JPS62188711A - Melt reduction steel making method - Google Patents

Melt reduction steel making method

Info

Publication number
JPS62188711A
JPS62188711A JP2900086A JP2900086A JPS62188711A JP S62188711 A JPS62188711 A JP S62188711A JP 2900086 A JP2900086 A JP 2900086A JP 2900086 A JP2900086 A JP 2900086A JP S62188711 A JPS62188711 A JP S62188711A
Authority
JP
Japan
Prior art keywords
iron
converter
molten iron
oxygen
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2900086A
Other languages
Japanese (ja)
Other versions
JPH0586447B2 (en
Inventor
Haruyoshi Tanabe
治良 田辺
Junichi Fukumi
純一 福味
Masahiro Kawakami
川上 正弘
Kenzo Yamada
健三 山田
Katsuhiro Iwasaki
克博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2900086A priority Critical patent/JPS62188711A/en
Publication of JPS62188711A publication Critical patent/JPS62188711A/en
Publication of JPH0586447B2 publication Critical patent/JPH0586447B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state

Abstract

PURPOSE:To uniformly transfer the combustion heat of CO generated from a molten iron to the molten iron in the stage of producing the molten from iron ore with an oxygen top blown converter by blowing the oxygen from plural nozzles provided under the molten iron surface toward the direction inclined in the axial direction of the converter. CONSTITUTION:The molten iron 2 is thrown into the oxygen top blown converter 1 and gaseous O2 is ejected from an upper lance 3; at the same time, the iron ore and coal which is a reducing agent are thrown into the converter to reduce the iron ore to the molten iron. The gaseous O2 is injected from the plural nozzles 4a-4n provided under the molten iron bath surface 2a in the direction inclined from the central axis of the converter 1. The CO-contg. gas generated by the decarburization reaction of the molten iron 2 is burned in a secondary combustion zone 6 by the O2 from the lance 3 and the generated heat is transferred to the liquid drops 5 of the molten slag and molten iron formed by the oxygen ejected from nozzles 4a-4n to heat the molten iron 2. Since the nozzles 4a-4n are inclined, the flying distance of the liquid drops of the molten slag and molten iron is long and the heat of the secondary combustion zone 6 is efficiently transferred to the molten iron 2, by which the thermal efficiency is improved and the amt. of coal to be used can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は鉄鉱石から直接溶鉄を製造する溶融還元製鋼
法、特に鉄鉱石の還元を高効率で行なう方法に@する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a smelting reduction steelmaking method for directly producing molten iron from iron ore, and in particular to a method for reducing iron ore with high efficiency.

〔従来の技術〕[Conventional technology]

従来の鉄鉱石から鋼を得る代表的な方法は、高炉法と転
炉法とを組合せた方法である。この方法は高炉により鉄
鉱石を還元して銑鉄を得たのち、この銑鉄を転炉で脱炭
して鋼を得るいわゆる間接法である。
A typical conventional method for obtaining steel from iron ore is a method that combines a blast furnace method and a converter method. This method is a so-called indirect method in which iron ore is reduced in a blast furnace to obtain pig iron, and then this pig iron is decarburized in a converter to obtain steel.

しかし、この間接法には現在法のような問題がある。However, this indirect method has the same problems as the current law.

■ 高炉に使用するコークスは強粘結炭を使用している
が世界的な強粘結炭のflv要増大にともない、強粘結
炭の入手面に不安があると同時に価格が高騰する一方で
ある。
■ The coke used in blast furnaces uses strong coking coal, but as the demand for strong coking coal increases worldwide, there are concerns about the availability of strong coking coal, and at the same time prices are rising. be.

■ コークス製造のためのコークス炉が必要であり、燃
料費も多く必要とする。
■ A coke oven is required to produce coke, and fuel costs are high.

■ 効率を高めるため、高炉に装入する鉄鉱石を焼結す
るための高価な焼結設備を必要とする。
■ To increase efficiency, expensive sintering equipment is required to sinter the iron ore charged into the blast furnace.

このため間接法の改善提案がなされると同時に、間接法
に代る製鋼法として高炉を使用しない直接溶融還元法の
開発がいくつか進められている。
For this reason, proposals for improving the indirect method have been made, and at the same time, several efforts are being made to develop a direct smelting reduction method that does not use a blast furnace as a steelmaking method to replace the indirect method.

しかし、直接溶融還元法は石炭の消費量の増加を防ぐた
め、予備還元炉を使用するミドレックス(Mldrex
法)等の還元鉄製造のプロセスを組込む必要があり、設
備費が高価となり現段階では実用に至っていない。
However, the direct smelting reduction method uses a preliminary reduction furnace to prevent an increase in coal consumption.
It is necessary to incorporate a process for producing reduced iron such as the method (method), and the equipment cost is high, so it has not been put into practical use at this stage.

また、予備還元炉を使用せずに鉄鉱石を直接還元して鋼
を得る直接溶融還元法には、冶金学的に次の問題がある
Furthermore, the direct smelting reduction method for producing steel by directly reducing iron ore without using a preliminary reduction furnace has the following metallurgical problems.

例えば転炉等を利用して炉内に鉄浴をノl成し、この鉄
浴に鉄鉱石を投入して還元せしめ、次第に増加する鉄浴
を連続的あるいは間欠的に抜き出して鋼を製造する場合
、鉄鉱石を還元するためには還元剤が必要であり、鉄浴
を還元剤として利用するに際しては鉄浴の還元ポテンシ
ャルが高いことが条件となる。
For example, an iron bath is formed in the furnace using a converter, iron ore is put into this iron bath and reduced, and the gradually increasing amount of iron bath is extracted continuously or intermittently to produce steel. In this case, a reducing agent is required to reduce the iron ore, and when using an iron bath as a reducing agent, the iron bath must have a high reducing potential.

しかし抜き出すべき鋼浴は常識的に炭素含有量〔C〕が
1%未満であり、高炉の炭素含有量〔C〕が4%程度の
浴と比較して還元ポテンシャルが低く、鉄浴上に装入さ
れた鉄鉱石は鉄浴上で溶解しても速やかKa元されない
。このため鉄鉱石と石炭を酸素転炉内に装入して鉄鉱石
より直接溶融を得る方法も種々試みられている。
However, common sense suggests that the steel bath to be extracted has a carbon content [C] of less than 1%, and has a lower reduction potential than a blast furnace bath with a carbon content [C] of about 4%. Even if the iron ore placed in the iron ore is melted on an iron bath, the Ka value is not immediately restored. For this reason, various methods have been attempted to obtain direct melting from iron ore by charging iron ore and coal into an oxygen converter.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記鉄鉱石と石炭を酸素転炉内に装入して鉄鉱石より直
接溶鋼を得る方法はいずれの場合も高炉による還元溶銑
には経済的にはるかに及ばないという問題点がある。
In either case, the method of charging iron ore and coal into an oxygen converter to obtain molten steel directly from the iron ore has the problem that it is economically far inferior to reducing hot metal using a blast furnace.

これは酸素転炉内で軟線中の脱炭反応C+O→COによ
り発生するCOガスが、鉄浴湯面上方においてランスか
らの酸素ジェットと反応しCO+10、→CO1と2次
燃焼を行なっているが、この2次燃焼によって発生する
熱が鉄浴に着熱せずガスとして発散してしまうためであ
る。
This is because CO gas generated by the decarburization reaction C+O→CO in the soft wire in the oxygen converter reacts with the oxygen jet from the lance above the surface of the iron bath, resulting in secondary combustion of CO+10 and →CO1. This is because the heat generated by this secondary combustion does not heat up the iron bath and is dissipated as gas.

また、この2次燃焼により発生する熱により炉耐火物の
損傷を生じるという問題点もある。
There is also the problem that the heat generated by this secondary combustion damages the furnace refractories.

この発明は上記問題点を解決するためになされたもので
あり、鉄鉱石の還元を高能率で行なうことにより、鉄鉱
石から直接鋼を安定して経済的に得ることができる溶融
還元製鋼法を提案することを目的とするものである。
This invention was made to solve the above problems, and it provides a smelting reduction steelmaking method that can stably and economically obtain steel directly from iron ore by reducing iron ore with high efficiency. The purpose is to make suggestions.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る溶融還元製鋼法は、転炉の軸方向に対し
て傾斜した方向に設けたガス吹込ノズルを転炉内の鉄浴
湯面直下の転炉側壁に複数個設け、このガス吹込ノズル
より酸素を吹き込み、スラグ及び鉄浴の液滴をランス火
点方向に飛ばすと同時に鉄浴を回転し、かつ飛翔距離を
長く確保することにより鉄浴上に投入される鉄鉱石から
溶鋼又は溶銑を直接製造する方法である。
In the smelting reduction steelmaking method according to the present invention, a plurality of gas blowing nozzles are provided on the side wall of the converter directly below the surface of the iron bath in the converter, and the gas blowing nozzles are installed in a direction inclined with respect to the axial direction of the converter. By blowing more oxygen into the iron bath, causing the slag and iron bath droplets to fly toward the lance's flash point, and simultaneously rotating the iron bath and ensuring a long flying distance, molten steel or hot metal can be removed from the iron ore thrown onto the iron bath. This is a direct manufacturing method.

〔作 用〕[For production]

この発明においては、複数のガス吹込ノズルより鉄浴中
に吹込む酸素でスラグ及び鉄浴の液滴をランス火点附近
の2次燃焼帯に長距離で飛ばすことにより液滴で2次燃
焼によって発生した熱を吸収し、鉄浴中に着熱すると同
時に鉄浴を吹込んだ酸素により回転させることKより着
熱した熱を鉄浴中に均一に伝達する。
In this invention, the slag and iron bath droplets are blown over a long distance into the secondary combustion zone near the lance ignition point using oxygen blown into the iron bath from a plurality of gas blowing nozzles, thereby causing secondary combustion with the droplets. The generated heat is absorbed and transferred into the iron bath, and at the same time the iron bath is rotated by blown oxygen, thereby uniformly transmitting the generated heat into the iron bath.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す断面図、第2図は平
面図であり、図において1は転炉、2は転炉1内の鉄浴
、6は転炉1内に挿入され鉄浴2面に高圧の酸素を吹き
込むランス、4a〜4nは鉄浴湯面2JL直下の転炉側
壁に複数個設けたガス吹込ノズルである。このガス吹込
ノア: k 4 a〜4nは第2図に示すように転炉2
の軸方向に対して傾斜した方向に設けられている。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a plan view. In the figure, 1 is a converter, 2 is an iron bath in the converter 1, and 6 is an iron bath inserted into the converter 1. Lances 4a to 4n for blowing high-pressure oxygen into the two surfaces of the iron bath are gas blowing nozzles provided in plural on the side wall of the converter just below the iron bath surface 2JL. These gas injection nozzles: k4a to 4n are connected to the converter 2 as shown in FIG.
It is provided in a direction inclined with respect to the axial direction.

上記のように構成した転炉1内に鉄浴2を装入し、この
鉄浴2面上にランス6から酸素を吹き込みながら、鉄鉱
と石炭を連続投入して、鉄鉱石から直接溶鋼又は溶銑を
製造する。この際、複数のガス吹込ノズル4a〜4nか
ら酸素を鉄浴2中に吠き込み、鉄浴2及び湯面2a上の
スラグ(不図示)の一部を液滴5として、ランス3の火
点6a方向に飛ばす。
An iron bath 2 is charged into the converter 1 constructed as described above, and iron ore and coal are continuously charged while blowing oxygen from the lance 6 onto the surface of the iron bath 2, so that molten steel or hot metal is produced directly from the iron ore. Manufacture. At this time, oxygen is injected into the iron bath 2 from a plurality of gas blowing nozzles 4a to 4n, and part of the slag (not shown) on the iron bath 2 and the hot water surface 2a is turned into droplets 5, and the lance 3 is ignited. Fly in the direction of point 6a.

転炉1内ではランス6から吹き込む酸素と投入された石
炭によりC十〇4COの1次燃焼反応を活溌に行ない、
このCOガスによって鉄鉱石の還元を行なう。
In the converter 1, the primary combustion reaction of CO104CO is actively carried out by the oxygen blown in from the lance 6 and the coal thrown in.
This CO gas is used to reduce iron ore.

一方、ランス6からの酸素ジェットによりC0ガスが湯
面2a上方の2次燃焼帯6でCo+HO,→C0102
次燃焼を行なっている。この2次燃焼帯6にガス吹込ノ
ズル4a〜4nかに吹き込む酸素によって生じたスラグ
及び鉄浴の液滴5を渦流状に飛ばして、2次燃焼帯6に
液滴5をほぼ均一に分布させながら、2次燃焼により発
生した熱を液滴5に効率よく吸収させ、この液滴5によ
り鉄浴2に効率良く着熱させる。
On the other hand, the oxygen jet from the lance 6 causes CO gas to flow into the secondary combustion zone 6 above the hot water level 2a as Co+HO,→C0102
The next combustion is being carried out. The droplets 5 of the slag and iron bath generated by the oxygen blown into the secondary combustion zone 6 through the gas blowing nozzles 4a to 4n are blown away in a swirling manner, and the droplets 5 are distributed almost uniformly in the secondary combustion zone 6. At the same time, the heat generated by the secondary combustion is efficiently absorbed by the droplets 5, and the droplets 5 efficiently heat the iron bath 2.

液滴5によって2次燃焼熱を着熱した鉄浴2は、ガス吹
込ノズル4a〜4nから吹き込まれる酸素によって炉軸
心に対する回転運動と上下方向の回転運動が与えられる
ため、1次燃焼及び2次燃焼により着熱した熱を鉄浴2
中に均一に伝えることができる。
The iron bath 2, which has received secondary combustion heat by the droplets 5, is given a rotational motion with respect to the furnace axis and a vertical rotational motion by the oxygen blown in from the gas blowing nozzles 4a to 4n, so that the iron bath 2 receives the primary combustion heat and the secondary combustion heat. The heat generated by the next combustion is transferred to the iron bath 2.
It can be transmitted evenly inside.

〔具体例〕〔Concrete example〕

第1図に示した転炉1に最初炭素含有量(C)を3%に
調整した鉄浴2を入れ、この中に鉄鉱石と炭素を連続投
入しながらガス吹込ノズル4a〜4nから2次燃焼帯6
に酸素を吹き込んだ場合と、ガス吹込ノズル4a〜4n
から酸素を吹き込まない場合における、鉄浴2の炭素含
有11 (C)と石炭原単位(kFi/1o11鉄)を
調べた結果を第6図に示す。
First, an iron bath 2 whose carbon content (C) was adjusted to 3% is placed in the converter 1 shown in FIG. combustion zone 6
When oxygen is blown into the gas blowing nozzles 4a to 4n
Figure 6 shows the results of examining the carbon content 11 (C) and coal consumption rate (kFi/1o11 iron) of iron bath 2 when no oxygen is blown into the bath.

第3図においてAはガス吹込ノズル4a〜4nから酸素
を吹き込んだ場合、Bはガス吹込ノズル4a〜4nから
酸素を吹き込まない場合の石炭原単位の変化である。
In FIG. 3, A is the change in the coal consumption rate when oxygen is blown from the gas injection nozzles 4a to 4n, and B is the change in the coal consumption rate when oxygen is not blown from the gas injection nozzles 4a to 4n.

第6図から明らかなように1鉄浴2中の炭素含有量(C
)の減少にしたがってガス吹込ノズル4a〜4nから酸
素を吠き込んだ場合の方が、酸素吹き込みのない場合に
比べて、石炭原単位が大巾に減少した。これはガス吹込
ノズル4&〜4nで吹き込む酸素によって2次燃焼帯6
に飛ばされる液滴5中の炭素含有量cc)が高い場合は
2次燃焼帯6のCO,ガスを液滴5中の炭素で還元する
が、鉄液中の炭素含有量〔C〕が低下し、液滴5中の炭
素含金有量(C)が低下するにしたがって液滴5は2次
燃焼帯6の熱を吸収するのみとなり、この液?1.i!
i5により鉄浴2の着熱を図ることができるためと考え
られる。
As is clear from Fig. 6, the carbon content (C
), the coal consumption rate was significantly reduced in the case where oxygen was injected from the gas blowing nozzles 4a to 4n, compared to the case where oxygen was not injected. This is caused by the oxygen blown into the secondary combustion zone 6 by gas blowing nozzles 4&~4n.
When the carbon content cc) in the droplets 5 blown away is high, CO and gas in the secondary combustion zone 6 are reduced by the carbon in the droplets 5, but the carbon content [C] in the iron liquid decreases. However, as the carbon content (C) in the droplet 5 decreases, the droplet 5 only absorbs the heat of the secondary combustion zone 6, and this liquid ? 1. i!
This is thought to be because the iron bath 2 can be heated by i5.

したがってガス吹込ノズル4a〜4nから酸素を吹き込
み、液滴5の浸流を2次燃焼帯6に与えて、2次燃焼帯
6における液滴5の分布をほぼ均一にすることにより、
液滴5による2次燃焼熱吸収の向上を図ることができる
Therefore, by blowing oxygen from the gas blowing nozzles 4a to 4n and applying a flow of droplets 5 to the secondary combustion zone 6, the distribution of the droplets 5 in the secondary combustion zone 6 is made almost uniform.
It is possible to improve secondary combustion heat absorption by the droplets 5.

なお、上記実施例ではガス吹込ノズル41〜4nを第2
図に示すように炉軸心を中心とした点対称に設けた場合
はついて説明したが、第4図に示すように炉の軸方向を
中心とした軸対称の位[Kガス吹込ノズル4*t4bを
設けても上記実施例と同様に液滴5に渦流を与えること
ができると同時に鉄浴2に回転運動を与えることもでき
る。
In the above embodiment, the gas blowing nozzles 41 to 4n are
As shown in the figure, we have explained the case where the K gas blowing nozzle 4 Even if t4b is provided, it is possible to impart a vortex to the droplet 5 as in the above embodiment, and at the same time, it is also possible to impart rotational motion to the iron bath 2.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、複数のガス吹込ノズル
より吹き込む酸素により、スラグ及び鉄浴の渦流を2次
燃焼帯に与えているから、液滴により2次燃焼帯の熱を
効率よく汲、収することができ、かつ上記吹き込む酸素
により鉄浴に@転運動を与えているから、鉄浴中の温度
分布を均一にすることができ、鉄浴の着熱効率の向上を
図ることができる。したがって石炭原単位(kg/lo
n鉄)を大巾に減少することができ、鉄鉱石の還元を経
済的に行なうことができる。また2次燃焼により発生し
た熱を効率良く鉄浴に着熱するから、2次燃焼による炉
耐火物の損傷を防止することができる効果も有する。
As explained above, this invention uses oxygen blown in from a plurality of gas blowing nozzles to give the vortex of the slag and iron bath to the secondary combustion zone. In addition, since the oxygen blown into the iron bath imparts @ rotational motion to the iron bath, the temperature distribution in the iron bath can be made uniform, and the heat transfer efficiency of the iron bath can be improved. Therefore, coal intensity (kg/lo
n iron) can be greatly reduced, and iron ore can be reduced economically. Furthermore, since the heat generated by the secondary combustion is efficiently transferred to the iron bath, damage to the furnace refractories due to the secondary combustion can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す断面図、第2図は上記
実施例の平面図、第6図は鉄浴中の炭素含有ff1(C
〕(%)と石炭原単位(ゆ/l o n鉄)の特性図、
第4図は他の実施例の平面図である。 1;転炉、2;鉄浴、2a;湯面、3;ランス、4a〜
4n;ガス吹込ノズル、5;液滴、6;2次燃焼帯。
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a plan view of the above embodiment, and Fig. 6 is a carbon-containing ff1 (C
] (%) and coal unit consumption (yu/l o n iron) characteristic diagram,
FIG. 4 is a plan view of another embodiment. 1; converter, 2; iron bath, 2a; hot water surface, 3; lance, 4a~
4n; gas injection nozzle; 5; droplet; 6; secondary combustion zone.

Claims (1)

【特許請求の範囲】[Claims] ランスより酸素を吹き込む酸素転炉を用い鉄鉱石より溶
鋼又は溶銑を製造する直接溶融還元製鋼法において、上
記転炉の軸方向に対して傾斜した方向に設けたガス吹込
ノズルを転炉内の鉄浴湯面直下の転炉側壁に複数個設け
、該ガス吹込ノズルより酸素を吹き込み、スラグ及び鉄
浴の液滴をランス火点方向に飛ばすと同時に鉄浴を回転
することを特徴とする溶融還元製鋼法。
In the direct smelting reduction steelmaking method in which molten steel or hot metal is produced from iron ore using an oxygen converter that blows oxygen from a lance, a gas injection nozzle installed in a direction inclined to the axial direction of the converter is used to blow the iron inside the converter. A smelting reduction characterized in that a plurality of gas blowing nozzles are provided on the side wall of the converter just below the bath water surface, and oxygen is blown from the gas blowing nozzles to blow the slag and iron bath droplets toward the lance flash point, while simultaneously rotating the iron bath. Steel manufacturing method.
JP2900086A 1986-02-14 1986-02-14 Melt reduction steel making method Granted JPS62188711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2900086A JPS62188711A (en) 1986-02-14 1986-02-14 Melt reduction steel making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2900086A JPS62188711A (en) 1986-02-14 1986-02-14 Melt reduction steel making method

Publications (2)

Publication Number Publication Date
JPS62188711A true JPS62188711A (en) 1987-08-18
JPH0586447B2 JPH0586447B2 (en) 1993-12-13

Family

ID=12264134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2900086A Granted JPS62188711A (en) 1986-02-14 1986-02-14 Melt reduction steel making method

Country Status (1)

Country Link
JP (1) JPS62188711A (en)

Also Published As

Publication number Publication date
JPH0586447B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
KR910005900B1 (en) Process for increasing the energy input in electric arc furnaces
JP5707702B2 (en) Hot metal dephosphorization method
CN102732668B (en) Oxygen furnace steel method capable of improving jet velocity through preheated oxygen
US3232748A (en) Process for the production of steel
CN108842027A (en) A kind of dephosphorization converter finishing slag gasification dephosphorization method and smelting process
US3661560A (en) Manganese control in basic steelmaking process
JP3189096B2 (en) Method for producing steel in liquid bath and apparatus for carrying out the method
JPS62188711A (en) Melt reduction steel making method
US3471283A (en) Reduction of iron ore
JPS62188710A (en) Melt reduction steel making method
JP7215638B2 (en) Method for controlling top-blowing lance of converter, method for adding auxiliary materials, and method for refining molten iron
JPS62188712A (en) Melt reduction steel making method
NZ208471A (en) Refining molten metal.refining gases injected into and onto the melt
CA1336042C (en) Method of charging chromium ores in a smelting reduction
JPS631367B2 (en)
JPS62188713A (en) Melt reduction steel making method
JPS6167708A (en) Refining method of iron alloy
JPS61284512A (en) Production of high-chromium steel using chromium ore
JP2001059111A (en) Gas blowing lance and operation of top-bottom combined converter using this lance
JPH11158528A (en) Lance for gas top-blowing
KR20230136164A (en) Method of refining molten iron and manufacturing method of molten steel using the same
JPH1121610A (en) Lance for blowing gas and operation of converter type refining furnace
JPH01191719A (en) Method for operating smelting reduction furnace
JPH0559961B2 (en)
JP2001279310A (en) Method for operating iron bath type smelting reduction furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees