobu Kobayashi
啓信 小林
Toru Inada
徹 稲田
Norio Arashi
紀夫 嵐
Keizo Otsuka
大塚 馨象
Tadahisa Masai
政井 忠久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP4705984A priority Critical patent/JPS60194211A/en
Publication of JPS60194211A publication Critical patent/JPS60194211A/en
Publication of JPH059684B2 publication Critical patent/JPH059684B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the simplifying of control operation and the stabilization of igniting by a method wherein an igniting torch and a burner are made into an integral structure. CONSTITUTION:A burner is composed of a electrode 14 having a needle-shaped top made of tungsten as a negative electrode and a nozzle 15 made of copper as a positive electrode, generates an electric arc between both poles by a high frequency power source 17. A jetting speed of pulverized coal/air flow is kept higher than a certain constant rate of flow, generally, set higher than 10m/s. The pulverized coal/air flow is set so that the jetting speed is kept higher than 10m/s. The weight of a flame holder 23 is adjusted so that the direction of the flame holder 23 is inclined toward the inner side of the torch side in case that the jetting speed is less than 17m/s. Thereby, the pulverized coal/air flow is easily contacted with a plasma arc flame 3, accordingly, the stable igniting for the pulverized coal can be achieved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は微粉炭燃焼装置に係り、特に、補助用燃料であ
る軽油及び重油を使用せずに、微粉炭を常温から点火し
、安定な微粉炭燃焼火炎を形成するためのアーク式点火
トーチを内蔵する微粉炭バーナに関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a pulverized coal combustion device, and in particular, it ignites pulverized coal at room temperature without using light oil or heavy oil as auxiliary fuel, and produces stable pulverized powder. This invention relates to a pulverized coal burner with a built-in arc-type ignition torch for forming a charcoal combustion flame.

〔発明の背景〕[Background of the invention]

従来、微粉炭ボイラには、燃料となる微粉炭の他に補助
燃料として軽油及び重油等の石油系燃料が用いられてい
る。補助燃料の使用目的は、ボイラのスタートアップ用
と、負荷変動の際に、燃焼状態を安定させるためとに大
別される。前者は。
Conventionally, in pulverized coal boilers, petroleum-based fuels such as light oil and heavy oil are used as auxiliary fuels in addition to pulverized coal as fuel. The purposes of use of auxiliary fuel are broadly divided into boiler startup and stabilizing combustion conditions during load fluctuations. The former.

微粉炭の着火性が常温で悪いこと、従来使用される点火
トーチは、ガス燃料あるいは石油系燃料などの比較的点
火しやすい燃料に使用されるスパーク式のものが流用さ
れていることなどから、常温で微粉炭を点火するのは困
難であった。そこで、ボイラのスタートアップには燃焼
性の良い軽油及び重油などの石油系燃料が使用され、ボ
イラ内の温度が上った時点で、石油系燃料と微粉炭を切
換え、微粉炭専焼に移行する運転方法が通例であった。
Pulverized coal has poor ignitability at room temperature, and conventionally used ignition torches are spark-type torches that are used for fuels that are relatively easy to ignite, such as gas fuel or petroleum-based fuel. It was difficult to ignite pulverized coal at room temperature. Therefore, petroleum-based fuels such as light oil and heavy oil with good combustibility are used to start up the boiler, and when the temperature inside the boiler rises, the petroleum-based fuel and pulverized coal are switched, and the operation shifts to pulverized coal-only combustion. The method was customary.

これら石油系燃料を使用するため多量の補助燃料を必要
とし、また、補助燃料の貯蔵及び供給設備費など経済的
に大きな負担がユーザ側に課せられていた。
The use of these petroleum-based fuels requires a large amount of auxiliary fuel, and also imposes a large economic burden on the user, such as the cost of storage and supply equipment for the auxiliary fuel.

そこで、これら補助燃料の低減もしくは補助燃料を使用
しないで、微粉炭の安定な燃焼を行なう技術が特公昭5
8−1330号公報で開示されている。
Therefore, a technology to stably burn pulverized coal by reducing or not using these auxiliary fuels was developed in the 1970s.
It is disclosed in Japanese Patent No. 8-1330.

この新しい燃焼方法は第1図に示すように、アーク点火
トーチ2(プラズマアーク溶接機などに使用されている
。)を用いて、プラズマアークフレーム3を微粉炭バー
ナ1から噴出する微粉炭/空気流4に接触させ、高温の
フレーム3によって微粉炭を着火させる方法である。ア
ーク式点火トーチ2を用いた微粉炭の点火は従来の問題
点を解決するには有効な方法であると考えられる。しか
し、この技術には単に与えられる点火トーチ側からの点
火エネルギ(及びエンタルピ)と微粉炭/空気流の各々
の濃度で定義される着火パラメータの指定された領域内
で着火することが記載されているが、発明者らは実験の
結果微粉炭/空気流の流速にアーク式点火トーチ2から
のプラズマアークフレーム3を接触した場合、単に微粉
炭/空気流4の各々の濃度及びプラズマトーチ側の点火
エネルギが前記公報に記載される着火パラメータの領域
であっても、安定な着火ができなかった。この原因とし
て、プラズマアークフレームの貫通力が微粉炭/空気流
の流速によって影響されることに起因する。この原因を
発明者らの実験結果の一例である第2図に基づいて詳細
に説明する。第2図(a)はプラズマアークフレーム3
が微粉炭/空気流4の流速が大であるために微粉炭/空
気流4に充分接触できず、微粉炭の着火が安定して実施
できない場合を示す概念図である。第2図(b)は微粉
炭/空気流4の流速が小さく、逆に、プラズマアークフ
レーム3の高温部分を混合流が避けて通過し、微粉炭の
着火が安定に実施できない概念図である。また、先に示
した第1図のようにアーク式点火ドータ2を微粉炭バー
ナ1がら離し、微粉炭/空気流の噴出直後に設置した場
合、微粉炭の供給量及び空気量は操作側で把握できるが
、噴出された後流側では、空気の流れ及びバーナ構造に
よって微粉炭濃度が一様でなくなり、操作条件だけでは
トーチからのアークフレームの位置する来所で、前記公
報に記載される着火領域内にあることの判断は困難であ
り、必ずしも1着火領域にあるとは限らない。従って、
従来のように、単に、微粉炭量、空気量及び点火エネル
ギのみでは着火領域を限定することはできない。
As shown in Fig. 1, this new combustion method uses an arc ignition torch 2 (used in plasma arc welding machines, etc.) to generate a plasma arc flame 3 with pulverized coal/air ejected from a pulverized coal burner 1. In this method, pulverized coal is brought into contact with a stream 4 and ignited by a high-temperature flame 3. Ignition of pulverized coal using the arc type ignition torch 2 is considered to be an effective method for solving the conventional problems. However, this technique simply describes ignition within a specified range of ignition parameters defined by the ignition energy (and enthalpy) from the provided ignition torch side and the respective concentrations of the pulverized coal/air stream. However, as a result of experiments, the inventors found that when the plasma arc flame 3 from the arc type ignition torch 2 was brought into contact with the flow velocity of the pulverized coal/air flow, the concentration of each of the pulverized coal/air flow 4 and the plasma torch side simply increased. Even if the ignition energy was within the range of the ignition parameters described in the publication, stable ignition could not be achieved. This is due to the fact that the penetration power of the plasma arc flame is influenced by the flow velocity of the pulverized coal/air flow. The cause of this will be explained in detail based on FIG. 2, which is an example of the inventors' experimental results. Figure 2 (a) shows plasma arc flame 3.
FIG. 2 is a conceptual diagram showing a case where the pulverized coal/air flow 4 cannot be brought into sufficient contact with the pulverized coal/air flow 4 due to its high flow velocity, and the pulverized coal cannot be ignited stably. FIG. 2(b) is a conceptual diagram in which the flow velocity of the pulverized coal/air flow 4 is low, and conversely, the mixed flow avoids the high temperature part of the plasma arc flame 3 and passes through, making it impossible to stably ignite the pulverized coal. . In addition, if the arc type ignition daughter 2 is separated from the pulverized coal burner 1 and installed immediately after the pulverized coal/air flow is ejected as shown in Figure 1 above, the amount of pulverized coal supplied and the amount of air can be controlled by the operator However, on the downstream side of the ejection, the concentration of pulverized coal is not uniform due to the air flow and burner structure, and the operating conditions alone indicate that the concentration of pulverized coal is not uniform at the location where the arc flame from the torch is located, as described in the above publication. It is difficult to judge whether it is within the ignition region, and it is not necessarily within the ignition region. Therefore,
As in the past, the ignition region cannot be limited simply by the amount of pulverized coal, the amount of air, and the ignition energy.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、アーク式点火トーチを備えた微粉炭バ
ーナを提供するにある。
An object of the present invention is to provide a pulverized coal burner equipped with an arc type ignition torch.

〔発明の概要〕[Summary of the invention]

本発明の要点は、プラズマアークフレームと微粉炭/空
気流との接触を効率良〈実施し、また、微粉炭/空気流
の操作条件で微粉炭の着火領域内にあることなど、制御
面での操作を簡略化し、安定に微粉炭の着火が実施でき
るようにアーク式点火トーチを微粉炭バーナと一体化構
造にした点にある。
The key points of the present invention are that the contact between the plasma arc flame and the pulverized coal/air stream is efficiently carried out, and that the pulverized coal/air stream is within the ignition range of the pulverized coal under the operating conditions. In order to simplify the operation and stably ignite the pulverized coal, the arc type ignition torch is integrated with the pulverized coal burner.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第3図ないし第8図を用いて詳細に説
明する。
Embodiments of the present invention will be described in detail with reference to FIGS. 3 to 8.

第3図は本発明の一実施例のアーク式点火トーチを備え
た微粉炭バーナの全体構成図である。アーク式点火トー
チ2はバーナが円筒状である場合、中心部に設置する。
FIG. 3 is an overall configuration diagram of a pulverized coal burner equipped with an arc type ignition torch according to an embodiment of the present invention. If the burner is cylindrical, the arc type ignition torch 2 is installed in the center.

その外側には微粉炭/空気流の噴出ノズル8、さらに、
外周側に二次空気ノズル9及び三次空気ノズル1oが配
置される。二次空気ノズル9及び三次空気ノズル1oに
は各々の空気に旋回運動を与えるための旋回器11.1
2が配置される0本発明の微粉炭バーナ1゛に使用され
るアーク式点火トーチの詳細構造を第4図に示す。本発
明のバーナでは先端が針状のタングステン製電極14を
一極に使用し、銅製ノズル15を電極に構成し、高周波
電源17によって両極間に電気アークを発生する。本発
明では、プラズマガスとしてアルゴンガス(Δr)21
を使用しプラズマアークフレーム3を形成した。プラズ
マアーク部3′は8000℃以上の高温領域となるがア
ークフレーム3の先端部は8000C以下である。この
プラズマア・−クフレーム3に微粉炭/空気流を効果的
に接触することが前提条件となる。また。
On the outside there is a pulverized coal/air flow jet nozzle 8;
A secondary air nozzle 9 and a tertiary air nozzle 1o are arranged on the outer peripheral side. The secondary air nozzle 9 and the tertiary air nozzle 1o each have a swirler 11.1 for giving swirling motion to the air.
4 shows the detailed structure of the arc type ignition torch used in the pulverized coal burner 1 of the present invention, in which the torch 2 is arranged. In the burner of the present invention, a tungsten electrode 14 with a needle-like tip is used as one pole, a copper nozzle 15 is used as the electrode, and a high frequency power source 17 generates an electric arc between the two poles. In the present invention, argon gas (Δr) 21 is used as plasma gas.
A plasma arc flame 3 was formed using the following. The plasma arc section 3' is in a high temperature region of 8000C or higher, but the temperature at the tip of the arc frame 3 is 8000C or lower. Effective contact of the pulverized coal/air stream with this plasma arc flame 3 is a prerequisite. Also.

アーク発生部は高温になるためタングステン製電極14
及びノズルJ5は冷却構造体とし1、冷却水20.21
がノズル内側に流入できるようにした外周部はシールド
キャップ16が絶縁筒18に支持され、ノズル15とシ
ールドキャップ間にシールドガス19が流出できるよう
にし、通常は空気をシールドガス19として使用した。
Since the arc generating part becomes high temperature, a tungsten electrode 14 is used.
And nozzle J5 is a cooling structure 1, cooling water 20.21
A shield cap 16 is supported by an insulating tube 18 at the outer peripheral part where the gas can flow into the inside of the nozzle, and a shield gas 19 can flow out between the nozzle 15 and the shield cap, and air is usually used as the shield gas 19.

プラズマフレーム3の長さは、プラズマガス21の流量
及び高周波電源17からの出力で決定されるプラズマア
ーク出力によって左右される。発明者らの実験結果では
、ノズル15の噴出流速は20℃換算で、3 m / 
s以上とすることが好ましく、プラズマアーク出力は1
.5KW以上であると良好なプラズマアークフレーム3
が形成できることを確認している。アーク式点火トーチ
は円筒状の微粉炭バーナ1では中心部に位置するように
説明してきたが、微粉炭の着火には微粉炭/空気流の噴
出状態と。
The length of the plasma flame 3 depends on the plasma arc output determined by the flow rate of the plasma gas 21 and the output from the high frequency power source 17. According to the inventors' experimental results, the ejection flow velocity of the nozzle 15 is 3 m /
s or more, and the plasma arc output is 1
.. Plasma arc flame 3 is good if it is 5KW or more
It has been confirmed that it can be formed. The arc-type ignition torch has been described as being located at the center of the cylindrical pulverized coal burner 1, but the pulverized coal is ignited in a jetting state of pulverized coal/air flow.

プラズマアークフレームの接触が最も重要な因子となる
。第5図は本発明の微粉炭バーナの微粉炭/空気流ノズ
ル8の先端部の詳細構造を示す。微粉炭/空気流ノズル
先端の保炎器23は、微粉炭/空気流の噴出速度によっ
てトーチ2の内側及び外側に動き得る構造体とした。微
粉炭の常温での着火は通常の火炉壁からの放射のない苛
酷な条件で行なうため、着火領域は狭くなる。そこで、
常に、着火を安定して行なうために発明したのが可動型
の保炎器23である。微粉炭/空気流の噴出速度は逆火
防止のため、ある一定の流速以上に保たれる。これは微
粉炭燃焼火炎の伝播速度より大吉な速度で噴出すること
が必要条件となる。一般には、10m/s以上に設定さ
れている。そこで本発明では噴出速度は10m/s以上
にするように微粉炭/空気流を設定し、且つ、17m/
s以下では保炎器23の向きがトーチ側の内側に傾斜す
るように保炎器23の重量を調整した。このように構成
することによって、微粉炭/空気流がプラズマアークフ
レーム3に接触しやすくなり、微粉炭を安定に着火する
ことができる。プラズマアークフレーム3を形成してい
る期間は、微粉炭に点火エネルギが与えられているから
微粉炭は安定して燃焼することができる。微粉炭の着火
によって微粉炭燃焼火炎の温度が高まるので、時間が経
過していくほど、微粉炭は火炎面からの放射によって安
定して燃焼させることができる。このように常温から微
粉炭を着火する場合には、噴出流速は小さい方が好まし
いが、逆火の立場からは、10m/s以上が好ましく、
発明者らは17m/S以下にすることが常温での着火に
は有利であることを見い出した。従って、常温からの着
火条件は微粉炭の濃度に起因する着火限界の他に噴出速
度も一つの着火に影響する因子の一つである。また、着
火する時点では10〜17m/sの領域で微粉炭/空気
流を噴出させるが、ノズル構造が決定されると、単一バ
ーナから供給される微粉炭量を増加するためには、必然
的に一次空気量も増加し、おのずと噴出速度は増加する
。そこで本発明では約17m/s以上になると保炎器2
3の重量に打ち勝って噴出時の圧力が高くなり、保炎器
23を外側に向けるように保炎器23の重量を決定した
。この外側への保炎器23の角度θは保炎器23の外側
に設けられた支持板24によって制約を受け、θが10
度以上になるように設置した。
The contact of the plasma arc flame is the most important factor. FIG. 5 shows the detailed structure of the tip of the pulverized coal/air flow nozzle 8 of the pulverized coal burner of the present invention. The flame stabilizer 23 at the tip of the pulverized coal/air flow nozzle was a structure that could move inside and outside of the torch 2 depending on the ejection speed of the pulverized coal/air flow. Since pulverized coal is ignited at room temperature under harsh conditions with no radiation from the furnace walls, the ignition area is narrow. Therefore,
The movable flame holder 23 was invented to ensure stable ignition at all times. The jetting speed of the pulverized coal/air stream is kept above a certain flow rate to prevent backfire. This requires that the pulverized coal be ejected at a speed faster than the propagation speed of the pulverized coal combustion flame. Generally, it is set to 10 m/s or more. Therefore, in the present invention, the pulverized coal/air flow is set so that the ejection speed is 10 m/s or more, and the ejection speed is 17 m/s or more.
Below s, the weight of the flame holder 23 was adjusted so that the direction of the flame holder 23 was inclined inward toward the torch side. With this configuration, the pulverized coal/air flow can easily come into contact with the plasma arc flame 3, and the pulverized coal can be ignited stably. During the period when the plasma arc flame 3 is being formed, ignition energy is given to the pulverized coal, so that the pulverized coal can be stably combusted. Since the temperature of the pulverized coal combustion flame increases as the pulverized coal ignites, the more time passes, the more stable the pulverized coal can be burned by radiation from the flame surface. When igniting pulverized coal from room temperature in this way, it is preferable that the ejection flow velocity is small, but from the standpoint of flashback, it is preferably 10 m/s or more.
The inventors have found that setting the velocity to 17 m/S or less is advantageous for ignition at room temperature. Therefore, regarding the ignition conditions from room temperature, in addition to the ignition limit caused by the concentration of pulverized coal, the ejection speed is one of the factors that influences ignition. In addition, at the time of ignition, the pulverized coal/air flow is ejected in the region of 10 to 17 m/s, but once the nozzle structure is decided, it is necessary to increase the amount of pulverized coal supplied from a single burner. As a result, the amount of primary air also increases, and the ejection speed naturally increases. Therefore, in the present invention, when the speed exceeds about 17 m/s, the flame stabilizer 2
The weight of the flame holder 23 was determined so that the pressure at the time of ejection was high, overcoming the weight of No. 3, and the flame holder 23 was directed outward. The angle θ of the flame stabilizer 23 toward the outside is restricted by the support plate 24 provided on the outside of the flame stabilizer 23, and θ is 10
It was set up so that the temperature was higher than that.

このように保炎器23による保炎効果を得るには、外向
きにし、微粉炭が噴出された直後に微粉炭が外側に広が
る効果と、二次空気が噴出された直後に保炎器23によ
って二次空気の一部が微粉炭/空気流に巻き込まれるた
め、火炎は保炎器23の近傍から形成されて微粉炭の燃
焼が良好に実施される。プラズマアークフレーム3の照
射時間は火炎温度が高まり、火炉壁など雰囲気温度が高
まって、放射により微粉炭の火炎が継続できる条件にな
った時点を基準に決定される。
In order to obtain the flame stabilizing effect of the flame stabilizer 23 in this way, the flame stabilizer 23 should be oriented outward so that the pulverized coal spreads outward immediately after the pulverized coal is ejected, and the flame stabilizer 23 is Since a part of the secondary air is involved in the pulverized coal/air flow, a flame is formed from the vicinity of the flame stabilizer 23, and the pulverized coal is burnt well. The irradiation time of the plasma arc flame 3 is determined based on the point in time when the flame temperature increases, the temperature of the atmosphere such as the furnace wall increases, and conditions are reached where the flame of the pulverized coal can continue due to radiation.

次に、第6図、第7図を用いて微粉炭濃度とプラズマア
ーク出力によって決定される微粉炭の着火限界と1着火
後、プラズマアークフレームを停止し、火炎を継続して
形成するための条件を実験結果に基づいて説明する。第
6図、第7図に示す実験結果は、微粉炭として国内の太
平洋炭を用い。
Next, using Figures 6 and 7, we will discuss the ignition limit of pulverized coal determined by the pulverized coal concentration and plasma arc output, and the limits for stopping the plasma arc flame after one ignition and continuing to form a flame. The conditions will be explained based on experimental results. The experimental results shown in Figures 6 and 7 were obtained using domestic Pacific coal as the pulverized coal.

粒径が200メツシユ(74μm)以下80%になるよ
うに調整したものを使用した。石炭中の揮発分は約38
%、固、定炭素分は同様に約38〜39%、灰分は14
%程度である。微粉炭/空気流の噴出速度は15m/s
一定、微粉炭濃度は微粉炭供給量を調整して変化させた
。また、空気温度は10℃である。なお、微粉炭バーナ
の構造は第3図に示す本発明のバーナを用い、−次空気
量3ONrrr/h、二次空気量、4ONnf/h、三
次空気量6ONn?/hで行なった。第6図の横軸は微
粉炭/−一次空気搬送用空気)の比率を示す。
The particles used were adjusted so that the particle size was 80% less than 200 mesh (74 μm). The volatile content in coal is approximately 38
%, fixed and fixed carbon content is approximately 38-39%, and ash content is 14%.
It is about %. Pulverized coal/air flow jetting speed is 15m/s
The pulverized coal concentration was constant and varied by adjusting the pulverized coal supply rate. Moreover, the air temperature was 10°C. The structure of the pulverized coal burner uses the burner of the present invention shown in FIG. 3, with a negative air amount of 3ONrrr/h, a secondary air amount of 4ONnf/h, and a tertiary air amount of 6ONn? /h. The horizontal axis in FIG. 6 shows the ratio of pulverized coal/-primary air conveying air).

第6図の結果から、微粉炭濃度に応じた限界プラズマア
ーク出力が存在すること、プラズマアーク出力を増加し
ていくと1着火限界が低濃度側に移行しているこが判る
。しかし、プラズマアークが出力を増加しても着火でき
ない領域が存在し、微粉炭と一次空気の比率が0.15
以下では着火しないため、0.15が微粉炭濃度から決
定される着火限界となる6次に、微粉炭濃度を増加して
いくと、プラズマアーク出力は低出力側で着火できるが
、IKW以下になると濃度には無関係に着火できなくな
り、プラズマアーク出力から決定される着火限界となる
。従って、第6図に示すように、着火領域となる範囲内
で微粉炭濃度とプラズマアーク出力を決定することが必
要である。プラズマアークフレームを遮断して火炎を安
定に継続していく上での保炎効果を第7図に示す、第7
図は第6図と同様の条件下で常温で着火し、プラズマア
ークフレームを微粉炭空気流に接触させ、バーナ先端の
温度を熱電対を設けて測定し、バーナ先端の温度とプラ
ズマアークフレームを遮断したときに火炎を形成してい
るか、あるいは、消炎したかをバーナ近傍にテレビカメ
ラ(ITV)を設置して観察したものである。この結果
、バーナ先端の温度が約50℃以下では、プラズマアー
クフレームを遮断すると吹き消えることが明らかとなっ
た。約50〜100℃の範囲では、火炎が存在する場合
と、吹き消える場合とがあり不安定な領域である次に、
バーナ先端部の温度が100℃以上になると火炎は安定
して残り、保炎される領域となる。
From the results shown in FIG. 6, it can be seen that there is a limit plasma arc output depending on the pulverized coal concentration, and that as the plasma arc output is increased, the single ignition limit shifts to the lower concentration side. However, there is a region where the plasma arc cannot ignite even if the output is increased, and the ratio of pulverized coal to primary air is 0.15.
0.15 is the ignition limit determined from the pulverized coal concentration because it will not ignite below the In this case, it becomes impossible to ignite regardless of the concentration, and the ignition limit is determined from the plasma arc output. Therefore, as shown in FIG. 6, it is necessary to determine the pulverized coal concentration and plasma arc output within the ignition region. Figure 7 shows the flame holding effect in blocking the plasma arc flame and stably continuing the flame.
The figure shows ignition at room temperature under the same conditions as in Figure 6, the plasma arc flame is brought into contact with the pulverized coal air flow, the temperature at the burner tip is measured with a thermocouple, and the temperature at the burner tip and the plasma arc flame are measured. A television camera (ITV) was installed near the burner to observe whether a flame was formed or extinguished when the burner was shut off. As a result, it was found that when the temperature at the tip of the burner was about 50° C. or lower, the plasma arc flame would be blown out if it was cut off. In the range of approximately 50 to 100 degrees Celsius, there are times when flame exists and times when it blows out, making it an unstable region.
When the temperature at the tip of the burner reaches 100° C. or higher, the flame remains stably and becomes a flame-holding region.

従って、バーナ先端の温度をプラズマアークフレームの
遮断する制御因子に利用すれば、微粉炭の着火後のプラ
ズマアークフレームの運転を制御でき、無駄番;エネル
ギを消費するεともなくなる。
Therefore, if the temperature at the tip of the burner is used as a control factor for shutting off the plasma arc flame, the operation of the plasma arc flame after ignition of pulverized coal can be controlled, and there will be no wasted time or ε that consumes energy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラズマアークフレームと微粉炭/空
気流との接触を効率良く行なうことができ、また、微粉
炭/空気流の操作条件で微粉炭の着火領域内にあること
など、制御面での操作を簡略化し、安定した微粉炭の着
火ができる。
According to the present invention, the contact between the plasma arc flame and the pulverized coal/air flow can be efficiently carried out, and control aspects such as being within the pulverized coal ignition region under the operating conditions of the pulverized coal/air flow can be achieved. This simplifies the operation and enables stable ignition of pulverized coal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来構成図、第2図は従来の問題点の説明図、
第3図ないし第5図は本発明のアーク式点火トーチを内
蔵する微粉炭バーナの構成図、第6図、第7図は微粉炭
の着火及び保炎に必要な条件を示す実験結果の図である
。 1・・・微粉炭バーナ、2・・・アーク式点火トーチ、
8・・・微粉炭/空気流ノズル、9・・・二次空気ノズ
ル、酩 1 図 端3色 第4 口 1’? f1 t 第1頁の続き 0発 明 者 稲 1) 徹 @発 明 者 嵐 紀 夫 @発明者大塚 馨象 @発明者政井 忠久 日立市幸町3丁目1番1号 株式会社日立製作所日立研
究所内 日立市幸町3丁目1番1号 株式会社日立製作所日立研
究所内 日立市幸町3丁目1番1号 株式会社日立製作所日立研
究所内
Figure 1 is a conventional configuration diagram, Figure 2 is an explanatory diagram of conventional problems,
Figures 3 to 5 are block diagrams of a pulverized coal burner incorporating the arc-type ignition torch of the present invention, and Figures 6 and 7 are diagrams of experimental results showing the conditions necessary for ignition and flame holding of pulverized coal. It is. 1...pulverized coal burner, 2...arc type ignition torch,
8...Pulverized coal/air flow nozzle, 9...Secondary air nozzle, 1 3rd color at the edge of the figure 4th mouth 1'? f1 t Continued from page 1 0 Inventor Ina 1) Toru @ Inventor Norio Arashi @ Inventor Otsuka Kaoruzo @ Inventor Masai Tadahisa 3-1-1 Saiwaimachi, Hitachi City Hitachi Research Co., Ltd. 3-1-1 Saiwai-cho, Hitachi City Hitachi Research Institute, Hitachi, Ltd. 3-1-1 Saiwai-cho, Hitachi, Ltd. Hitachi Research Laboratory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 1、中心部に電気アークフレームを放射できるようにし
た点火用プラズマトーチを配置し、その外側に微粉炭お
よび一次空気流を噴出するノズルを設け、さらに、その
外側に二次空気及び二次空気ノズルを配置したことを特
徴とするアーク式点火トーチを備えた微粉炭バーナ。 2、特許請求の範囲第1項において、前記微粉炭および
一次空気流ノズルの先端は内側及び外側にその向きを前
変えられるように構成したことを特徴とするアーク式点
火トーチを備えた微粉炭バーナ。 3、特許請求の範囲第1項において、前記二次空気及び
三次空気ノズル内に空気に回転運動を与えるための旋回
器を配置したことを特徴とするアーク式点火トーチを備
えた微粉炭バーナ。 4、特許請求の範囲第1項においてJ前記点火トーチは
一対の電極間に設定したアークと、不活性ガス、空気、
あるいは両者の混合ガスをプラズマトーチのアーク発生
場所を通過させる手段と、前記ガスを高温にすることに
よってプラズマアークフレームを形成し、微粉炭および
一次空気流ど接触させる手段とからなることを特徴とす
るアーク式点火トーチ紮備えた微粉炭バーナ。
[Claims] 1. An ignition plasma torch capable of emitting an electric arc flame is arranged in the center, and a nozzle for ejecting pulverized coal and primary air is provided outside the torch, and two A pulverized coal burner equipped with an arc type ignition torch characterized by the arrangement of secondary air and secondary air nozzles. 2. The pulverized coal equipped with an arc type ignition torch according to claim 1, characterized in that the tips of the pulverized coal and the primary air flow nozzle are configured to be able to change their directions inwardly and outwardly. Burna. 3. A pulverized coal burner equipped with an arc type ignition torch according to claim 1, characterized in that a swirler for imparting rotational motion to the air is disposed in the secondary air and tertiary air nozzles. 4. In claim 1, the ignition torch includes an arc set between a pair of electrodes, an inert gas, air,
Alternatively, it is characterized by comprising a means for passing a mixed gas of both through an arc generation location of a plasma torch, and a means for forming a plasma arc flame by heating the gas to a high temperature and bringing it into contact with pulverized coal and a primary air stream. A pulverized coal burner equipped with an arc-type ignition torch.
JP4705984A 1984-03-14 1984-03-14 Pulverized coal burner with arc type igniting torch Granted JPS60194211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4705984A JPS60194211A (en) 1984-03-14 1984-03-14 Pulverized coal burner with arc type igniting torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4705984A JPS60194211A (en) 1984-03-14 1984-03-14 Pulverized coal burner with arc type igniting torch

Publications (2)

Publication Number Publication Date
JPS60194211A true JPS60194211A (en) 1985-10-02
JPH059684B2 JPH059684B2 (en) 1993-02-05

Family

ID=12764579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4705984A Granted JPS60194211A (en) 1984-03-14 1984-03-14 Pulverized coal burner with arc type igniting torch

Country Status (1)

Country Link
JP (1) JPS60194211A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155105A (en) * 1987-08-13 1989-06-19 Univ Sydney Fine fuel burner
JPH0213718A (en) * 1988-07-01 1990-01-18 Babcock Hitachi Kk Pulverized coal ignition torch
US5156100A (en) * 1989-01-16 1992-10-20 Imatran Voima Oy Method and apparatus for starting the boiler of a solid-fuel fired power plant and ensuring the burning process of the fuel
JP2012112549A (en) * 2010-11-22 2012-06-14 Ihi Corp Pulverized coal burner
JP2012202601A (en) * 2011-03-25 2012-10-22 Ihi Corp Pulverized coal burner
WO2013093678A1 (en) * 2011-12-20 2013-06-27 Alstom Technology Ltd Burner for burning a pulverulent fuel for a boiler having a plasma ignition torch
AU2012244364B2 (en) * 2011-10-18 2014-06-26 Shanghai Boiler Works Co., Ltd. Plasma oil-free ignition system in oxygen enriched environment
JP2014153014A (en) * 2013-02-12 2014-08-25 Ihi Corp Pulverized coal burner
CN104832917A (en) * 2014-02-12 2015-08-12 阿尔斯通技术有限公司 Igniter lance and method for operating burner having said igniter lance
JP2016533467A (en) * 2013-10-18 2016-10-27 ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー Method for ignition of a power plant burner and pulverized coal burner suitable for the method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102581262B1 (en) 2021-07-28 2023-09-22 한라아이엠에스 주식회사 Fluid Level Measuring System Using Buoyancy Body

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155105A (en) * 1987-08-13 1989-06-19 Univ Sydney Fine fuel burner
JPH0213718A (en) * 1988-07-01 1990-01-18 Babcock Hitachi Kk Pulverized coal ignition torch
US5156100A (en) * 1989-01-16 1992-10-20 Imatran Voima Oy Method and apparatus for starting the boiler of a solid-fuel fired power plant and ensuring the burning process of the fuel
JP2012112549A (en) * 2010-11-22 2012-06-14 Ihi Corp Pulverized coal burner
JP2012202601A (en) * 2011-03-25 2012-10-22 Ihi Corp Pulverized coal burner
AU2012244364B2 (en) * 2011-10-18 2014-06-26 Shanghai Boiler Works Co., Ltd. Plasma oil-free ignition system in oxygen enriched environment
CN104011464A (en) * 2011-12-20 2014-08-27 阿尔斯通技术有限公司 Burner for burning a pulverulent fuel for a boiler having a plasma ignition torch
WO2013093678A1 (en) * 2011-12-20 2013-06-27 Alstom Technology Ltd Burner for burning a pulverulent fuel for a boiler having a plasma ignition torch
CN104011464B (en) * 2011-12-20 2017-03-01 通用电器技术有限公司 Burner for the burning pul verized fuel of the carry plasma lighting-off torch of boiler
US10054311B2 (en) 2011-12-20 2018-08-21 General Electric Technology Gmbh Burner for burning a pulverulent fuel for a boiler having a plasma ignition torch
JP2014153014A (en) * 2013-02-12 2014-08-25 Ihi Corp Pulverized coal burner
JP2016533467A (en) * 2013-10-18 2016-10-27 ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー Method for ignition of a power plant burner and pulverized coal burner suitable for the method
US10309644B2 (en) 2013-10-18 2019-06-04 Mitsubishi Hitachi Power Systems Europe Gmbh Method for the ignition of a power plant burner, and coal dust burner suitable for the method
CN104832917A (en) * 2014-02-12 2015-08-12 阿尔斯通技术有限公司 Igniter lance and method for operating burner having said igniter lance
US20150226431A1 (en) * 2014-02-12 2015-08-13 Alstom Technology Ltd Igniter lance and method for operating a burner having said igniter lance
JP2015152302A (en) * 2014-02-12 2015-08-24 アルストム テクノロジー リミテッドALSTOM Technology Ltd Igniter lance and method for operating burner having igniter lance
CN104832917B (en) * 2014-02-12 2019-11-15 通用电器技术有限公司 Igniter spray gun and for operate with igniter spray gun incinerator method
EP2908051B1 (en) * 2014-02-12 2021-01-13 General Electric Technology GmbH Igniter lance and method for operating a burner having said igniter lance

Also Published As

Publication number Publication date
JPH059684B2 (en) 1993-02-05

Similar Documents

Publication Publication Date Title
FI85910B (en) FOERFARANDE OCH ANORDNING FOER ATT STARTA PANNAN I ETT KRAFTVERK SOM UTNYTTJAR FAST BRAENSLE SAMT FOER ATT SAEKERSTAELLA FOERBRAENNINGEN AV BRAENSLET.
JP6615461B2 (en) Igniter and method for operating a burner with igniter
JPS60194211A (en) Pulverized coal burner with arc type igniting torch
KR930009919B1 (en) Pulverlzed fuel burner
EP0233680A1 (en) Method of and apparatus for combusting coal-water mixture
RU2683052C1 (en) Vortex kindling pulverized coal burner
KR101063103B1 (en) Vaporization Promoter for Gas Combustor
KR20000040478A (en) Air jet burner for brown gas combustion
JP3680659B2 (en) Combustion apparatus and combustion method
RU2582722C2 (en) Vortex furnace
RU2779343C1 (en) Apparatus for electric ignition and flare combustion of a fuel-air mixture
JPH11354290A (en) Pulverized coal igniting plasma torch
JPH01200106A (en) Method and device of feeding combustion air
ES451490A1 (en) High energy arc ignitor for burner
JPS63143408A (en) Coal burner of high fuel ratio
JPH08303756A (en) Melting and combustion device
RU2779675C1 (en) Method for flare combustion of an air-fuel mixture and apparatus for the implementation of the method
JP6167546B2 (en) Pulverized coal burner
EP3627047B1 (en) Device and method for flame combustion of fuel
RU2731087C1 (en) Method for flare combustion of fuel-air mixture and device for implementation of method
JP2526272B2 (en) Burner for low NOx combustion of pulverized coal
RU2000130146A (en) METHOD FOR IGNITION AND / OR STABILIZATION OF COMBUSTION OF DUST COAT TORCH IN BOILER UNITS
JPH0241443Y2 (en)
JPS6222741Y2 (en)
JP2929133B2 (en) Plasma flame spraying method and apparatus