JPH01200106A - Method and device of feeding combustion air - Google Patents

Method and device of feeding combustion air

Info

Publication number
JPH01200106A
JPH01200106A JP2489288A JP2489288A JPH01200106A JP H01200106 A JPH01200106 A JP H01200106A JP 2489288 A JP2489288 A JP 2489288A JP 2489288 A JP2489288 A JP 2489288A JP H01200106 A JPH01200106 A JP H01200106A
Authority
JP
Japan
Prior art keywords
pulverized coal
furnace
combustion
air
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2489288A
Other languages
Japanese (ja)
Other versions
JP2667425B2 (en
Inventor
Manabu Orimoto
折本 学
Hitoshi Migaki
三垣 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63024892A priority Critical patent/JP2667425B2/en
Publication of JPH01200106A publication Critical patent/JPH01200106A/en
Application granted granted Critical
Publication of JP2667425B2 publication Critical patent/JP2667425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To stably burn flame retardant pulverized coal with high efficiency through formation of the flame flow pattern of pulverized coal, by a method wherein, in a vertical combustion furnace using pulverized coal, tertiary air is steppedly introduced in a furnace along a combustion process of pulverized coal. CONSTITUTION:An approximate equivalent in combustion air required for combustion of a volatile content contained in pulverized coal is fed through a pulverized coal burner port (by primary air for carrying pulverized coal by an air current + secondary air). Remaining combustion air (tertiary air) is fed to the bottom part of a furnace 4 as tertiary air 13 steppedly fed from a wind box 12 to the interior of the furnace 4 along a pulverized coal combustion process and hopper air 19 from a wind box 22 for hopper air situated to a water-cooled tube leg type ash disposing hopper part 10 of the furnace 4. As a result, the flow pattern of a pulverized coal flame 7 is sufficiently ensured, and a residence period in a furnace of pulverized coal particles is lengthened for complete combustion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は揮発分の含有量の低い難燃性の瀝青炭。[Detailed description of the invention] [Industrial application field] The present invention is a flame-retardant bituminous coal with a low volatile content.

半無煙炭、無煙炭などの難燃性の微粉炭を高効率で安定
燃焼させる高燃料比微粉炭の垂直燃焼炉における燃焼用
空気供給方法および装置に関する。
The present invention relates to a method and apparatus for supplying combustion air in a high fuel ratio pulverized coal vertical combustion furnace for stably burning flame-retardant pulverized coal such as semi-anthracite and anthracite with high efficiency.

〔従来の技術〕[Conventional technology]

燃料として瀝青炭、半無煙炭、無煙炭などを、微粉状で
浮遊燃焼させるボイラなどの燃焼炉においては、燃料中
の固定炭素分が多く、かつ揮発分が少ない石炭性状を示
すので、着火保炎性に対する配慮のほか、微粉炭粒子の
燃焼を完遂させるための必要な炉内滞留時間を確保する
ことなど、次に示す種々の考慮が払われてきた。
In combustion furnaces such as boilers that use bituminous coal, semi-anthracite coal, anthracite coal, etc. as fuel in floating combustion in the form of fine particles, the fuel has a high fixed carbon content and a low volatile content, so the coal properties are difficult to maintain. In addition to the following considerations, various considerations have been made, such as securing the necessary residence time in the furnace to complete combustion of the pulverized coal particles.

(1)垂直燃焼方式の採用、すなわち、燃焼に必要な炉
内滞留時間を確保するために、例えば火炉の形状をとっ
くり型(竪型)とし、火炉の肩部に設けられた複数の微
粉炭ノズルから燃料を垂直または垂直に近い下向き方向
に噴出させて、炉内における微粉炭火炎をW型のフレー
ムパターンとして火炉内における滞留時間の確保をはか
る。
(1) Adoption of a vertical combustion method, in other words, in order to ensure the residence time in the furnace necessary for combustion, the shape of the furnace is, for example, vertical, and multiple pulverized coals are installed on the shoulders of the furnace. The fuel is ejected from the nozzle in a vertical or nearly vertical downward direction, and the pulverized coal flame in the furnace forms a W-shaped flame pattern to ensure a sufficient residence time in the furnace.

(2)微粉炭の粒度および濃度を上げる。(2) Increasing the particle size and concentration of pulverized coal.

(3)火炉内、バーナゾーン水冷壁表面に断熱材を施工
する。
(3) Install insulation material on the surface of the water cooling wall in the burner zone inside the furnace.

(4)燃焼用空気を、バーナ口から微粉炭の揮発分含有
量に合わせて供給する燃焼用空気と、微粉炭の燃焼過程
に合わせて段階的に燃焼用空気を供給し、バーナ口から
の燃焼用空気量をミニマム化して、理論的燃焼温度を上
げ着火保炎性を高める。
(4) Combustion air is supplied from the burner port in accordance with the volatile content of pulverized coal, and combustion air is supplied in stages according to the combustion process of pulverized coal, and combustion air is supplied from the burner port in accordance with the volatile content of pulverized coal. Minimize the amount of combustion air to raise the theoretical combustion temperature and improve ignition flame stability.

(5)重油などの着火性に優れた助燃用燃料を常時若干
量投入して保炎する。
(5) Always add a small amount of auxiliary fuel with excellent ignitability, such as heavy oil, to stabilize the flame.

などを骨子とする方式が採用されている(特願昭61−
288067号、実願昭60−18161号など)。
A method based on the following points has been adopted (patent application 1986-
No. 288067, Utility Application No. 18161, 1983, etc.).

ここで、従来技術における半無煙炭、無煙炭などの難燃
性の微粉炭焚きボイラの代表例を挙げ、火炉の構造なら
びに火炉内における微粉炭火炎のフローパターンについ
て説明する。第3図(a)および(b)に示すごとく、
微粉炭1は、−次空気によって気流搬送され、微粉炭ノ
ズル3から、火炉4へ供給される。微粉炭ノズル3の近
傍には、通常の場合、火炉の総入熱量の10〜30%を
占める重油の火炎安定バーナ5が配備され、安定バーナ
火炎6の輻射熱および炉内雰囲気温度によって、微粉炭
粒子は加熱され着火して微粉炭火炎7が形成される。し
かし、揮発分の多い微粉炭燃焼の場合には、重油などに
よる火炎安定バーナを用いないで微粉炭を燃焼させるこ
とができる。これらの微粉炭火炎7は、火炉の下向き方
向に噴出させるため炉内のガスの流れの影響を受けて微
粉炭火炎7はW型の火炎が形成される。
Here, a representative example of a boiler that fires flame-retardant pulverized coal such as semi-anthracite or anthracite in the prior art will be given, and the structure of the furnace and the flow pattern of the pulverized coal flame within the furnace will be explained. As shown in Figures 3(a) and (b),
The pulverized coal 1 is conveyed by secondary air and is supplied from the pulverized coal nozzle 3 to the furnace 4 . In the vicinity of the pulverized coal nozzle 3, a heavy oil flame stabilizing burner 5, which normally accounts for 10 to 30% of the total heat input of the furnace, is installed.The pulverized coal is The particles are heated and ignited to form a pulverized coal flame 7. However, in the case of combustion of pulverized coal with a high volatile content, it is possible to combust the pulverized coal without using a flame stabilizing burner using heavy oil or the like. Since these pulverized coal flames 7 are ejected in the downward direction of the furnace, a W-shaped flame is formed in the pulverized coal flames 7 under the influence of the gas flow in the furnace.

一方、燃焼用空気としては、微粉炭を気流搬送する一次
空気、および微粉炭ノズル3の周辺から火炉の下方向に
向けて噴出させている二次空気14、および燃料の性状
に基づいて、共通の風箱12から段階的に投入する三次
空気13を、風箱12から供給していた。そして、各々
の燃焼用空気は、微粉炭バーナにおける微粉炭の燃焼時
においては、微粉炭バーナ入口ダンパ11を開操作し、
微粉炭バーナの休止時には閉操作することによって二次
空気14をコントロールし、三次空気13は、三次空気
ボート18が開操作され、その噴出方向は固定化された
ままであり、かつ複数個設けられている三次空気ポート
18は、同一サイズ、同一風量で設計されていた。
On the other hand, combustion air is commonly used based on the primary air that carries the pulverized coal, the secondary air 14 that is blown out from around the pulverized coal nozzle 3 toward the bottom of the furnace, and the properties of the fuel. Tertiary air 13 was supplied from the wind box 12, which was introduced in stages from the wind box 12. Then, each combustion air is supplied by opening the pulverized coal burner inlet damper 11 during combustion of pulverized coal in the pulverized coal burner.
When the pulverized coal burner is at rest, the secondary air 14 is controlled by closing the pulverized coal burner, and the tertiary air 13 is controlled by opening the tertiary air boat 18, the blowing direction of which remains fixed, and a plurality of tertiary air boats 18 are provided. The tertiary air ports 18 included in the two were designed to have the same size and the same air volume.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したごとく、従来技術においては、揮発分の少ない
難燃性の微粉炭を完全燃焼させるための火炉内における
火炎のフローパターンを形成させることについての配慮
は全くなされていなかった。
As described above, in the prior art, no consideration has been given to forming a flame flow pattern in the furnace to completely burn flame-retardant pulverized coal with a low volatile content.

すなわち、燃焼用空気の供給方式、特に三次空気ボート
からの三次空気の噴流は、微粉炭ノズルからの微粉炭の
噴流に対して75〜45度の交叉角で混合される形態と
なっており、また火炉の底部は行き詰りであり、微粉炭
火炎の流れを形成させる圧力差が生じないという問題が
あった。このため、従来技術における微粉炭の垂直燃焼
においては、火炉内における微粉炭粒子の滞留時間を支
配する微粉炭の火炎フローパターンを十分に確保するこ
とができず、したがって火炉の有効利用率が65〜70
%と低く、これに伴なって火炉における微粉炭の燃焼効
率が低下するという問題があった。これを解決するため
1本発明者らは、第2図に示す構造の微粉炭垂直燃焼炉
を用い火炉4内の微粉炭火炎7のフローパターンについ
てモデルテストを行った結果、三次空気ポート18から
の三次空気13流によって微粉炭流が影響を受けるほか
、火炉4の炉低部が行き詰りになっている関係上、微粉
炭流が火炉4内をショートパスしていることが判った。
That is, the combustion air supply method, particularly the jet of tertiary air from the tertiary air boat, is mixed with the jet of pulverized coal from the pulverized coal nozzle at an intersection angle of 75 to 45 degrees, In addition, the bottom of the furnace is a dead end, and there is a problem in that there is no pressure difference to form a flow of pulverized coal flame. For this reason, in the vertical combustion of pulverized coal in the conventional technology, it is not possible to ensure a sufficient flame flow pattern of pulverized coal that controls the residence time of pulverized coal particles in the furnace, and therefore the effective utilization rate of the furnace is 65%. ~70
%, and there was a problem in that the combustion efficiency of pulverized coal in the furnace decreased accordingly. In order to solve this problem, the present inventors conducted a model test on the flow pattern of the pulverized coal flame 7 in the furnace 4 using a pulverized coal vertical combustion furnace having the structure shown in FIG. It was found that the pulverized coal flow was affected by the flow of tertiary air 13, and that the pulverized coal flow took a short path inside the furnace 4 because the lower part of the furnace 4 was stuck.

この問題を解決するため、本発明者らは先願発明として
、微粉炭粒子の火炉内における滞留時間の延長をはかり
火炉の有効利用率を高め、燃焼効率の改善をはかること
のできる微粉炭火炎のフローパターンを形成させるため
の燃焼用空気供給方法を提案し、現在具体化しつつある
(特願昭62−152292号、同62−152293
号)。
In order to solve this problem, the present inventors have developed a pulverized coal flame that can extend the residence time of pulverized coal particles in a furnace, increase the effective utilization rate of the furnace, and improve combustion efficiency. We have proposed a method for supplying combustion air to form a flow pattern of
issue).

本発明の目的は、上述した従来技術における問題点を解
消し、かつ本発明者らによる上記先願発明に優るとも劣
らない機能を有する微粉炭の垂直燃焼炉における燃焼用
空気の供給方式を提案するものであって、垂直燃焼炉の
炉内における微粉炭粒子の滞留時間を長くし、火炉の有
効利用率を高め、燃焼効率の大幅な改善が可能な微粉炭
の火炎フローパターンを形成させることのできる燃焼用
空気供給方法およびそれを実施する装置を提供すること
にある。
The purpose of the present invention is to propose a method for supplying combustion air in a vertical combustion furnace for pulverized coal, which solves the problems in the prior art described above and has functions comparable to those of the prior invention proposed by the present inventors. To extend the residence time of pulverized coal particles in the furnace of a vertical combustion furnace, increase the effective utilization rate of the furnace, and form a pulverized coal flame flow pattern that can significantly improve combustion efficiency. An object of the present invention is to provide a method for supplying combustion air and an apparatus for carrying out the method.

〔課題を解決するための手段〕[Means to solve the problem]

上記本発明の目的は、揮発分が少なく、燃料比が4〜1
4の難燃性の瀝青炭、半無煙炭、無煙炭などからなる微
粉炭を、垂直燃焼炉において燃焼させる場合に、 (1)火炉内に、微粉炭の燃焼過程に沿って段階的に供
給する燃焼用空気(三次空気)を、火炉の垂直壁部に設
けられている燃焼用空気供給口および火炉の炉底部、例
えば灰処理ホッパ部に設けられている燃焼用空気供給口
より火炉内に供給し。
The object of the present invention is to have a low volatile content and a fuel ratio of 4 to 1.
When combusting pulverized coal made of flame-retardant bituminous coal, semi-anthracite, anthracite, etc. in step 4 in a vertical combustion furnace, (1) For combustion that is supplied into the furnace in stages along the combustion process of the pulverized coal. Air (tertiary air) is supplied into the furnace through a combustion air supply port provided in the vertical wall of the furnace and a combustion air supply port provided in the bottom of the furnace, for example, in the ash processing hopper.

火炉内における微粉炭火炎のフローパターンを確保する
Ensure the flow pattern of the pulverized coal flame in the furnace.

(2)灰処理ホッパ部は、例えば水冷式のチューブレグ
方式とし、該灰処理ホッパ部に設ける三次空気供給用の
風箱は、火炉内の微粉炭燃焼火炎とは直接接触しない位
置に設け、かつ火炉内から落下する燃焼灰によって風箱
のエアポートが閉塞されない構造とする。
(2) The ash processing hopper section is, for example, a water-cooled tube leg type, and the wind box for supplying tertiary air provided in the ash processing hopper section is provided at a position that does not come into direct contact with the pulverized coal combustion flame in the furnace, In addition, the structure shall be such that the air port of the wind box will not be blocked by combustion ash falling from the furnace.

(3)灰処理ホッパ部に設けた風箱のエアポートより炉
底部に噴出させる三次空気の方向は、火炉内における微
粉炭火炎と交差しない方向で、かつ噴出させた空気流の
流動によって微粉炭火炎のUターン部が、火炉の炉底部
の方向に引き伸ばす作用が働く方向に噴出させる。
(3) The direction of the tertiary air that is blown out to the bottom of the furnace from the air port of the wind box installed in the ash processing hopper is in a direction that does not intersect with the pulverized coal flame in the furnace, and the pulverized coal flame is caused by the flow of the blown air flow. The U-turn section causes the ejected material to eject in the direction in which it acts to stretch it toward the bottom of the furnace.

以上の手段によって、火炉内に形成される微粉炭火炎の
フローパターンを十分に確保し、火炉内における微粉炭
粒子の滞留時間を長くして火炉の有効利用率を高め、難
燃性の高燃料比微粉炭を高燃焼効率で安定燃焼させるこ
とにより、達成される。
By the above means, a sufficient flow pattern of the pulverized coal flame formed in the furnace is ensured, the residence time of pulverized coal particles is lengthened in the furnace, the effective utilization rate of the furnace is increased, and the flame retardant high fuel This is achieved by stably burning pulverized coal with high combustion efficiency.

〔作  用〕[For production]

上述したごとく、本発明の課題解決手段を採用した難燃
性の微粉炭の垂直燃焼炉によると5例えば第1図に示す
ごとく、微粉炭の燃焼過程に沿って段階的に供給する燃
焼用三次空気の一部を、火炉の炉底の灰処理ホッパ部に
設けられている風箱のエアポートから炉底部に噴出させ
ると、噴出された空気の噴流は火炉内で次第に発達し、
その噴流の流動および粘性によって、微粉炭火炎のUタ
ーン部を炉底側へ引き込む作用が働き、微粉炭火炎のU
ターンする位置が炉底部近傍にまで延長されることにな
る。その結果、微粉炭火炎のフローパターンを十分に確
保することができ、微粉炭粒子の炉内滞留時間が長くな
って、火炉の有効利用率が増加すると共に、微粉炭の燃
焼効率が一段と向上することになる。
As described above, according to the flame-retardant pulverized coal vertical combustion furnace that employs the problem-solving means of the present invention, for example, as shown in FIG. When a part of the air is blown out to the bottom of the furnace from the air port of the wind box installed in the ash processing hopper at the bottom of the furnace, a jet of the blown air gradually develops inside the furnace.
The flow and viscosity of the jet act to draw the U-turn part of the pulverized coal flame toward the bottom of the furnace.
The turning position will be extended to near the bottom of the furnace. As a result, a sufficient flow pattern of the pulverized coal flame can be ensured, and the residence time of the pulverized coal particles in the furnace becomes longer, which increases the effective utilization rate of the furnace and further improves the combustion efficiency of the pulverized coal. It turns out.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ1図面を参照しながらさ
らに詳細に説明する。なお、図において同一符号を付し
たものは同一部品もしくは同じ機能を有する部分を示す
Hereinafter, one embodiment of the present invention will be described in more detail with reference to one drawing. Note that in the figures, the same reference numerals indicate the same parts or parts having the same function.

第1図は、本発明の燃焼用空気供給方式を用いた場合の
微粉炭の垂直燃焼炉における微粉炭燃焼火炎のフローパ
ターンを示す模式図である。図において、燃料比が4〜
14の微粉炭1が一次空気によって気流搬送され、微粉
炭ノズル3から火炉4へ供給される。微粉炭ノズル3の
近傍には、火炉4の総入熱量の10〜30%を占める重
油焚きの火炎安定バーナ5が配備され、安定バーナ火炎
6の輻射熱および炉内雰囲気温度によって、微粉炭粒子
を加熱し、着火して微粉炭火炎を形成させる。ここまで
は、従来技術と同一である。
FIG. 1 is a schematic diagram showing a flow pattern of a pulverized coal combustion flame in a pulverized coal vertical combustion furnace when the combustion air supply system of the present invention is used. In the figure, the fuel ratio is 4~
Fourteen pulverized coals 1 are carried by primary air and supplied from pulverized coal nozzles 3 to a furnace 4. A heavy oil-fired flame stabilizing burner 5, which accounts for 10 to 30% of the total heat input of the furnace 4, is installed near the pulverized coal nozzle 3. Pulverized coal particles are Heat and ignite to form a pulverized coal flame. The process up to this point is the same as the conventional technology.

本発明による燃焼用空気供給方式の特徴とするところは
、微粉炭燃料の性状に合わせた燃焼用空気量、すなわち
微粉炭中に含まれる揮発分を燃焼させるに必要なほぼ当
量の燃焼用空気(揮発分量1に対し燃焼用空気1の割合
)を微粉炭バーナ口から供給(微粉炭の気流搬送用の一
次空気十二次空気)し、残る燃焼用空気(三次空気)は
、微粉炭の燃焼過程に沿って段階的に火炉内に供給する
風箱12からの三次空気13および火炉4の水冷式チュ
ーブレグ方式の灰処理ホッパ10部に設けられているホ
ッパエア用風箱22からホッパエア19として火炉4の
炉底部に供給することによって、火炉4内の微粉炭火炎
7のUターン部を炉底の方向に引き伸ばし微粉炭火炎7
のフローパターンを十分に確保し、微粉炭粒子の炉内滞
留時間を長くして完全燃焼させる点にある。すなわち、
ホッパエア19の噴流によって、微粉炭火炎7は火炉4
の炉底部の方向に引き伸ばされ、微粉炭粒子の炉内滞留
時間が延長され、火炉の有効利用率および微粉炭の燃焼
効率が一段と向上するものである。
The combustion air supply system according to the present invention is characterized by an amount of combustion air that is matched to the properties of the pulverized coal fuel, that is, an approximately equivalent amount of combustion air ( The combustion air (ratio of 1 part volatile content to 1 part combustion air) is supplied from the pulverized coal burner mouth (primary air for transporting the airflow of pulverized coal, twelfth air), and the remaining combustion air (tertiary air) is used for combustion of pulverized coal. The tertiary air 13 from the wind box 12 is supplied into the furnace in stages along the process, and the hopper air 19 from the hopper air wind box 22 provided in the water-cooled tube leg type ash processing hopper 10 of the furnace 4 is used as the furnace air. By supplying the pulverized coal to the bottom of the furnace 4, the U-turn part of the pulverized coal flame 7 in the furnace 4 is stretched toward the bottom of the furnace 4, and the pulverized coal flame 7 is
The goal is to ensure a sufficient flow pattern and to lengthen the residence time of pulverized coal particles in the furnace to achieve complete combustion. That is,
The jet of hopper air 19 causes the pulverized coal flame 7 to move into the furnace 4.
The residence time of the pulverized coal particles in the furnace is extended, and the effective utilization rate of the furnace and the combustion efficiency of the pulverized coal are further improved.

なお、灰処理ホッパ10のホッパエア用風箱22から火
炉4内へ供給するホッパエア19量は、ホッパエア調整
ダンパ21で制御すると共に、火炉4内からの燃焼灰に
よって、ホッパエア用風箱22のエアポートが閉塞され
ないような構造とした水冷式のレグ構造の灰処理ホッパ
lOである。
The amount of hopper air 19 supplied from the hopper air wind box 22 of the ash processing hopper 10 into the furnace 4 is controlled by a hopper air adjustment damper 21, and the air port of the hopper air wind box 22 is controlled by the combustion ash from inside the furnace 4. This is an ash processing hopper lO with a water-cooled leg structure that prevents blockage.

そして、第1図に示すごとく、火炉4の前後壁(垂直壁
)に配置されている風箱12に設けられている三次空気
ポート18からの三次空気13の風量調整をすることに
よって、微粉炭の固定炭素燃焼(燃焼速度が遅い)に対
する段階的風量バランスと、ホッパエア19量の調整に
よる微粉炭火炎7のフローパターンの改善の両面を考慮
した調整が可能となり、火炉4内における微粉炭粒子の
滞留時間の延長、つまり火炉の有効利用率を高めること
ができ、したがって微粉炭の燃焼効率を一段と向上させ
ることができる二 〔発明の効果〕 廟上詳細に説明したごとく、本発明の瀝青炭、半無煙炭
、無煙炭などからなる難燃性の微粉炭の垂直燃焼炉にお
ける燃焼用空気供給方式によれば、火炉内における微粉
炭火炎のフローパターンを十分に確保することができる
ので、微粉炭粒子の炉内滞留時間の延長と火炉の有効利
用率を高めることができ、微粉炭の燃焼効率を著しく向
上させることができる。
As shown in FIG. 1, the pulverized coal is It is possible to make adjustments that take into consideration both the stepwise air volume balance for fixed carbon combustion (slow combustion speed) and the improvement of the flow pattern of the pulverized coal flame 7 by adjusting the amount of hopper air 19. The residence time can be extended, that is, the effective utilization rate of the furnace can be increased, and the combustion efficiency of pulverized coal can therefore be further improved. According to the combustion air supply method in a vertical combustion furnace for flame-retardant pulverized coal made of anthracite, anthracite, etc., it is possible to ensure a sufficient flow pattern of the pulverized coal flame in the furnace. It is possible to extend the internal residence time and increase the effective utilization rate of the furnace, and the combustion efficiency of pulverized coal can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において例示した微粉炭の垂直
燃焼炉における燃焼用空気の供給方式と火炎のフローパ
ターンを示す模式図、第2図は本発明者らの先願である
微粉炭の垂直燃焼炉における燃焼用空気の供給方式と火
炎のフローパターンを示す模式図、第3図(a)は従来
の微粉炭の垂直燃焼炉における燃焼用空気の供給方式と
火炎のフローパターンを示す模式図、第3図(b)は第
3図(a)のA部拡大図である。 1・・・微粉炭      2・・・微粉炭管3・・・
微粉炭ノズル   4・・・火炉5・・・火炎安定バー
ナ  6・・・安定バーナ火炎7・・・微粉炭火炎  
  8・・・キャスタブル耐火材9・・・過熱器   
   lO・・・灰処理ホッパ11・・・微粉炭バーナ
入口ダンパ 12・・・風箱       13・・・三次空気14
・・・二次空気 15・・・火炎安定バーナ用エアレジスタ16・・・火
炎安定バーナ用エアレジスタドライブ17・・・水冷管
      18・・・三次空気ポート19・・・ホッ
パエア 20・・・三次空気量調整ダンパ 21・・・ホッパエア量調整ダンパ
Fig. 1 is a schematic diagram showing the combustion air supply system and flame flow pattern in a pulverized coal vertical combustion furnace exemplified in the embodiment of the present invention, and Fig. 2 is a pulverized coal Figure 3(a) is a schematic diagram showing the combustion air supply system and flame flow pattern in a conventional pulverized coal vertical combustion furnace. The schematic diagram, FIG. 3(b), is an enlarged view of section A in FIG. 3(a). 1...Pulverized coal 2...Pulverized coal pipe 3...
Pulverized coal nozzle 4... Furnace 5... Flame stable burner 6... Stable burner flame 7... Pulverized coal flame
8...Castable refractory material 9...Superheater
lO... Ash processing hopper 11... Pulverized coal burner inlet damper 12... Wind box 13... Tertiary air 14
...Secondary air 15...Air register for flame stabilizing burner 16...Air register drive for flame stabilizing burner 17...Water cooling pipe 18...Tertiary air port 19...Hopper air 20...Tertiary Air amount adjustment damper 21...Hopper air amount adjustment damper

Claims (1)

【特許請求の範囲】 1、低揮発分の微粉炭を、火炉の天井壁に配置されてい
る複数の微粉炭バーナのノズル部より導入し、火炉の下
方に向けて垂直方向に燃焼させる微粉炭の垂直燃焼炉に
おいて、上記微粉炭中に含まれる揮発分を燃焼させるに
必要なほぼ当量の燃焼用空気を上記微粉炭バーナ口近傍
より供給し、残る燃焼用空気を、微粉炭の燃焼過程に沿
って段階的に、上記火炉の垂直壁部に設けられている燃
焼用空気供給口および上記火炉の炉底部に設けられてい
る燃焼用空気供給口から火炉内に導入することを特徴と
する微粉炭の垂直燃焼炉における燃焼用空気供給方法。 2、低揮発分の微粉炭を、火炉の天井壁に配置されてい
る複数の微粉炭バーナのノズル部より導入し、火炉の下
方に向けて垂直方向に燃焼させる微粉炭の垂直燃焼炉に
おける燃焼用空気供給装置において、上記微粉炭中に含
まれる揮発分を燃焼させるに必要なほぼ当量の燃焼用空
気を上記微粉炭バーナ口近傍より火炉内に導入するため
の空気供給手段と、残る燃焼用空気を微粉炭の燃焼過程
に沿って段階的に供給するための火炉垂直壁部に設けら
れた空気供給手段および火炉の炉底部に設置されている
灰処理ホッパ部に設けられた空気供給手段を有すること
を特徴とする微粉炭の垂直燃焼炉における燃焼用空気供
給装置。
[Claims] 1. Pulverized coal with a low volatile content is introduced through the nozzles of a plurality of pulverized coal burners arranged on the ceiling wall of a furnace and is burned vertically toward the bottom of the furnace. In the vertical combustion furnace, approximately the equivalent amount of combustion air required to burn the volatile matter contained in the pulverized coal is supplied from near the pulverized coal burner mouth, and the remaining combustion air is used for the combustion process of the pulverized coal. The fine powder is introduced into the furnace in stages along the vertical wall of the furnace through a combustion air supply port provided in a vertical wall portion of the furnace and a combustion air supply port provided in a bottom portion of the furnace. Combustion air supply method in a charcoal vertical combustion furnace. 2. Pulverized coal with a low volatile content is introduced through the nozzles of multiple pulverized coal burners placed on the ceiling wall of the furnace, and is combusted in a vertical combustion furnace in a vertical direction toward the bottom of the furnace. an air supply device for introducing into the furnace from near the pulverized coal burner mouth an approximately equivalent amount of combustion air necessary to combust the volatile matter contained in the pulverized coal; An air supply means installed on the vertical wall of the furnace for supplying air in stages along the combustion process of pulverized coal, and an air supply means installed on the ash processing hopper installed at the bottom of the furnace. A combustion air supply device for a vertical combustion furnace for pulverized coal, characterized in that the apparatus comprises:
JP63024892A 1988-02-04 1988-02-04 Combustion air supply method and apparatus Expired - Fee Related JP2667425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63024892A JP2667425B2 (en) 1988-02-04 1988-02-04 Combustion air supply method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63024892A JP2667425B2 (en) 1988-02-04 1988-02-04 Combustion air supply method and apparatus

Publications (2)

Publication Number Publication Date
JPH01200106A true JPH01200106A (en) 1989-08-11
JP2667425B2 JP2667425B2 (en) 1997-10-27

Family

ID=12150838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63024892A Expired - Fee Related JP2667425B2 (en) 1988-02-04 1988-02-04 Combustion air supply method and apparatus

Country Status (1)

Country Link
JP (1) JP2667425B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095539A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Boiler
CN104595892A (en) * 2014-12-30 2015-05-06 华电电力科学研究院 Ejecting staged combustion W flame boiler for improving ignition and combustion of pulverized coal
CN106196020A (en) * 2015-05-06 2016-12-07 上海四方锅炉集团工程成套股份有限公司 The tertiary air of pulverized-coal fired boiler is made into the method and device that First air carries out burning
CN106247322A (en) * 2016-07-28 2016-12-21 哈尔滨工业大学 The W flame boiler that a kind of weary gas windage yaw is put
CN106524137A (en) * 2016-10-26 2017-03-22 哈尔滨工业大学 Multi-injection staged W flame boiler using swirl pulverized coal burner
CN109945163A (en) * 2019-03-11 2019-06-28 哈尔滨工业大学 A kind of W flame boiler for arranging anti-hemiplegia above wall after rear chimney arch and dry bottom hopper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170813U (en) * 1985-04-08 1986-10-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170813U (en) * 1985-04-08 1986-10-23

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095539A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Boiler
CN104595892A (en) * 2014-12-30 2015-05-06 华电电力科学研究院 Ejecting staged combustion W flame boiler for improving ignition and combustion of pulverized coal
CN106196020A (en) * 2015-05-06 2016-12-07 上海四方锅炉集团工程成套股份有限公司 The tertiary air of pulverized-coal fired boiler is made into the method and device that First air carries out burning
CN106247322A (en) * 2016-07-28 2016-12-21 哈尔滨工业大学 The W flame boiler that a kind of weary gas windage yaw is put
CN106247322B (en) * 2016-07-28 2018-04-24 哈尔滨工业大学 The W flame boiler that a kind of lack of gas windage yaw is put
CN106524137A (en) * 2016-10-26 2017-03-22 哈尔滨工业大学 Multi-injection staged W flame boiler using swirl pulverized coal burner
CN106524137B (en) * 2016-10-26 2019-03-12 哈尔滨工业大学 A kind of multi-ejection classification W flame boiler using vortex burner
CN109945163A (en) * 2019-03-11 2019-06-28 哈尔滨工业大学 A kind of W flame boiler for arranging anti-hemiplegia above wall after rear chimney arch and dry bottom hopper

Also Published As

Publication number Publication date
JP2667425B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JP4969015B2 (en) Solid fuel burner and combustion method using solid fuel burner
CN104633652B (en) Burning system of opposite firing boiler
CZ280436B6 (en) Group concentric tangential combustion system
US6978726B2 (en) Combustion with reduced carbon in the ash
JPH0268403A (en) Solid fuel burner
JPS6159109A (en) Burner for maintaining ignition and combustion for crushed solid fossil fuel and combustion chamber with such burner
JPH0438963B2 (en)
US20130255551A1 (en) Biomass Combustion
JPS6387508A (en) Pulverized coal igniting burner
CN201215311Y (en) Adjustable bias jet DC coal burner
RU2348861C1 (en) Swirling-type furnace for solid fuel ignition
JPH01200106A (en) Method and device of feeding combustion air
EP0436056B1 (en) Method and apparatus for partial combustion of coal
CN111023084A (en) W flame boiler of double-cyclone-cylinder thick and thin pulverized coal separating type burner
RU2174649C2 (en) Pulverized-coal lighting-up burner and method of its operation
JP2515807B2 (en) Combustion air supply method
JP2519923B2 (en) Pulverized coal combustion equipment
JPS63143408A (en) Coal burner of high fuel ratio
KR20090037864A (en) Oxygen-enhanced combustion of unburned carbon in ash
WO2006009485A1 (en) Swirling-type furnace
JPH0449449Y2 (en)
JPH08592Y2 (en) Combustion device for flame-retardant fuel
RU2349835C2 (en) Method for burning of solid fuel in swirling-type furnace and swirling-type furnace for its realisation
JPS6287709A (en) Pulverized coal burner using low calorie gas as assist fuel
JPS63315804A (en) Method of feeding air for combustion

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees