JPS60194114A - Polyester fiber dyeable under normal pressure - Google Patents

Polyester fiber dyeable under normal pressure

Info

Publication number
JPS60194114A
JPS60194114A JP4642584A JP4642584A JPS60194114A JP S60194114 A JPS60194114 A JP S60194114A JP 4642584 A JP4642584 A JP 4642584A JP 4642584 A JP4642584 A JP 4642584A JP S60194114 A JPS60194114 A JP S60194114A
Authority
JP
Japan
Prior art keywords
fiber
dyeing
cross
normal pressure
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4642584A
Other languages
Japanese (ja)
Other versions
JPH0362804B2 (en
Inventor
Hiroyuki Iimuro
飯室 弘之
Masahiro Matsui
正宏 松井
Masakazu Fujita
正和 藤田
Koichi Iohara
耕一 庵原
Shinji Owaki
大脇 新次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4642584A priority Critical patent/JPS60194114A/en
Publication of JPS60194114A publication Critical patent/JPS60194114A/en
Publication of JPH0362804B2 publication Critical patent/JPH0362804B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled fiber composed of polyethylene terephthalate, having flat cross-section, exhibiting X-shaped 4-spots interference pattern in small-angle X-ray scattering, having specific birefringence and specific flatness of the cross-section, and having excellent color fastness. CONSTITUTION:Molten polyehylene terephthalate is extruded, cooled, oiled, and wound. The wound filament is drawn and heat-treated with a slit heater to obtain the objective fiber exhibiting X-shaped 4-spots interference pattern in the small-angle X-raw scattering, having a birefringence (DELTAn) of the whole fiber of 0.08-0.12, and that of the amorphous region (DELTAna) of 0.015-0.06, and having a faltness of the cross-section of 200-600%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリエステル繊維、更に詳しくは実用上充分な
特性を有していると共に、常圧染色による染色が可能で
、しかも染色堅牢度の優れたポリエステル繊維に関する
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to polyester fibers, more specifically polyester fibers which have practically sufficient properties, can be dyed by atmospheric pressure dyeing, and have excellent color fastness. This invention relates to polyester fibers.

(従来技術) 一般に、ポリエステル繊維、特にポリエチレンテレフタ
レート繊維は強度、寸法安定性等多くの優れた特性を備
えているため種々の用途に利用されている。一方、ポリ
エチレンテレフタレート繊維の染色は130 ℃付近の
高温高圧で染色しなければならず、このために特別な装
置を必要としたり、ウール、アクリル等の高温高圧染色
により物性低下を生じる繊維との混用に制限がある等の
欠点を有している。
(Prior Art) Generally, polyester fibers, particularly polyethylene terephthalate fibers, have many excellent properties such as strength and dimensional stability, and are therefore used for various purposes. On the other hand, polyethylene terephthalate fibers must be dyed at high temperatures and pressures around 130 degrees Celsius, which requires special equipment, or when mixed with fibers such as wool and acrylic whose physical properties deteriorate due to high temperature and high pressure dyeing. It has drawbacks such as limitations.

この様なポリエチレンテレフタレート繊維の染色性を改
良して常圧可染を可能にすべくいくつかの試みがなされ
ており、例えば染色時にキャリアーを用いる方法が知ら
れているが、特別なキャリアーを要すること、廃液処理
にも特別の配慮を要するのみならず、染色物中に残存す
るキャリヤーの放つ悪臭を完全に除去するのが難しいと
いう問題がある。
Several attempts have been made to improve the dyeability of such polyethylene terephthalate fibers and make them dyeable under normal pressure.For example, a method of using a carrier during dyeing is known, but this method requires a special carrier. In addition, not only does waste liquid treatment require special consideration, but there is also the problem that it is difficult to completely remove the bad odor emitted by the carrier remaining in the dyed product.

このような問題を解決するためにポリエステル中にポリ
オキシアルキレンf IJコールあるいは金属スルホネ
ート基を共重合せしめて染着座席を設ける等の化学的改
質方法が知られている。しかしながら、この方法はポリ
マーの製造コストが高くなることは勿論のこと、製糸安
定性が低下するのみならず、更には染色堅牢度が劣る等
の欠点があった。また、上述のようなポリマーの化学的
改質による易染化は染着座席となりうる第三成分をポリ
マー中に共重合させるが故にポリエチレンテレフタレー
ト本来の性雀をも変化させてしまうことは避けられない
といえる。
In order to solve these problems, chemical modification methods are known, such as copolymerizing polyoxyalkylene f IJ cole or metal sulfonate groups into polyester to provide a dyeing seat. However, this method not only increases the production cost of the polymer, but also has drawbacks such as decreased spinning stability and poor color fastness. In addition, since the above-mentioned chemical modification of the polymer to facilitate dyeing involves copolymerizing the third component, which can serve as a dyeing seat, into the polymer, it is possible to avoid changing the original properties of polyethylene terephthalate. It can be said that there is no.

一方、全く別の方法としてポリエステル繊維を延伸後2
00℃以上の高温で弛緩熱処理する等の物狸的改質方法
が提案されている。
On the other hand, as a completely different method, polyester fibers are
A similar modification method, such as relaxation heat treatment at a high temperature of 00° C. or higher, has been proposed.

この方法は、繊維の非晶領域の分子鎖を緩和させ分子鎖
の凝集性を小さくして染料の繊維内部への拡散を向上さ
せたもので、力学的特性を損うことなく染着性を改善す
ることが出来るが条斑が起り易いという問題がある。
This method relaxes the molecular chains in the amorphous region of the fiber, reduces the cohesiveness of the molecular chains, and improves the diffusion of the dye into the fiber, thereby improving the dyeability without impairing the mechanical properties. Although it can be improved, there is a problem that streaks are likely to occur.

また、化学的改質によらない他の方法として、例えば特
開昭54−64133号公報にフィラメントあたりのデ
ニール、固有粘度〔η〕。
Further, as another method that does not involve chemical modification, for example, Japanese Patent Application Laid-Open No. 54-64133 describes the denier per filament and the intrinsic viscosity [η].

相対的分散染料染着速度、モジュラス、排水処理後のモ
ジュラス、アモルファスモジュラス、製水収縮、収縮モ
ジュラス、収縮値等を特定したフラットヤーン及びトウ
が開示されている。これKよれば確かに染色性は改善さ
れるが常圧染色が可能になる程のものには至っていない
。また、特開昭55−1075+1号公報には”断面平
均複屈折△nが90X10”以上の配向度を有し、HI
i維断面における複屈折が外層と内層において適宜な差
な有するような断面二重構造ポリエチレンテレフタレー
ト(Jli維と同様な機械的性質と充分な自然巻縮及び
染料の吸着性を有するとされているが、染色性特に常圧
染色性及び染色、堅牢度忙関する作用効果についての具
体的な示唆は全くなされていない。
Flat yarns and tows are disclosed that specify relative disperse dye dyeing speed, modulus, modulus after wastewater treatment, amorphous modulus, water production shrinkage, shrinkage modulus, shrinkage value, etc. According to K, the stainability is certainly improved, but it has not yet reached the level where normal pressure staining is possible. In addition, Japanese Patent Application Laid-Open No. 55-1075+1 discloses that HI
Dual structure polyethylene terephthalate (which is said to have the same mechanical properties as Jli fibers, sufficient natural crimping, and dye adsorption properties) with an appropriate difference in birefringence between the outer layer and the inner layer. However, no concrete suggestions have been made regarding the effects and effects related to dyeability, particularly atmospheric dyeability, dyeing, and color fastness.

更に、特開昭57−121613号公報には初期モジュ
ジス、力学的損失正接のピーク温度。
Furthermore, JP-A-57-121613 discloses the initial modulus and the peak temperature of the mechanical loss tangent.

ピーク値を規定したポリエチレンテレフタレート繊維が
開示されている。
Polyethylene terephthalate fibers with defined peak values are disclosed.

かかるポリエステル繊維は7000m/分以上の超高速
度で紡糸することによって得られるものであるが、本発
明者等の実験によれば、紡糸速度5000〜6000m
/分で紡糸して得られるものよりも多少濃染化するもの
の、依然として常圧染色では充分な染色を施すことがで
きなかった、 (発明の目的) 本発明の目的は、かかる従来法では達成できなかった常
圧染色可能なポリエステル繊維、即ち化学的改質によら
ず常圧染色で充分な染色が可能であるポリエステル繊維
を提供することにある。
Such polyester fibers are obtained by spinning at ultra-high speeds of 7,000 m/min or more, but according to experiments by the present inventors, spinning speeds of 5,000 to 6,000 m/min
Although the dyeing is somewhat darker than that obtained by spinning at a speed of 1/2 min, it was still not possible to achieve sufficient dyeing by ordinary pressure dyeing. (Objective of the Invention) The object of the present invention is to provide a polyester fiber that can be dyed under normal pressure, which has not been possible before, that is, a polyester fiber that can be dyed satisfactorily by normal pressure dyeing without chemical modification.

(発明の構成) 本発明者等は、前記目的を達成すべく検討したところ、
常圧染色で充分な染色が可能な係以上になるものであり
、かかる染色性は繊維の微細構造が大きな影響を及ぼす
ことは勿論のこと、前記微細構造と扁平な単繊維断面形
状とを併せ肩するものが極めて良好な染色性を有するこ
とを知った。
(Structure of the Invention) The present inventors studied to achieve the above object, and found that
The dyeability is more than that which can be dyed sufficiently by normal pressure dyeing, and it goes without saying that the fine structure of the fiber has a great influence on the dyeing property, but also the fine structure and the flat cross-sectional shape of the single fibers. I learned that the shoulder dye has extremely good dyeability.

本発明者等は、かかる知児に基づいて更に検討を重ねた
結果、染料が拡散し易いt11KO微細構造を有してい
るポリエステル繊維であって、単繊維の断面形状が20
0〜600係の扁平率を有しているものが常圧での染着
率を66条以上にすることができることを見い出し、本
発明に到達した。
As a result of further studies based on this knowledge, the present inventors have found that the polyester fiber has a t11KO microstructure in which dyes can easily diffuse, and the cross-sectional shape of the single fiber is 20 mm.
It was discovered that a material having an aspect ratio of 0 to 600 can have a dyeing rate of 66 or more stripes at normal pressure, and the present invention was achieved.

即ち、本発明は、実質的にポリエチレンテレフタレート
単独で構成されている、扁平断面を有する繊維であって
、該繊維のX線小角散乱パターンがX字形の4点干渉図
形を呈し、且つ繊維全体の複屈折(△n)が0.08〜
0.12 、非晶領域の複屈折(△na)が0.015
〜0.06であると共に、前記線維断面の扁平率が20
0〜600<+t、7qmf、−a!i錫に−+)X骨
+1rn!AFTa6fflIIエステル繊維である。
That is, the present invention provides a fiber having a flat cross section that is substantially composed of polyethylene terephthalate alone, in which the small-angle X-ray scattering pattern of the fiber exhibits an X-shaped four-point interference pattern, and Birefringence (△n) is 0.08~
0.12, birefringence (△na) of amorphous region is 0.015
~0.06, and the oblateness of the fiber cross section is 20
0~600<+t, 7qmf, -a! i tin - +) X bone +1rn! It is an AFTa6fflII ester fiber.

尚、本発明で言う扁平率とは単繊維横断面の長さが最長
値(ト)となる長軸と、前記長軸に対し直交し、且つ長
さが最大仙(ロ)となる短軸との比C(L、/W)Xi
 o o(イ)〕である。
In addition, the oblateness referred to in the present invention refers to the long axis where the single fiber cross-sectional length is the longest value (g), and the short axis which is perpendicular to the long axis and where the length is the maximum length (b). The ratio C(L, /W)Xi
o o (a)].

また、染着率とは下記に示す残液比色法によって測定し
たものである。
Moreover, the dyeing rate is measured by the residual liquid colorimetric method shown below.

即ち、分散染料1)ispereol Fast 5c
arlet B(IC1社西品名ンを使用し、分散剤と
してモノゲン(第一工業社商品名)をo、s 、9 /
 l加えて4 ’G owf 、浴比1対100で10
0℃のi 外下タンプレット染色機で染色を行った。
Namely, disperse dye 1) ispereol Fast 5c
arlet B (IC1 Co., Ltd.) was used, and Monogen (Daiichi Kogyo Co., Ltd. product name) was used as a dispersant in o, s, 9/
l plus 4'G owf, 10 at a bath ratio of 1:100
Staining was carried out in a bottom tumblet staining machine at 0°C.

染着率は90分経過後、染液を採取して吸光度より残液
中の染料量を算出し、これを染色に用いた染料■から減
じたものを染着量として染着率(支))を算出した。
The dyeing rate is determined by collecting the dye solution after 90 minutes, calculating the amount of dye in the remaining solution from the absorbance, and subtracting this from the dye used for dyeing. ) was calculated.

染着率”’ (I Dx/Do ) X 100(%)
Dx:残液の吸光度 Do:染色前の染料溶液の吸光度 尚、試料としては原糸を10編地とし、100倍の蒸留
水70℃で30分精練し、乾燥後試料を標準状態(20
℃×65%RH)t。
Dyeing rate"' (IDx/Do) x 100 (%)
Dx: Absorbance of the residual solution Do: Absorbance of the dye solution before dyeing The sample is a 10-knitted fabric of raw yarn, scoured with 100 times distilled water at 70°C for 30 minutes, and after drying, the sample is in a standard state (20
℃×65%RH)t.

たものを用いた。I used something similar.

本発明でいうポリエチレンテレフタレートとは、実質的
にポリエチレンテレフタレート単独重合体を主たる対象
とするが、ポリエチレンテレフタレートの性質を本質的
に変更しない範囲、即ち10モル係以下で第3成分を共
重合したポリエステル共重合体であっても差支えない。
The polyethylene terephthalate used in the present invention is essentially a polyethylene terephthalate homopolymer, but it is a polyester copolymerized with a third component in a range that does not essentially change the properties of polyethylene terephthalate, that is, at a mole ratio of 10 or less. There is no problem even if it is a copolymer.

かかる第3成分としては例えばイソフタルft、5−ナ
トリウムスルホインフタルi、216−ナフタリンジカ
ルボン酸、アジピンM、/ユウ酸、トリメリット酸、ピ
ロメリットrf、p−オキシ安息香酸、ジエチレンクリ
コール、り゛ロビレングリコール、ブチレングリコール
、ポリオキンエチングリコール、シクロヘキザンジメタ
ノールあるいはこれらの機能的銹導体等があげられる。
Such third components include, for example, isophthal ft, 5-sodium sulfoiphthal i, 216-naphthalene dicarboxylic acid, adipine M, oxalic acid, trimellitic acid, pyromellitic rf, p-oxybenzoic acid, diethylene glycol, and Examples include robylene glycol, butylene glycol, polyochene glycol, cyclohexanedimethanol, and functional rust conductors thereof.

これらのポリエステルには少量の改質剤、例えば艶消剤
、安定剤、難燃剤、静電防止剤あるいは充填剤等を含有
してもさしつかえない。
These polyesters may contain small amounts of modifiers such as matting agents, stabilizers, flame retardants, antistatic agents or fillers.

本発明を図面により説明する。The present invention will be explained with reference to the drawings.

81図は本発明のポリエステル繊維の小角x紳散乱パタ
ーンを示す模式図、第2図は従来のポリエステル繊維の
小角XIs散乱パターンを示す模式図である。
FIG. 81 is a schematic diagram showing the small-angle XIs scattering pattern of the polyester fiber of the present invention, and FIG. 2 is a schematic diagram showing the small-angle XIs scattering pattern of the conventional polyester fiber.

本発明のポリエステル繊維は、そのX線の小角散乱ペタ
ーン罠おいて第1図に示すようにX字形の特異な4点干
渉図形を呈すことが必要である。第2図には従来のポリ
エステル繊維、即ち巻取速度x5oom/分で巻取った
のち、延伸機で熱延伸を施して実用に耐え5る延伸糸と
したものの小角散乱パターンであるが、第1図のものと
明らかに異なる。第1図のようにX字形の特異な4点干
渉図形を呈する繊維は、繊維の内部構造での結晶部分の
繰返し周期が長く且つ大きな分布を持っている事を意味
する。このことは逆に非晶部分は繊維軸方向に極めて長
い構造を持つ事を示し、その長さの分布も大きい事を意
味する。このような構造を有するポリエステル#j!1
維は熱に対する非晶部分の易動性が極めて大きいために
染色性がすこぶる良好になるのである。また、染料が繊
維内部に侵入した状態で染色時の熱によって、この易動
性に富む非晶部分が結晶化を起こし結晶部分に取り込ま
れて行くため、いったん繊維中に侵入した染料は閉じ込
められる結果となって染色鑑牢度も充分実用に耐え得る
性能を持つものとゾIる。
The polyester fiber of the present invention is required to exhibit a unique X-shaped four-point interference pattern in the small-angle scattering pattern trap of X-rays, as shown in FIG. Figure 2 shows the small-angle scattering pattern of a conventional polyester fiber, that is, a drawn yarn that is suitable for practical use by being wound up at a winding speed of 5 oom/min and hot-stretched in a drawing machine. It is clearly different from the one shown. A fiber exhibiting a unique X-shaped four-point interference pattern as shown in FIG. 1 means that the repetition period of crystalline parts in the internal structure of the fiber is long and has a large distribution. On the contrary, this indicates that the amorphous portion has an extremely long structure in the fiber axis direction, and means that the length distribution is also large. Polyester #j with such a structure! 1
The dyeability of fibers is very good because the amorphous part of the fiber has extremely high mobility against heat. Additionally, when the dye has penetrated inside the fiber, the heat during dyeing causes the highly mobile amorphous portion to crystallize and become incorporated into the crystalline portion, so once the dye has penetrated into the fiber, it is trapped. As a result, it is believed that the stain resistance is sufficient for practical use.

一方、第2図のようなX線の小角散乱パターンを呈する
線維は、その内部構造における結晶部分の繰返し周期が
短く且つ密になっているため、非晶部分が繊維軸方向に
対して極めて短く、その長さ分布も小さいものである。
On the other hand, a fiber exhibiting a small-angle X-ray scattering pattern as shown in Figure 2 has a short and dense repetition period of crystalline parts in its internal structure, so the amorphous part is extremely short in the fiber axis direction. , its length distribution is also small.

かかる構造の4a維の非晶部分は熱に対する易動性が極
め−C小さく、常圧染色の温度では染料が非晶部に充分
に侵入できないため、常圧での呆色が不可能なのである
The amorphous part of the 4a fibers with this structure has extremely low -C mobility to heat, and the dye cannot sufficiently penetrate into the amorphous part at the temperature of normal pressure dyeing, so it is impossible to achieve dull color at normal pressure. .

次に、本発明においては繊維全体の複屈折(△n)が0
.08〜0.12である事が必要である。ここで、△n
がO,(18未満では繊維として充分使用可能な構造安
定性、及び力学的特性を持つIIs力゛・出来ず、逆に
0.12を越える場合には染色1′トが低下するという
問題がある。また、同時に非晶領域の複屈折(△na)
が0.015〜0.06である事が必要である。かかる
△naが0.015に泗だない場合、染色性は良好なも
のと1.cるものの、染料の繊維内部への固着、即ち染
色の堅牢性が低下する。逆に、△naが0.06を越え
る場合、非晶分子鎖の配向凝集性が高くなl〕すぎるた
め染料の繊維内部への拡散は容易でiC<均一な分散も
され難い。
Next, in the present invention, the birefringence (△n) of the entire fiber is 0.
.. It is necessary that the value is between 0.08 and 0.12. Here, △n
If it is less than 18, it will not be able to have enough structural stability and mechanical properties to be used as a fiber, and on the other hand, if it exceeds 0.12, there will be a problem that the dyeing rate will decrease. At the same time, the birefringence (△na) of the amorphous region
is required to be 0.015 to 0.06. If Δna is less than 0.015, the dyeing properties are considered to be good. However, the fixation of the dye inside the fiber, that is, the fastness of the dyeing is reduced. On the other hand, when Δna exceeds 0.06, the orientational cohesiveness of the amorphous molecular chains is too high (1), so that the dye easily diffuses into the fiber and it is difficult to achieve uniform dispersion.

一方、前Rjシ物性値、即ちポリエステル繊維のX線小
角散乱パターン、△n及び△naが全て本発明でノリ′
111する肺門を満足するポリエステル繊維であっても
、その単繊維断面形状が丸断面や三角四囲であるポリエ
ステル繊維では。
On the other hand, the physical property values of the previous Rj, that is, the small-angle X-ray scattering pattern of the polyester fiber, Δn and Δna, are all determined by the present invention.
Even if the polyester fiber satisfies the hilum of 111, the cross-sectional shape of the single fiber is round or triangular.

常圧での染着8<カニ8G係未満となって常圧では充分
な染色を施すことができない。
Dyeing under normal pressure is less than 8<crab 8G, and sufficient dyeing cannot be performed under normal pressure.

この点、本発明では、ポリエステル繊維のX線小角散乱
パターン、△n、及び△naを、繊維として充分使用可
能な力学的特性を有し、且つ染料が線維内部に拡散し易
い繊維微細構造とする様に規定し、単繊維断面形状を扁
平にして後述する如く染料の吸着点が多いポーラスな表
面構造にすることによって、常圧での染着率を86qb
以上にすることができたのである。
In this regard, in the present invention, the small-angle X-ray scattering pattern, Δn, and Δna of the polyester fiber has a fiber fine structure that has sufficient mechanical properties to be used as a fiber and that allows dyes to easily diffuse into the fiber. By flattening the single fiber cross-sectional shape and creating a porous surface structure with many dye adsorption points as described later, the dyeing rate at normal pressure was increased to 86qb.
I was able to do more than that.

ここで、単繊維の断面形状が200チ未満の扁平断面で
あれば、常圧での染着率が86係未満であるため、充分
な染色を施すには高温・高圧条件が必要である。
Here, if the cross-sectional shape of the single fiber is a flat cross section of less than 200 cm, the dyeing rate at normal pressure is less than 86%, so high temperature and high pressure conditions are required to dye the fiber sufficiently.

一方、扁平率が600チを越える単繊維では、その力学
的強度が著しく低下すると共にかかる単繊維から成る織
編物の風合は粗硬感が強くなる。
On the other hand, when a single fiber has an oblateness of more than 600 inches, its mechanical strength is significantly reduced, and the texture of a woven or knitted fabric made of such a single fiber becomes rough and hard.

この様K、本発明の扁平断面の単411維から成る繊維
が極めて良好な染色性を有する理由は、次の様に推定さ
れる。
The reason why the fiber made of single 411 fibers with a flat cross section of the present invention has extremely good dyeability is presumed to be as follows.

即ち、一般的に、溶融吐出された紡出糸が冷却される途
中で結晶化速度の大きな温度域になったとき、紡糸中の
伸長内部応力により紡出糸の配向結晶化が急激に進むの
と併行して紡糸での細化が発生する。
In other words, in general, when the spun yarn that has been melted and discharged reaches a temperature range where the crystallization rate is high during cooling, the oriented crystallization of the spun yarn rapidly progresses due to the elongation internal stress during spinning. At the same time, thinning occurs during spinning.

この際に、単繊維の断面が扁平であると、丸断面等のも
のよりも放熱が太きいためより急激な純化が発生して繊
維表面に応力が集中する結果、繊維表面が染料の入り易
いポーラスな構造になるためと考えられる。
At this time, if the cross section of the single fiber is flat, the heat dissipation is greater than that of a single fiber with a round cross section, and as a result, purification occurs more rapidly and stress is concentrated on the fiber surface, making it easier for dye to enter the fiber surface. This is thought to be due to the porous structure.

以上述べてきた様に、本発明の目的を達成し得るポリエ
ステル繊維は、そのX線小角散乱パターン、複屈折率(
Δn及びΔna)が全て本発明で規定する範囲を満足す
るものであって、その断面形状が扁平で且つ200〜6
00係の扁平案を有しているものである。
As described above, polyester fibers that can achieve the objects of the present invention have a small-angle X-ray scattering pattern, a birefringence index (
Δn and Δna) all satisfy the range specified in the present invention, the cross-sectional shape is flat and 200 to 6
It has a flat plan of section 00.

本発明の様な微細構造と、扁平断面とを併せ有するポリ
エステル繊維は、前述の特開昭54−64133号公報
、特開昭55−107511号公報及び特開昭57−1
21613号公報のいずれにも何等示されておらず、従
来全く知られてない新規なものである。
Polyester fibers having both a fine structure and a flat cross section as in the present invention are disclosed in the above-mentioned JP-A-54-64133, JP-A-55-107511 and JP-A-57-1.
Nothing is disclosed in any of the 21613 publications, and it is completely new and previously unknown.

尚、本発明のポリエステル繊維を構成する単繊維の断面
形状は本発明で規定する扁平駆を満足するものであれば
よく、その断面の端面が丸みを帯びたもの、或いは端面
な若干膨らませたものであってもよい。
The cross-sectional shape of the single fibers constituting the polyester fiber of the present invention may be any shape as long as it satisfies the flatness specified in the present invention, and the cross-sectional shape may have rounded end faces or slightly bulge end faces. It may be.

かかる本発明のポリエステル繊維は下記に示す溶融紡糸
方法で得ることができるが、本発明はこの方法に限定さ
れるものではない。
Such polyester fibers of the present invention can be obtained by the melt spinning method shown below, but the present invention is not limited to this method.

fil 供給ポリエステルポリマーの固有粘度を一般の
衣料用フィラメントに用いるポリマーの固有粘度より高
目にする。
fil The intrinsic viscosity of the supplied polyester polymer is made higher than that of polymers used in general clothing filaments.

即ち、固有粘度〔η〕≧0.62が好ましい。That is, it is preferable that the intrinsic viscosity [η]≧0.62.

(2) 紡糸温度を高目にし、口金直下の雰囲気温度を
高くし、且つその雰囲気温度に維持している雰囲気長さ
をできるだけ長くする。
(2) Increase the spinning temperature, increase the ambient temperature directly below the spinneret, and increase the length of the atmosphere maintained at that ambient temperature as long as possible.

即ち、紡糸温度は3,00℃以上、口金下雰凹気温度は
250℃以上、かかる雰囲気温度に維持している雰囲気
長さは130mm以上が好ましい。
That is, it is preferable that the spinning temperature is 3,00° C. or higher, the temperature of the atmosphere below the die is 250° C. or higher, and the length of the atmosphere maintained at such atmospheric temperature is 130 mm or higher.

(3) 冷却風温度をできるだけ低目に設定する。(3) Set the cooling air temperature as low as possible.

(4) 口金に設けられた扁平吐出孔((0,25〜0
.40 ) X (0,05〜0.20 )の長方形状
のものが好ましい〕は、冷却風の方向に対し長軸側が平
行となるよう配設する。
(4) Flat discharge hole provided in the cap ((0,25~0
.. 40) X (0.05 to 0.20), preferably rectangular, is arranged so that its long axis is parallel to the direction of the cooling air.

(5) 巻取速度を4700m/分以上、好ましくは5
000m/分以上とする。
(5) The winding speed is 4700 m/min or more, preferably 5
000m/min or more.

(6) 冷却風は紡糸ネッキングが発生している位置を
特に強く冷却するのが好ましい。
(6) It is preferable that the cooling air particularly strongly cools the position where spinning necking occurs.

かかる77I融紡糸において、得ようとする繊維のデニ
ール等の応じて適宜調整して最適の条件を選択すること
が好ましいことは言うまでもない。
It goes without saying that in such 77I melt spinning, it is preferable to select the optimum conditions by appropriately adjusting the denier of the fiber to be obtained.

(作 用) 本発明のポリエステル繊維は、その微細構造において、
結晶部分及び非晶部分が適度忙配向されており、且つ非
晶部分が繊維軸方向に極めて長く、その長さ分布が大き
いものであって、更に扁平断面化によって、ポーラスな
表面構造を併せ有するものである。
(Function) The polyester fiber of the present invention has, in its fine structure,
The crystalline portion and the amorphous portion are moderately oriented, the amorphous portion is extremely long in the fiber axis direction, and has a large length distribution, and also has a porous surface structure due to the flattened cross section. It is something.

この様な本発明のポリエステル繊維に常圧で染色を施す
結果、染料はポーラスなa造の単1.i) J(If衣
表面容易に吸fFされ、次いで僚t#非晶部分に均一に
拡散するため常圧での染色によっても86係V上の桑着
厖とすることができ、しかも繊維非晶部分は染料が浸入
した状態で染色時の熱によって結晶部に取り込まれるた
めに染色堅牢度も向上できるのである。
As a result of dyeing the polyester fiber of the present invention under normal pressure, the dye becomes a porous A-structured monomer. i) J (If the coating surface is easily absorbed and then diffused uniformly into the amorphous part, it can be dyed under normal pressure to obtain a mulberry coating of 86 coefficient V. The dye fastness can also be improved because the dye is absorbed into the crystal part by the heat during dyeing.

(発明の効果) 本発明のポリエステル繊維は、良好な染色性、整牢性及
び力学的特性を硫ね備えているため、糸状、綿状、吠い
は織編物としたのち分散染料により容易に常圧で染色で
きるため、通常のノンキャリヤーボイル染色を採用する
事が可能であり、従来のボ11 j−ステルυK(I 
K比べて染色コストを大巾に低下させることができる。
(Effects of the Invention) The polyester fiber of the present invention has good dyeability, fixability, and mechanical properties, so it can be easily made into thread-like, cotton-like, and coarse fabrics by using disperse dyes after being made into a woven or knitted fabric. Since it can be dyed under normal pressure, it is possible to use normal non-carrier voile dyeing, and it is possible to use conventional voile dyeing.
Dyeing costs can be significantly reduced compared to K.

また、製織製編時のトラブルもなく最終製品の耐久性も
すぐれている。従って本発明の繊維は衣料用、イノテリ
フ′用、産業資材用等の分野に広く使用し召)るもので
ある。
Furthermore, there is no trouble during weaving and knitting, and the final product has excellent durability. Therefore, the fibers of the present invention can be widely used in the fields of clothing, innoterifs, industrial materials, etc.

(実施例) 本発明を実施例で更に詳述する。但し、本発明はこれに
より何ら限定されるものではな()。
(Example) The present invention will be further explained in detail with reference to Examples. However, the present invention is not limited to this in any way.

尚、本実施例で用いる各特性値の測定方法は次の辿りで
ある。
The method for measuring each characteristic value used in this example is as follows.

X #i!小角散乱ノtター/ 通常の小角X糾散乱写真による、理学電機製D−9C,
WXM発生装置を用い、X線源はCuKα(N+フィル
ター)、35KV、20mAとした。写真撮影は減圧下
60分の露出時間をとった。
X #i! Small-angle scattering noter/D-9C manufactured by Rigaku Denki, based on normal small-angle X-ray scattering photography.
A WXM generator was used, and the X-ray source was CuKα (N+ filter), 35 KV, and 20 mA. Photographs were taken under reduced pressure with an exposure time of 60 minutes.

υ維全体の複屈折へ〇 八〇は嶽維軸に対して直角に偏光している光に対する初
屈折71 (n、 )と繊絣軸に対して平行に偏デ、し
ている光に対するルI折兆(n、、 )との差、即ち△
n=n、、−n、で表わされる。測定はカール・ツアイ
ス彎イエナ社製干渉顕@、mrンターファフを用い、波
長550mμの白色光、浸漬液としてヨウ什メチレン、
αブロムナフタレンおよび両者の混合液を使用した、実
際には繊維の断面方向に対し等間隔で内〜中〜外層全域
での△nをまず測定し、その平均値をめた。
Birefringence of the entire υ fiber 〇80〇 is the initial refraction 71 (n, ) for light polarized at right angles to the fiber axis, and the refraction for light polarized parallel to the fiber axis. The difference from I fold trillion (n, , ), that is, △
It is expressed as n=n, , -n. The measurement was carried out using an interference microscope manufactured by Carl Zeiss Jena and MR Interfaf, using white light with a wavelength of 550 mμ, and iodine and diamethylene as the immersion liquid.
Using α-bromnaphthalene and a mixture thereof, Δn was first measured over the entire inner, middle, and outer layers at equal intervals in the cross-sectional direction of the fiber, and the average value was calculated.

非晶領域の複屈折△na Δnaは非晶領域の分子鎖の配向性を示すパラメーター
であり比重ρよりめたXρ、繊維全体の複屈折△n、結
晶配向函数fc(特開昭50−59526号公報記載)
を用いて次式により算出する。
Birefringence Δna of the amorphous region Δna is a parameter that indicates the orientation of molecular chains in the amorphous region, and is expressed by Publication No.)
Calculate using the following formula.

実施例 固有粘度〔η) = o、e sのポリエチレンテレフ
タレートを紡糸温度305℃で、長軸・知軸の夫々長さ
を第1表記載の長方形紡糸孔を36個穿設した紡糸口金
から吐出し、第1表記載の碌度、長さの口金下界囲気帯
域を通過させ、引続いて第1表記載の温度の冷却風で冷
却して給油したのち巻取、!8度5000m/分で巻庫
り、75デニール36フイラメントのポリエステル繊維
を得た。前記冷却Jt線速度は0.4rn/秒であった
Example: Polyethylene terephthalate having an intrinsic viscosity [η) = o, e s was spun at a spinning temperature of 305°C, and was spun from a spinneret having 36 rectangular spinning holes with the lengths of the major axis and intellectual axis listed in Table 1. Then, it is passed through an air zone below the mouthpiece with the strength and length listed in Table 1, and then cooled with cooling air at the temperature listed in Table 1, refueled, and then wound. A polyester fiber of 75 denier and 36 filaments was obtained by winding at 8 degrees and 5000 m/min. The cooling Jt linear velocity was 0.4 rn/sec.

イリし、第1表のA117及び腐18の夫々の巻取速度
は4(100m/分及び43oom/分とした。
However, the winding speeds of A117 and Fu 18 in Table 1 were set to 4 (100 m/min and 43 oom/min).

また、第1表の、/619 、20の巻取速度を共に1
500m/分とし、巻取った糸条な共に809Cで延伸
1. I 8 fl ’(:のスリットヒータで熱処理
した。2その際の延伸倍率は、に19では300%。
Also, the winding speeds of /619 and 20 in Table 1 are both 1
The winding speed was 500 m/min, and both the wound yarns were drawn at 809C. It was heat treated with a slit heater of I8fl'(2).The stretching ratio at that time was 300% at 19.

鷹′20では200憾であった。It was 200 regrets for Hawk '20.

得られたポリエステル繊維のX線小角散乱パターン、△
n、△na、扁平率、及び染着率を測定し第1表に併せ
て示した。
Small-angle X-ray scattering pattern of the obtained polyester fiber, △
n, Δna, flatness, and dyeing rate were measured and shown in Table 1.

また、同時にJIS L 1044に準じて染色耐光堅
牢度のif価も行い、不良なものについてその旨を第1
表備考411JK記載した。更に、力学的特性評価とし
ては原糸を製織し、所定中の布帛を所定の付足で伸長し
た後の布帛の伸長回復を目視判定し、伸びが回復せずシ
ワ状に残った不良なものについては第1表備考欄にヒザ
抜(つと記載した。
At the same time, we also conducted an IF value for color fastness to light in accordance with JIS L 1044, and reported defective items to that effect on the first page.
Note 411JK is listed in the table. Furthermore, for mechanical property evaluation, raw yarn was woven, and the fabric in a specified manner was stretched with a specified appendage, and the recovery of the fabric was visually judged. Regarding this, I wrote ``knee removal'' (tsu) in the notes column of Table 1.

第1辰から明らかな様に1常圧での染着出が86、%以
上となり、染N堅生性及び力学的特性を満足するホ□リ
エスラル繊維it本発明で規定する特性な乍て満足する
ものである。
As is clear from the first paragraph, the dyeing release at normal pressure is 86% or more, and the fibers satisfy the dye N fastness and mechanical properties.It satisfies the characteristics specified in the present invention. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のポリエステル繊維の小角X線散乱パタ
ーンを示す模式図、第2図は従来のポリエステル繊維の
小角X線散乱パターンを示す模式図である。 特許出願人 帝人株式会社 第1図 第2図
FIG. 1 is a schematic diagram showing the small-angle X-ray scattering pattern of the polyester fiber of the present invention, and FIG. 2 is a schematic diagram showing the small-angle X-ray scattering pattern of the conventional polyester fiber. Patent applicant Teijin Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 実質的にポリエチレンテレフタレート単独で構成されて
いる、扁平断面を有する繊維であって、該繊維のX線小
角散乱パターンがX字形の4点干渉図形を呈し、且つ繊
維全体の複屈折(△n)が0.08〜0.12.非晶領
域の複屈折(Δna)が0.015〜0.06であると
共に、前記繊維断面の扁平率が200〜600チである
事を特徴とする常圧染色可能なポリエステル繊維。
A fiber that is substantially composed of polyethylene terephthalate alone and has a flat cross section, the small-angle X-ray scattering pattern of the fiber exhibits an X-shaped four-point interference pattern, and the birefringence (△n) of the entire fiber is is 0.08 to 0.12. A polyester fiber capable of being dyed under normal pressure, characterized in that the birefringence (Δna) of the amorphous region is 0.015 to 0.06, and the flatness of the cross section of the fiber is 200 to 600 inches.
JP4642584A 1984-03-13 1984-03-13 Polyester fiber dyeable under normal pressure Granted JPS60194114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4642584A JPS60194114A (en) 1984-03-13 1984-03-13 Polyester fiber dyeable under normal pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4642584A JPS60194114A (en) 1984-03-13 1984-03-13 Polyester fiber dyeable under normal pressure

Publications (2)

Publication Number Publication Date
JPS60194114A true JPS60194114A (en) 1985-10-02
JPH0362804B2 JPH0362804B2 (en) 1991-09-27

Family

ID=12746794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4642584A Granted JPS60194114A (en) 1984-03-13 1984-03-13 Polyester fiber dyeable under normal pressure

Country Status (1)

Country Link
JP (1) JPS60194114A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189321A (en) * 1984-10-08 1986-05-07 Teijin Ltd Polyester yarn having high dyeing properties
JPH02160917A (en) * 1988-12-13 1990-06-20 Teijin Ltd Polyester fiber for dustless clothes and woven fabric thereof
JPH02160918A (en) * 1988-12-13 1990-06-20 Teijin Ltd Polyester fiber for dustless clothes excellent in abrasion resistance and woven fabric thereof
JPH0434013A (en) * 1990-05-24 1992-02-05 Teijin Ltd Flat fiber and production thereof
CN103114346A (en) * 2013-02-25 2013-05-22 江苏中润纤维科技股份有限公司 Colored polyester filament yarn with diamond blinking effect and method for manufacturing colored polyester filament yarn

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218918A (en) * 1974-09-17 1977-02-12 Nikoraeuitsuchi Berits Mihairu JINZOSENI
US4134882A (en) * 1976-06-11 1979-01-16 E. I. Du Pont De Nemours And Company Poly(ethylene terephthalate)filaments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218918A (en) * 1974-09-17 1977-02-12 Nikoraeuitsuchi Berits Mihairu JINZOSENI
US4134882A (en) * 1976-06-11 1979-01-16 E. I. Du Pont De Nemours And Company Poly(ethylene terephthalate)filaments

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189321A (en) * 1984-10-08 1986-05-07 Teijin Ltd Polyester yarn having high dyeing properties
JPH02160917A (en) * 1988-12-13 1990-06-20 Teijin Ltd Polyester fiber for dustless clothes and woven fabric thereof
JPH02160918A (en) * 1988-12-13 1990-06-20 Teijin Ltd Polyester fiber for dustless clothes excellent in abrasion resistance and woven fabric thereof
JPH0434013A (en) * 1990-05-24 1992-02-05 Teijin Ltd Flat fiber and production thereof
CN103114346A (en) * 2013-02-25 2013-05-22 江苏中润纤维科技股份有限公司 Colored polyester filament yarn with diamond blinking effect and method for manufacturing colored polyester filament yarn

Also Published As

Publication number Publication date
JPH0362804B2 (en) 1991-09-27

Similar Documents

Publication Publication Date Title
JPS5947726B2 (en) Polyester fiber manufacturing method
JPS60194114A (en) Polyester fiber dyeable under normal pressure
JPH0147570B2 (en)
JPS6189321A (en) Polyester yarn having high dyeing properties
US5496510A (en) Acrylonitrile filament process
JPS5837408B2 (en) Manufacturing method of polyester ultrafine fiber
JPH03185103A (en) Conjugate fiber for artificial hair having thick single fiber and production thereof
JP2844680B2 (en) Different fineness / different shrinkage mixed fiber and method for producing the same
JP3693552B2 (en) Method for producing polyester fiber
JPH08269820A (en) Easily dyeable modified polyester fiber and its production
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
JPH1193021A (en) Sheath-core polyester yarn
JP2001064829A (en) Ultrafine polyester fiber, combined filament yarn and cloth therefrom
JP2823233B2 (en) Polyethylene terephthalate mixed yarn
JP2768495B2 (en) Manufacturing method of polyethylene terephthalate mixed fiber yarn
JP2000034641A (en) Polyamide-based yarn fabric and its production
JPS61245306A (en) Polyester raw material yarn for providing napped cloth
JP2003306830A (en) Cation-dyeable polyester thick and thin multifilament yarn and method for producing the same and woven or knitted fabric
KR810001779B1 (en) Mutilobed feed yarn for texturing
KR940010802B1 (en) Pile fabric making method
JP2996490B2 (en) Yarn for polyester knitted fabric
JP2002235239A (en) Cationic dyeable polyester thick-and-thin multifilament yarn, method for producing the same, and woven or knitted fabric
JPS58220813A (en) Production of polyester fiber
JP2003301329A (en) Easily dyeable polyester un-stretched fiber
JPH06184820A (en) Easily dyeable polyester fiber and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees