JPS60194007A - Converter blowing method - Google Patents
Converter blowing methodInfo
- Publication number
- JPS60194007A JPS60194007A JP4859584A JP4859584A JPS60194007A JP S60194007 A JPS60194007 A JP S60194007A JP 4859584 A JP4859584 A JP 4859584A JP 4859584 A JP4859584 A JP 4859584A JP S60194007 A JPS60194007 A JP S60194007A
- Authority
- JP
- Japan
- Prior art keywords
- blowing
- nozzle
- oxygen
- blown
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/35—Blowing from above and through the bath
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は転炉吹綜法に関し、詳細にはCO含有ガスを底
吹することにより鋼浴の撹拌を促進すると共に吹き込ん
だCOガスを2次燃焼させることにより銅浴に熱を供給
する吹鐘法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a converter blowing method, and more specifically, the present invention relates to a converter blowing method, and in particular, the stirring of a steel bath is promoted by bottom blowing a CO-containing gas, and the copper bath is heated by secondary combustion of the blown CO gas. This is related to the bell blowing method that supplies heat to the
近年、鉄鋼製品に対する高付加価値向上の要請が強まり
、それにより高級銅製造のため転炉出鋼後の脱P1脱S
1脱ガス処理が必要になっている。In recent years, there has been a growing demand for higher added value for steel products, and this has led to the elimination of P1 and S after steel extraction from converters in order to produce high-grade copper.
1. Degassing treatment is required.
そしてこれらの工程における温度降下分を補償するため
、転炉の平均吹止温度は従来より高目に推移しつつある
。しかし他方、製鋼コストの低減を目的とする溶銑予備
処理技術も実機化されつつあり、溶銑段階での脱珪、脱
燐、脱硫が行なわれる一様になり、それにつれて転炉操
票時の熱源は減少する傾向にある。その結果、通常はス
クラップ配合率を低くすることによって吹止め温度の確
保を図っているが、製銑−製鋼一造塊一鉄Ml!!品製
造という一連の工程暑こ$ける溶銑供給バランス及びス
クラップ消費バランスが崩れ、粗鋼生産への柔軟な対応
といった面から問題となりつつある。In order to compensate for the temperature drop in these steps, the average blow-off temperature of converters is becoming higher than before. However, on the other hand, hot metal pretreatment technology aimed at reducing steelmaking costs is also being put into practical use, and desiliconization, dephosphorization, and desulfurization are becoming uniformly performed at the hot metal stage, and as a result, the heat source during converter operation is becoming more common. is on the decline. As a result, normally the blow-stop temperature is secured by lowering the scrap mixing ratio, but the difference between pig iron making, steel making, ingot making, and iron Ml! ! The hot metal supply and scrap consumption balances in the hot metal manufacturing process have been disrupted, and this is becoming a problem in terms of flexible response to crude steel production.
こうした問題に対処する為、転炉吹錬時に外部から熱源
を補給し吹止め温度を高める方法が各社で研究されてい
る。かかる熱源補給法としては例えば、■転炉内への補
給燃料(Fe−5is石炭、コークス等)の投入、或は
溶鋼内へのインジェクション、■液体燃料の吹込み、■
吹錬時に生成するCOガスの2次燃焼、等がある。この
うち上記■の方法は、上吹き酸素によって補給燃料を燃
焼させその燃焼熱で溶鋼を直接加熱するものであり、加
熱手段としては極めて有効なものであるが、Fe−5i
を使用する方法ではその価格が高いという問題に加えて
、F6−8Lの燃焼にともなってスラグ中に入るsio
、に応じてスラグ塩基度の低下を補うために生石灰等を
投入しなければならず、二爪の経済的負担が課せられ名
という問題があり、又石炭やコークスを補給燃料とする
場合は、これらの中に含まれる硫黄が溶鋼中に歩留り、
品質を著しく劣化させる。こうした中で前記■の方法は
、吹錬時に生成するCOを2次燃焼させ、この反応によ
って発生する熱で溶鋼を加熱しようとするものであり、
前記■及び■の方法で指摘した様な問題を生じないこと
から、現在のところ■の方法が熱源補給の主流となりつ
つある。この方式を更に詳しく説明すると、
1)メインランスのランスチップを改造し、脱炭用酸素
とは別に2次燃焼用酸素を吹込むタイプ、
11)メインランスとは別にサブランスを使用し、該サ
ブランスから2次燃焼用酸素を吹込むタイプ、
I)転炉の炉口に羽目を設けて2次燃焼用酸素を吹込む
タイプ、
等がある。ところでこの方式の優劣は、「2次燃焼によ
り発生した熱を如何に効率良く溶鋼に伝えるか」という
点にかかつてくるが、上記l)〜1it)の方式では、
溶鋼表面を覆っているスラグの表面上部で2次燃焼が行
なわれる為燃焼熱が直接溶鋼へ伝わらず、溶鋼への熱伝
達効率はせいぜい60〜70%程度が限度であり、溶鋼
温度を満足できるレベルまで高めることはできない。し
かも転炉上方へ吹き抜ける排ガス熱が著しく高くなるの
で、フリーボード(溶鋼の湯面より上部の露出部)にお
ける耐火物の溶損が著しくなり、寿命が短縮されるとい
う問題もある。To deal with these problems, various companies are researching ways to increase the blow-off temperature by supplying an external heat source during converter blowing. Such heat source replenishment methods include, for example, (1) charging supplementary fuel (Fe-5is coal, coke, etc.) into the converter or injection into molten steel, (2) injection of liquid fuel, (2)
There is secondary combustion of CO gas generated during blowing, etc. Among these methods, method (2) above burns the supplementary fuel using top-blown oxygen and directly heats the molten steel with the combustion heat, and is extremely effective as a heating means, but Fe-5i
In addition to the problem of high cost in the method of using F6-8L, the sio
In order to compensate for the decrease in slag basicity, quicklime, etc. must be added to the slag, which imposes a double economic burden, and when coal or coke is used as supplementary fuel, The sulfur contained in these is retained in molten steel,
Significantly deteriorate quality. Under these circumstances, method (1) above aims to perform secondary combustion of CO generated during blowing and heat molten steel with the heat generated by this reaction.
At present, method (2) is becoming the mainstream for heat source supply because it does not cause the problems pointed out in methods (1) and (2) above. This method is explained in more detail: 1) A type in which the lance tip of the main lance is modified and oxygen for secondary combustion is injected separately from oxygen for decarburization; 11) A sub-lance is used separately from the main lance, and the sub-lance is There are two types: one type in which oxygen for secondary combustion is injected from the converter, and the other type in which oxygen for secondary combustion is injected by providing a wall at the converter mouth. By the way, the superiority or inferiority of this method depends on how efficiently the heat generated by secondary combustion is transferred to the molten steel, but in the methods l) to 1it) above,
Because secondary combustion occurs above the surface of the slag covering the molten steel surface, the combustion heat is not directly transferred to the molten steel, and the heat transfer efficiency to the molten steel is limited to about 60 to 70% at most, which is sufficient to satisfy the molten steel temperature. You can't raise it to that level. Moreover, since the heat of the exhaust gas blowing upwards in the converter becomes extremely high, there is a problem in that the refractories in the freeboard (the exposed part above the molten steel surface) are significantly eroded and their lifespan is shortened.
本発明者等はこうした状況のもとて前記■の方 。Under these circumstances, the inventors of the present invention chose the method (2) above.
法の改良に着手し、COの2次燃焼により発生した熱を
効率良く溶鋼に伝え吹止め温度を十分に高めることがで
きると共に、転炉上部の過熱を抑制して寿命を延長する
ことのできる様な技術を確立しようとして研究を進めて
きた。本発明はこうした研究の結果完成されたものであ
って、その構成は、上下吹き転炉を使用し、底吹きノズ
ルからco含有ガスを底吹きしつつ上吹きランスから酸
素を上吹きして吹錬を行なうに当たり、底吹きノズルの
孔径を下記CI)式から算出されるノズル径の1〜2倍
に設定すると共に、該ノズルより溶f!A1トン当たり
0.20 Ntn3/ ml n以上の流電でco含有
ガスを吹込み、且つ上吹02ジエツトによる鋼浴のへこ
み深さくυと鋼浴の静止深さくLo)との比力(0,6
以上となる様に、1萩きランスの高さと送酸速度を調整
して吹錬を行なうところに要旨を有するものである。We have begun to improve the method, and are now able to efficiently transfer the heat generated by the secondary combustion of CO to the molten steel to sufficiently raise the stop temperature, as well as suppress overheating in the upper part of the converter and extend its life. We have been conducting research in an attempt to establish various technologies. The present invention was completed as a result of such research, and its configuration uses a top-bottom blowing converter, and blows oxygen at the top from a top-blowing lance while bottom-blowing cobalt-containing gas from a bottom-blowing nozzle. When performing refining, the hole diameter of the bottom blowing nozzle is set to 1 to 2 times the nozzle diameter calculated from the following CI) formula, and the melt f! Co-containing gas is injected with a current of at least 0.20 Ntn3/ml n per ton of A, and the specific force (0 ,6
As described above, the gist is that blowing is performed by adjusting the height of the one-hagi lance and the oxygen supply rate.
d=80・Q・(1/1()1・5 ・・・(I)但し
Q:1孔当たりの底吹きガス流1kCNm3/m1n)
H:吹錬時における火点中心までの鋼浴深さくcrn)
d:底吹きノズル径(crn)
以下実施例図面を参照しながら本発明の構成及び作用効
果を詳細に説明する。第1図は本発明の転炉吹錬法を例
示する概略縦断面説明図であり、底部に2個の底吹きノ
ズル2a、2bを設けた転炉1を使用し、これに溶銑を
装入して底吹きノズル2a、2bからco含有ガスを底
吹きしながら、上吹きランス8より酸素を吹付けること
によって吹錬が進められる。向上吹きの狙い位置はco
含有ガスの浮上位置に重ね合わせるのが一般的であり、
且つ最も効果的である。尚第1図では低吹きノズルと上
吹きランスのノズルを夫々2個ずつ設けたものを使用し
、吹錦効率及び昇温効率をより動量的に高める様にして
いるが、第2図に示す如く夫々1個ずつのノズルを設け
て上下吹きを行なうととも勿論可能である。何れにして
も本発明では底吹きノズル2a、2b(又は第2図の符
号2)からCO含有ガスを供給すると共に酸素を上吹き
し、〔CO+1/20□−Co2:]の反応によって生
ずる熱を利用して溶1iMの昇温を簡ろうとするもので
あるが(図中Sはスラグを示す)、実験室規模で種々の
研究を重ねるうち次の様な事実が明らかとなった。先ず
底吹きガス中のCOと上吹き酸素とを溶鋼の表面で効率
良く燃焼させ、発生した燃焼熱を効率良く溶鋼Mに伝達
させる為には、上吹き酸素の火点位置(即ち上吹き酸素
が溶鋼表面に当たり溶fiM中のCと反応を起こす位置
)に向けてCO含有ガスを底吹きするのがよ(、シかも
CO含有ガスはバブリング状態で底吹きするのではなく
、高速のジェット状a(いわゆる吹き抜は状態)で底吹
きすべきである。しかしてCO含有ガスをバブリング状
態が形成される様にソフトに底吹きすると、COが湯面
へ浮上するまでに火点位置の周囲へ拡散し、溶鋼表面に
#ける上吹き酸素との反応量が減少し、吹込み量に対応
する昇温効果が得られなくなる。しかしCO含有ガスを
吹き抜は状態で浮上させると、COが火点位置へ集中的
に供給され、溶fRM表面で直ちに上吹き酸素と反応す
る為、生成する反応熱は効率良く溶鋼Mに伝えられて優
れた昇温効果が発揮されるものと考えられる。d=80・Q・(1/1()1・5...(I) However, Q: Bottom blowing gas flow per hole 1kCNm3/m1n) H: Depth of the steel bath to the center of the fire point during blowing (crn) d: Bottom blowing nozzle diameter (crn) The configuration and effects of the present invention will be explained in detail below with reference to the drawings of the embodiments. FIG. 1 is a schematic vertical cross-sectional explanatory view illustrating the converter blowing method of the present invention, in which a converter 1 having two bottom blowing nozzles 2a and 2b at the bottom is used, and hot metal is charged into the converter 1. Blowing is proceeded by blowing oxygen from the top blowing lance 8 while bottom blowing the co-containing gas from the bottom blowing nozzles 2a and 2b. The target position for the improvement blow is co.
It is common to superimpose it on the floating position of the contained gas,
And the most effective. In Fig. 1, two low-blow nozzles and two top-blow lance nozzles are used to dynamically increase the blowing brocade efficiency and temperature raising efficiency, but as shown in Fig. 2. Of course, it is also possible to provide one nozzle for each to perform upward and downward blowing. In any case, in the present invention, CO-containing gas is supplied from the bottom-blowing nozzles 2a, 2b (or reference numeral 2 in FIG. 2), and oxygen is blown upward to generate heat generated by the reaction of [CO+1/20□-Co2:]. The idea was to simplify the temperature rise of the 1iM solution by using the above (in the figure, S indicates slag), but after conducting various laboratory-scale studies, the following facts became clear. First, in order to efficiently burn CO in the bottom-blown gas and top-blown oxygen on the surface of the molten steel, and to efficiently transfer the generated combustion heat to the molten steel M, it is necessary to It is better to blow the CO-containing gas from the bottom toward the position where it hits the surface of the molten steel and causes a reaction with C in the molten steel. A (the so-called atrium state) should be blown from the bottom.However, if the CO-containing gas is blown softly from the bottom so that a bubbling state is formed, the area around the fire point position will be blown before the CO rises to the surface. The amount of reaction with top-blown oxygen on the surface of the molten steel decreases, making it impossible to obtain a temperature-raising effect corresponding to the amount of blowing.However, if CO-containing gas is floated in a blow-through state, CO Since it is intensively supplied to the ignition point and immediately reacts with the top-blown oxygen on the surface of the molten fRM, it is thought that the generated reaction heat is efficiently transferred to the molten steel M, resulting in an excellent temperature-raising effect.
こうした知見を基に、前述の様な優れた昇温効果を得る
ことのできる転炉操業条件を明確にしようとして更に研
究を進めたところ、底吹きノズルの孔径と吹込み速度、
及び酸素の上吹きによって生じる局面のへこみ状況を適
正に摺整すれば、底吹きCOの量に応じた最良の昇温効
果を得ることができるという事実が明らかとなった。Based on this knowledge, we conducted further research in an attempt to clarify the converter operating conditions that would allow us to obtain the excellent temperature-raising effect described above.
It has become clear that if the concave condition of the surface caused by top-blowing of oxygen is properly smoothed out, the best temperature-raising effect can be obtained depending on the amount of bottom-blowing CO.
まずCO含有ガスを吹き抜は状態で浮上させる為の条件
としては、ガス流量、底吹きノズルの孔径、鋼浴の深さ
等が考えられるが、色々な実験結果によると、このガス
を上吹き酸素の火点位置まで吹き抜は状態で移動させる
為には、底吹きノズルの孔径〔d(crn)〕を前記〔
13式から算出される値の1〜2倍とし、且つ底吹きガ
スの流量を溶#11トン当たり0.20 Nyyz3/
min以上とすべきであることが確認された。しかして
該ノズルの孔径が大きすぎると、吹込みガスがバブリン
グ状態となって火点位置の周囲に拡散する為本発明の特
徴が有効に発揮されず、一方ノズル径が小さすぎると、
所要の吹き抜は長さ、ガス量を確保する為に非常な高圧
が必要となり実用的とはいえない。First of all, the conditions for making the CO-containing gas float to the surface in the open air state include the gas flow rate, the hole diameter of the bottom blowing nozzle, and the depth of the steel bath. In order to move the atrium to the oxygen fire point position, the hole diameter [d (crn)] of the bottom blow nozzle must be adjusted to the above [d(crn)].
The value calculated from formula 13 should be 1 to 2 times, and the flow rate of bottom blowing gas should be 0.20 Nyyz3/per ton of melt #11.
It was confirmed that the value should be greater than or equal to min. However, if the hole diameter of the nozzle is too large, the blown gas will be in a bubbling state and will diffuse around the fire point position, so the features of the present invention will not be effectively exhibited.On the other hand, if the nozzle diameter is too small,
The necessary length of the atrium and the need for extremely high pressure to secure the gas volume make it impractical.
又底吹きガスの流量は、熱源としての絶対量を確保する
と5、に所定の吹き抜は長さを確保する為に下限値を決
めたもので、0゜20 N m3/ (min @溶銅
トン)未満では絶対量が不足する為溶鋼を十分に昇温さ
せることかできず、且つ吹き抜は長さが不足して火点位
置へCOを集中的に供給することができなくなる。In addition, the flow rate of the bottom blowing gas is 5, if the absolute amount as a heat source is secured, and the lower limit is determined to ensure the length of the specified blowout, which is 0°20 N m3/ (min @ molten copper If the amount is less than 1 ton, the absolute amount will be insufficient and it will not be possible to raise the temperature of the molten steel sufficiently, and the length of the blowhole will be insufficient and it will not be possible to intensively supply CO to the ignition point position.
更に上吹きノズルからの酸素の上吹きの程度は、溶鋼表
面に浮上しているスラグを押しのけて酸素を溶鋼に直接
々触させると共に、溶鋼のへこみ深さを大きくして火点
直下の溶鋼深さく第1,2図及び前記CI)式の符号H
)を小さくし、吹き抜は状態に近い底吹きCOガスと上
吹き酸素を接触させるうえで極めて重要であり、第1,
2図にも示した如<、湯面のへこみ深さくgと鋼浴の静
止深さくLo)が0.6以上となる様に、上吹きランス
の高さと送酸速度を調整すべきであることが確認された
。この場合湯面のへこみ深さくL)を吹鑓時に外部から
確認することは困難であるが、この値は以下に示す計算
式によってほぼ正確に知ることができる。Furthermore, the degree of upward blowing of oxygen from the top blowing nozzle is determined by displacing the slag floating on the surface of the molten steel and bringing the oxygen into direct contact with the molten steel, and by increasing the depth of the dent in the molten steel to reach the depth of the molten steel just below the flash point. Figures 1 and 2 and the symbol H of the above CI) formula
), and the atrium is extremely important in bringing the bottom-blown CO gas close to the state into contact with the top-blown oxygen.
As shown in Figure 2, the height of the top blowing lance and the oxygen delivery rate should be adjusted so that the depression depth of the hot water surface (g) and the static depth of the steel bath (Lo) are 0.6 or more. This was confirmed. In this case, it is difficult to check the depression depth L) of the hot water surface from the outside during blowing, but this value can be found almost accurately using the calculation formula shown below.
L=Lh@eXP(−0,78h/Lh) −CI)L
h= ea、o (k−v /n−D)” ・rm〕2
L:へこみ深さく ms )
h:ランス高さく餌)
Fo2:上吹き酸素流11(Nm3/hr)n:ランス
の孔数
り二ランス孔の直径(鰭)
k:酸素の噴射角による係数
また鋼浴の静止深さくLo)は、溶銑及びスクラップの
装入量から算出することができるので、ランスの高さや
上吹き酸素流量をコントロールして湯面のへこみ深さ■
を調整することにより、L/L0の値を容易に0.60
以上にすることができる。L=Lh@eXP(-0,78h/Lh) -CI)L
h= ea, o (k-v/n-D)"・rm〕2 L: Dent depth ms) h: Lance height bait) Fo2: Top-blown oxygen flow 11 (Nm3/hr) n: Lance hole The diameter of the lance hole (fin) k: The coefficient depending on the oxygen injection angle and the static depth of the steel bath (Lo) can be calculated from the charged amount of hot metal and scrap, so the lance height and top blowing Control the oxygen flow rate to adjust the depth of the depression on the hot water surface ■
By adjusting the value of L/L0, the value of L/L0 can be easily set to 0.60.
You can do more than that.
本発明は以上の様に構成されており、その効果を要約す
れば次の通りである。The present invention is constructed as described above, and its effects can be summarized as follows.
■湯面のへこみ量が所定の値以上となる様に酸素を上吹
きすると共に、CO含有ガスを上吹酸素の火点位置へ吹
き抜けに近い状態で通過させている為、底吹きされたC
Oは殆んどすべてが火点位置で酸素と反応し、反応熱は
効率良く溶鋼に伝えられる。従って底吹きされるCO量
に応じて溶鋼を効果的に昇温させることができる。■Oxygen is blown upward so that the amount of depression on the hot water surface is greater than a predetermined value, and the CO-containing gas is passed through to the ignition point of the top blown oxygen in a state close to that of a blow-through, so that the bottom blown CO
Almost all of the O reacts with oxygen at the flame point, and the reaction heat is efficiently transferred to the molten steel. Therefore, the temperature of molten steel can be effectively raised according to the amount of bottom-blown CO.
■熱補給源として供給されるCOは湯面付近で殆んどが
燃焼し、転炉の上部に逃げてから燃焼して反応熱を生ず
るということがないので、転炉上方部の耐火壁が過加熱
を受けることがな(、転F?命の短縮といった問題も生
じないO
■熱源としてFe−8iや石炭、コークス等を用いる方
法の様に溶鋼中の5ijlやSjlが増加する恐れがな
く、従って7ラツクス量の増大等が全く不要であるので
、スラグレスまたはスラグミニマム操業へも支障なく適
用することができる。■Most of the CO supplied as a heat supply source burns near the hot water surface and does not escape to the top of the converter and then burn to generate reaction heat, so the fireproof wall at the top of the converter is There is no risk of overheating (no problems such as shortening of F? life). There is no risk of an increase in 5ijl or Sjl in the molten steel, unlike methods that use Fe-8i, coal, coke, etc. as a heat source. Therefore, since there is no need to increase the amount of 7 lux, it can be applied to slagless or slag minimum operation without any problem.
次に実験例を挙げて本発明の効果を一層明確にする。Next, experimental examples will be given to further clarify the effects of the present invention.
実験例
炉底中央部に1つの底吹きノズルを設けた試験用転炉(
容10.6)ン)を使用し、底吹きノズル2よりCOガ
スを吹込みながら上吹きランス8(単孔ノズル、5.O
wIRφ)を上吹きして吹峠実験を行なった。向上下吹
きの条件は次の通りとした。Experimental example A test converter with one bottom blowing nozzle installed in the center of the furnace bottom (
Using a top blow lance 8 (single hole nozzle, 5.
A Fukitoge experiment was carried out by top-blowing wIRφ). The conditions for improved bottom blowing were as follows.
銅浴の静止深さくLo):40G鱈
上吹きランスの孔径(ロ):5.On+ランス高さくh
) : 400鱈
上吹き酸素流量(Fg2) : 1.6 Nm /mx
nこれらの値を前記〔■)t (m)式に代入して算出
される(L/Lo>の値は0.69で本発明の要件を満
たしており、又上吹き酸素の火点位置直下に右ける銅浴
深さく口)は、890 X (1−0,69) =12
1調となる。Resting depth of copper bath (Lo): 40G Cod top blowing lance hole diameter (Lo): 5. On + lance height h
): 400 cod top-blown oxygen flow rate (Fg2): 1.6 Nm/mx
nThe value of (L/Lo> calculated by substituting these values into the formula [■)t(m) is 0.69, which satisfies the requirements of the present invention, and the position of the flame point of top-blown oxygen The depth of the copper bath (to the right below) is 890 x (1-0,69) = 12
It will be in 1st key.
又底吹きノズル2からのCOガス流量(Qは0.8ON
m3/minとし、これを前記火点直下の銅浴深さくH
:121mm)と共に前記(I))式に代入するとd=
2.1(m)が得られるので、底吹きノズルの孔径は、
上記dの1〜2倍の範囲である2、 5 vtm’に設
定した。Also, the CO gas flow rate from the bottom blowing nozzle 2 (Q is 0.8ON
m3/min, and this is the depth of the copper bath just below the fire point H.
:121mm) into the above formula (I), d=
2.1 (m), the hole diameter of the bottom blowing nozzle is
It was set to 2.5 vtm', which is 1 to 2 times the above d.
その他の操業条件を第1表に、又操業結果を第2、第8
表に示す。Other operating conditions are shown in Table 1, and operating results are shown in Tables 2 and 8.
Shown in the table.
第1表
又比較の為、下記第4表に示す操業条件を採用した他は
前記と同様にして底吹きノズルからArガスを底吹きし
、同様の吹峠実験を行なった。Table 1 and for comparison, a similar blowing pass experiment was conducted in the same manner as above except that the operating conditions shown in Table 4 below were adopted, with Ar gas being bottom blown from the bottom blowing nozzle.
第4表 操業条件 結果を第5,6表に示す。Table 4 Operating conditions The results are shown in Tables 5 and 6.
上記実験において本発明(Co底吹き法)の効果を比較
法(Ar底吹き法)と単純に比べるには、第2表と第5
表の吹止め溶鋼温度、殊に温度差(転炉吹綜による昇温
量)を比較すればよ<、Ar底吹き法では該温度差が+
885℃であるのに対し、本発明法ではこれより85℃
高い+870℃の昇温が得られている。In order to simply compare the effect of the present invention (Co bottom blowing method) with the comparative method (Ar bottom blowing method) in the above experiment, Table 2 and Table 5.
If we compare the blow-stopping molten steel temperature in the table, especially the temperature difference (amount of temperature rise due to converter blowing heel), in the Ar bottom blowing method, the temperature difference is +
885°C, whereas the method of the present invention lowers the temperature by 85°C.
A high temperature increase of +870°C was obtained.
尚この温度差は、吹止め時の溶鋼温度のみからめたもの
であるが、溶鋼温度に影響する他の因子を更に詳細に比
較検討すると、以下に説明する如く本発明法と比較法の
温度差は一層順著となる。Note that this temperature difference is based only on the molten steel temperature at the time of blow-stopping, but when other factors that affect the molten steel temperature are compared in more detail, the temperature difference between the present invention method and the comparative method is as explained below. will become even more popular.
即ち転炉吹鑓時の昇温は、■溶銑中の燃焼性元素の消費
量、換言すれば該元素の燃焼による発熱量、■副原料(
フラックス)の加熱による昇温ロス、■スラグ中のFe
Oによる昇温ロス、によっても変わってくるので、これ
らの影響についても比較した。In other words, the temperature rise during converter blowing is determined by: (1) consumption of combustible elements in the hot metal, in other words, calorific value due to combustion of the elements, (2) auxiliary raw materials (
Temperature loss due to heating of flux), Fe in slag
Since it also changes depending on the temperature increase loss due to O, these effects were also compared.
■溶銑中の燃焼性元素の燃焼による発熱量第2表(CO
ガス底吹き法)及び第5表(A rガス底吹き法)より
、夫々の方法による吹餘時の燃焼性元素の消費量及び燃
焼による発熱ff1(出鋼温度換算値)を比較すると第
7表の通りとなる。■Calorific value due to combustion of combustible elements in hot metal Table 2 (CO
From Table 5 (Gas bottom blowing method) and Table 5 (Ar gas bottom blowing method), when comparing the consumption of combustible elements during blowing and the heat generation ff1 (equivalent to tapping temperature) by each method, the seventh It is as shown in the table.
第7表
第7表の出端温度換算値を総合すると+8.8℃となる
。即ち熱効率を1oo96と考えると、燃焼性元素の燃
焼による昇温量は、Ar底吹き法の方がCo底吹き法よ
り8.8℃高くなるはずである。Table 7 When the output end temperature conversion values in Table 7 are combined, the result is +8.8°C. That is, assuming that the thermal efficiency is 1oo96, the amount of temperature increase due to combustion of the combustible element should be 8.8° C. higher in the Ar bottom blowing method than in the Co bottom blowing method.
■副原料の加熱による昇温ロス
副原料(生石灰+軽焼ドロマイト+はたる石)の使用量
はAr底吹き法が82.0Kg、Co底吹き法が29.
2 Kfであり、前者の方が2.8 xg多い。これを
出鋼温度に換算すると8.8℃となり、Ar底吹き法の
方がこれだけ昇温ロスが大きい。■Temperature rise loss due to heating of auxiliary raw materials The amount of auxiliary raw materials (quicklime + lightly calcined dolomite + rubble stone) used is 82.0 kg for the Ar bottom blowing method and 29.0 kg for the Co bottom blowing method.
2 Kf, the former is 2.8 xg more. Converting this to the tapping temperature is 8.8°C, and the Ar bottom blowing method has a larger temperature increase loss.
■スラグ中のFeO生成反応熱による昇温第8表及び第
5表よりスラグ中の(T、Fe)の差をめると
(T、 Fe ) (T−F e ) co法Ar法
= 16.10−14.22 = 1.88%となり、
これをFeOjlの差に換算すると(Fed) = (
T、 Fe ) X 1.29 = 1.88 X 1
.29= 2.48 (*)
となる。該F60 fiの差を出鋼温度−こ換算すると
2.48X4.8=10.4 C”C’)となる。即ち
スラグ中のT、FeJIICよる出鋼温度への影響から
すれば、出鋼温度はAr底吹き法の方が10.4℃高く
ならなければならない。■Temperature rise due to reaction heat of FeO formation in slag From Tables 8 and 5, the difference in (T, Fe) in the slag is calculated as follows: (T, Fe) (T-Fe) Co method Ar method = 16 .10-14.22 = 1.88%,
Converting this to the difference in FeOjl, (Fed) = (
T, Fe) X 1.29 = 1.88 X 1
.. 29=2.48 (*). If the difference in F60 fi is converted into the tapping temperature - 2.48 x 4.8 = 10.4 C"C'), it becomes 2.48 The temperature must be 10.4° C. higher for the Ar bottom blowing method.
上記■〜■に示した出鋼温度への影響を総合すると(+
8.8−8.8+I O,4)=9.8となり、熱効率
を10096とすると出鋼温度はAr底吹き法の方が9
.8℃高くなるはずである。しかしながら実際の溶鋼昇
温量はCO底吹き法(本発明法)の方が86℃大きく、
結局本発明による理論上の昇温量は(86+9.8)=
44.8(’C)となり、c。Comprehending the effects on the tapping temperature shown in ■ to ■ above, (+
8.8-8.8+I O,4) = 9.8, and assuming the thermal efficiency is 10096, the tapping temperature is 9 for the Ar bottom blowing method.
.. It should be 8℃ higher. However, the actual temperature rise of molten steel is 86°C higher with the CO bottom blowing method (method of the present invention).
In the end, the theoretical temperature increase according to the present invention is (86+9.8)=
44.8('C), c.
底吹きによる昇温効果は実測値よりも大きいことが理解
できる。It can be seen that the temperature increase effect due to bottom blowing is larger than the actual value.
第1,2図は本発明による転炉吹錦状況を示す縦断面説
明図である。
l・・・転炉、
2.2a、2b・・・底吹きノズル、
8・・・上吹きランス〇
出願人株式会社神戸a鋼所FIGS. 1 and 2 are explanatory longitudinal cross-sectional views showing a converter blowing condition according to the present invention. l...Converter, 2.2a, 2b...bottom blowing nozzle, 8...top blowing lance〇Applicant Kobe A Steel Works Co., Ltd.
Claims (1)
を底吹きしつつ上吹きランスから酸素を上吹きして吹峠
を行なうに当たり、底吹きノズルの孔径を下記(I)式
から算出されるノズル径の1〜2倍に設定すると共に、
該ノズルより溶#1tトン当たり0.20 Nm3/m
in以上の流量でCO含有ガスを吹込み、且つ上吹02
ジエツトによる鋼浴のへこみ深さくL)と鋼浴の静止深
さくLo) との比が0.6以上となる様)こ、上吹き
ランスの高さと送酸速度を調整して吹錬を行なうことを
特徴とする転炉吹峠法。 d=30・Q−(1/H)’°5 ・・・〔I〕但しQ
:1孔当たりの底吹きガス流1! (Net3/m1n
) ■:吹銖中の火点部に゛おける鋼浴深さくcrn) d=底吹きノズル径(6n)[Claims] When using a top-bottom blowing converter and blowing CO-containing gas from the bottom-blowing nozzle and top-blowing oxygen from the top-blowing lance, the hole diameter of the bottom-blowing nozzle is determined as follows ( I) Set it to 1 to 2 times the nozzle diameter calculated from the formula, and
0.20 Nm3/m per ton of melt from the nozzle
Blow CO-containing gas at a flow rate of in or more, and top blow 02
Perform blowing by adjusting the height of the top blowing lance and the oxygen supply rate so that the ratio of the depth of depression in the steel bath due to the jet (L) to the static depth of the steel bath (Lo) is 0.6 or more). The converter blowing pass method is characterized by: d=30・Q-(1/H)'°5 ... [I] However, Q
:1 bottom-blown gas flow per hole! (Net3/m1n
) ■: Depth of the steel bath at the hot spot in the blowgun (crn) d = Bottom blowing nozzle diameter (6n)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4859584A JPS60194007A (en) | 1984-03-13 | 1984-03-13 | Converter blowing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4859584A JPS60194007A (en) | 1984-03-13 | 1984-03-13 | Converter blowing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60194007A true JPS60194007A (en) | 1985-10-02 |
Family
ID=12807755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4859584A Pending JPS60194007A (en) | 1984-03-13 | 1984-03-13 | Converter blowing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60194007A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059547A (en) * | 1991-06-27 | 1993-01-19 | Nippon Steel Corp | Method for devarbonize-refining molten chromium-containing steel |
JP2009270136A (en) * | 2008-05-01 | 2009-11-19 | Kobe Steel Ltd | Converter-blowing method for ultra-low carbon steel using general pig iron |
CN107299182A (en) * | 2017-07-17 | 2017-10-27 | 唐山不锈钢有限责任公司 | A kind of method that converter utilizes scrap smelting half steel |
-
1984
- 1984-03-13 JP JP4859584A patent/JPS60194007A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059547A (en) * | 1991-06-27 | 1993-01-19 | Nippon Steel Corp | Method for devarbonize-refining molten chromium-containing steel |
JP2009270136A (en) * | 2008-05-01 | 2009-11-19 | Kobe Steel Ltd | Converter-blowing method for ultra-low carbon steel using general pig iron |
CN107299182A (en) * | 2017-07-17 | 2017-10-27 | 唐山不锈钢有限责任公司 | A kind of method that converter utilizes scrap smelting half steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108300831B (en) | Method for improving heat source in smelting process of dephosphorization converter | |
CA2555472C (en) | Method for producing low carbon steel | |
US3232748A (en) | Process for the production of steel | |
US4280838A (en) | Production of carbon steel and low-alloy steel with bottom blowing basic oxygen furnace | |
TWI743762B (en) | Modification method of steel making slag and spray gun | |
JPS60194007A (en) | Converter blowing method | |
CA1177252A (en) | Steel conversion method | |
US4462825A (en) | Method for increasing the scrap melting capability of metal refining processes | |
KR20230136164A (en) | Method of refining molten iron and manufacturing method of molten steel using the same | |
JPH0723494B2 (en) | Method and apparatus for refining molten metal | |
US2936230A (en) | Method for making steel | |
US3088821A (en) | Open hearth steelmaking process | |
KR100868430B1 (en) | Method for Making Molten Steel by Converter | |
JP2560667B2 (en) | Hot metal production method | |
JPS60100610A (en) | Operating method of converter | |
JPS60403B2 (en) | Hot metal decarburization method | |
JPH01252710A (en) | Method for operating iron bath type smelting reduction furnace | |
CN113667794A (en) | Method for manufacturing early-stage slag by using self-circulation slag pellets | |
JP2003268434A (en) | Top-blown lance and process for refining molten iron using this | |
SU398635A1 (en) | METHOD OF DESIGN OF SLAG | |
JP2560668B2 (en) | Smelting and refining method | |
Houseman et al. | Tuyere-Oxygen Steelmaking Processes-1 | |
JPS6151604B2 (en) | ||
JPH11158528A (en) | Lance for gas top-blowing | |
JPS61227119A (en) | Manufacture of steel in converter using cold material containing iron as principal starting material |