JPS60191519A - Josephson junction logical circuit element - Google Patents

Josephson junction logical circuit element

Info

Publication number
JPS60191519A
JPS60191519A JP4772884A JP4772884A JPS60191519A JP S60191519 A JPS60191519 A JP S60191519A JP 4772884 A JP4772884 A JP 4772884A JP 4772884 A JP4772884 A JP 4772884A JP S60191519 A JPS60191519 A JP S60191519A
Authority
JP
Japan
Prior art keywords
magnetic flux
josephson junction
circuit element
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4772884A
Other languages
Japanese (ja)
Inventor
Hidekazu Goto
英一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP4772884A priority Critical patent/JPS60191519A/en
Publication of JPS60191519A publication Critical patent/JPS60191519A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/195Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
    • H03K19/1952Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices with electro-magnetic coupling of the control current

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To obtain a logical function based on a flowing curent by applying weight addition to plural magnetic flux inputs representing logical variables and applying the result to a Josephson junction. CONSTITUTION:Superconduction magnetic flux transformers T1, T2 and T3 having 1:1 of winding ratio, the Josephson junction (j), a load superconduction inductance LL are connected in series so as to form a loop circuit. Then input magnetic fluxes (x), (y), (z) represent a binary logical value by using respectively magnetic flux value + or -phi0/4. The input magnetic fluxes are superimposed via the transformers T1-T3 and the synthesized magnetic flux phi (=x+y+z) is fed to the junction (j). An output magnetic flux phif proportional to the current I flowing to the junction (j) represents a parity check function of three inputs. When the winding ratio is different, the weight addition in response to the winding ratios is applied.

Description

【発明の詳細な説明】 本発明は論理回路要素に係るものである。[Detailed description of the invention] The present invention relates to logic circuit elements.

本発明の目的は種々の論理関数を実現することのできる
、消費電力が少なく、スイッチング速度の速い論理回路
要素を提供することであり、この目的は論理変数を表わ
す複数の磁束人力を重畳して、少なくとも1個のジョセ
フソンジャンクションに印加し、このジョセフソンジャ
ンクションに流れる電流を出力負荷超伝導インダクタン
スに流してこのインダクタンスに生ずる磁束を論理出力
とするジョセフソンジャンクション論理回路要素により
達成される。
The purpose of the present invention is to provide a logic circuit element with low power consumption and high switching speed that can realize various logic functions, and this purpose is to superimpose multiple magnetic fluxes representing logic variables. is applied to at least one Josephson junction, the current flowing through the Josephson junction is passed through an output load superconducting inductance, and the magnetic flux generated in this inductance is achieved by a Josephson junction logic circuit element.

g3t 明の便宜上先ずジョセフソンジャンクションj
と超伝導インダクタンスLLとの直列回路ループの特性
を第1.2図を参照して説明する。
g3t For the convenience of Ming, first go to Josephson Junction J
The characteristics of a series circuit loop between the superconducting inductance LL and the superconducting inductance LL will be explained with reference to FIG. 1.2.

第1図はジョセフソンジャンクション」と超伝導インダ
クタンスLL との直列回路ループを示し、そしてこの
ループに磁束φを外部から加えた場合磁束φとループに
流れる電流Iとの関係を第2図に示す。第2図のグラフ
で横軸は基本量子磁束Φ。
Figure 1 shows a series circuit loop of a Josephson junction and a superconducting inductance LL, and when a magnetic flux φ is externally applied to this loop, Figure 2 shows the relationship between the magnetic flux φ and the current I flowing through the loop. . In the graph of Figure 2, the horizontal axis is the fundamental quantum magnetic flux Φ.

(=2X10−’ガウスcffl )で正規化した外部
磁束を、そして縦軸は電流Iをそれぞれ示している。
The external magnetic flux normalized by (=2X10-'Gauss cffl) is shown, and the vertical axis shows the current I.

ジョセフソンジャンクションの超伝導臨界電流をI、l
 とすると、微小信号に対するジョセフソンジャンクシ
ョンの等価インダクタンスLJ は、L、にΦ。I2π
1.となる。ジョセフソンジャンクションに外部磁束φ
が印加されるとLJ よりも充分に小さい超伝導負荷イ
ンダクタンスI−L に電流Iが流れ、この電流■によ
って磁束φr(−Ll。
The superconducting critical current of the Josephson junction is I, l
Then, the equivalent inductance LJ of the Josephson junction for a small signal is L, and Φ. I2π
1. becomes. External magnetic flux φ at Josephson junction
When is applied, a current I flows through the superconducting load inductance IL which is sufficiently smaller than LJ, and this current ■ causes a magnetic flux φr(-Ll.

・■)が生じる。外部磁束φと電流Iとの関係は次式に
より決定され、これをグラフに表わすと第2図のように
なる。
・■) occurs. The relationship between the external magnetic flux φ and the current I is determined by the following equation, and this is graphed as shown in FIG. 2.

1−1.、5in(2rrφ/Φ0) (1)第3図は
3人力の奇偶検査回路に適用した本発明によるジョセフ
ソンジャンクション論理回路要素の実施例を示す。第3
図に示すように、捲線比がl;lの3個の超伝導磁束変
圧器”l’、、T2 、T3 と1個のジョセフジンジ
ャンクンヨン」と出力負荷超伝導インダクタンスLL 
(LL <LJ )とが直列に接続されてループ回路を
形成している。
1-1. , 5in (2rrφ/Φ0) (1) FIG. 3 shows an embodiment of the Josephson junction logic circuit element according to the present invention applied to a three-man-operated odd-even check circuit. Third
As shown in the figure, there are three superconducting flux transformers "l', , T2, T3 and one Joseph Jin Jiang Kun Yong" with winding ratio l; l and the output load superconducting inductance LL.
(LL<LJ) are connected in series to form a loop circuit.

3個の入力磁束x、y、zはそれぞれ磁束値±Φ。The three input magnetic fluxes x, y, and z each have a magnetic flux value ±Φ.

I4によって2値論理値を表わす。これらの人力磁束は
超伝導磁束変圧器T+ 、 T2、i”3を介して重畳
され、そしてその合成磁束φ(= x 十y +Z)は
ジョセフソンジャンクションJに印加スる。
A binary logical value is represented by I4. These human magnetic fluxes are superimposed via superconducting flux transformers T+, T2, i''3, and the combined magnetic flux φ (= x y + Z) is applied to the Josephson junction J.

このときジョセフソンジャンクション、1に流れる電流
I (第2図)の真理値表は表1のようになり、この電
流Iに比例する出力磁束φ、は3人力の奇偶検査関数(
f=x■y■2)を表わすこと5なる。
At this time, the truth table of the current I flowing through Josephson junction 1 (Fig. 2) is as shown in Table 1, and the output magnetic flux φ, which is proportional to this current I, is the three-way odd-even test function (
It becomes 5 to express f=x■y■2).

X y z φ 1 −1 −1 −] −3−1川 −川 −1+1. −1 −1 −1 +1 −]、−I1 −1 −11川 +1 +14川 l川 −1’ −1−1−川 +1−] +] +1 −1N +] +1 −1 +1 −11 +1 −1−1 @−1+3 −1 表 1 第4図は3人力の多数決回路に適用した本発明のジョセ
フソンジャンクション論理回路要素の実施例を示してい
る。
X y z φ 1 -1 -1 -] -3-1 River - River -1+1. -1 -1 -1 +1 -], -I1 -1 -11 river +1 +14 river l river -1' -1-1-river +1-] +] +1 -1N +] +1 -1 +1 -11 +1 -1 -1 @-1+3 -1 Table 1 FIG. 4 shows an embodiment of the Josephson junction logic circuit element of the present invention applied to a three-person majority circuit.

第4図でx、y、zは第3図の実施例と同様の人力磁束
であり、T、 、T2、T3は超伝導磁束変圧器であっ
て、T1 は]:]、T2 と′1゛3 は1: ’A
(D捲m比をもつ。ジョセフソンジャンクションは2個
使用し、それぞれに磁束φ−x+(y十Z)I2と、φ
2−(y−1z)I2とが印加し、それぞれのジョセフ
ソンジャンクションに流れる電流11、I2 との合成
電流1 (= I+ +12 )が負、荷インダクタン
スLl、にながれる。この場合の真理値表を表2にしめ
ず。この表から明らかなように1 (φ、も同し)は3
人力x、y、zの多数−決関数を表わしている。
In FIG. 4, x, y, and z are human magnetic fluxes similar to those in the embodiment shown in FIG.゛3 is 1: 'A
(Has a winding ratio of D. Two Josephson junctions are used, and each has a magnetic flux φ−x+(y+Z)I2 and φ
2-(y-1z)I2 is applied, and a composite current 1 (=I+ +12) of the currents 11 and I2 flowing through the respective Josephson junctions flows into the load, the load inductance Ll. The truth table for this case is shown in Table 2. As is clear from this table, 1 (also φ) is 3
It represents the majority voting function of human power x, y, z.

x y z φ、 φ2 1. I2 I−1、−1−
1−2−10−1−1 −1−1+1 −1 0 −1 0 −1−i +t 
−t −t o−i(+ −1−1+1 +1 0 +
1 0 +1 +11川 −1−10−10−1,−1 +1 −1 1川 +1 0 +1 F+ +1+1 
+1 −1 +1 0 IN ()+1+1 +1 +
1 +2 +1 0!−1+]第3図の実施例ではンヨ
セフソンシートンクションに印加される磁束φはφ−x
+y−l/であるが、第4図の実施例ではジョセフソン
ジャンクションに印加される磁束φ1 とφ2 とはそ
れぞれφ1−X++Ay++Az;φ2 =’Ay+’
Ay、である。第3図の実施例の場合には加算の重みは
1.1、■であるが、第4図の実施例の場合には加算の
重みは1、V2zV2である。本文ではこれらの場合を
さして磁束を重畳又は加重加算したと称する。
x y z φ, φ2 1. I2 I-1, -1-
1-2-10-1-1 -1-1+1 -1 0 -1 0 -1-i +t
-t -t o-i(+ -1-1+1 +1 0 +
1 0 +1 +11 river -1-10-10-1, -1 +1 -1 1 river +1 0 +1 F+ +1+1
+1 -1 +1 0 IN ()+1+1 +1 +
1 +2 +1 0! −1+] In the embodiment shown in FIG.
+y-l/, but in the embodiment of FIG. 4, the magnetic fluxes φ1 and φ2 applied to the Josephson junction are respectively φ1-X++Ay++Az; φ2 = 'Ay+'
Ay. In the case of the embodiment shown in FIG. 3, the addition weight is 1.1, ■, but in the case of the embodiment shown in FIG. 4, the addition weight is 1, V2zV2. In this text, these cases are referred to as superimposed or weighted addition of magnetic fluxes.

更に複雑な論理関数は、複数の超伝導磁束変圧器と4個
の特性のほぼ等しいジョセフソンジャンクションとが4
次元のアダマル行列(要素が+1又は−1である4行4
列の直交行列)又はその定数倍の磁束伝達特性を具現す
るような接続された回路を使用する本発明の実施例を用
いて実現することができる。この実施例の説明の便宜」
二先ず2次元のアダマル行列について説明する。
A more complex logic function is that multiple superconducting flux transformers and four Josephson junctions with approximately equal characteristics are
dimensional Hadamard matrix (4 rows with 4 elements whose elements are +1 or -1)
Embodiments of the invention can be implemented using connected circuits that implement magnetic flux transfer characteristics of an orthogonal matrix of columns) or a constant multiple thereof. "For convenience of explanation of this example"
First, the two-dimensional Hadamard matrix will be explained.

第5図は2次元のアダマル行列(要素が→−又は−1で
ある2行2列の直交行列、−例として回路、通常ハイブ
リット変圧器とし−C知られているもの5構成を示す。
FIG. 5 shows a two-dimensional Hadamard matrix (an orthogonal matrix with two rows and two columns whose elements are →- or -1), for example a circuit, usually known as a hybrid transformer.

この回路で人力磁束信号をφ1.φ2とし、出力磁束信
号をφ3.φ、とし、それぞれが表ず2値論理変数をx
、y、u、\lとすると次の関係が成立する。
This circuit converts the human magnetic flux signal to φ1. φ2, and the output magnetic flux signal is φ3. φ, and each represents a binary logical variable x
, y, u, \l, the following relationship holds true.

次に4次のアダマル行列(要素が−11または一4行で
ある4行4列の直交行列、−例としてこの4次のアダマ
ル行列の磁束伝達特性をイjする回路の入力磁束信号を
φ1.φ2.φ1,7 φ、。
Next, a 4th-order Hadamal matrix (a 4-by-4 orthogonal matrix with elements in -11 or 14 rows) is used. .φ2.φ1,7 φ,.

とし、そして出力磁束信号をφ9.φ51.φ7゜φ6
 とすると人出〕J侶号は次式により決定される。
and the output magnetic flux signal is φ9. φ51. φ7゜φ6
Then, the number of people] J's name is determined by the following formula.

これを実現する回路の4個の出力鮨(子(出力(i49
東φ5.φ5.φ7.φ。か現れる☆ilj子)にそれ
ぞれジョセフソンシャクジョンJ+ 1.l’21.1
s 、J、を結合することによ引14 I4論理回路要
素を構成することができる(114は4次のアダツル1
1列を、I4は4個のジョセフソンシャクジョンをそれ
ぞれ表す)。
The four outputs of the circuit that realize this (output (i49
East φ5. φ5. φ7. φ. Josephson Shakujon J+ 1. l'21.1
By combining s and J, a 14 I4 logic circuit element can be constructed (114 is a 4th order adatsu
1 column, I4 each representing 4 Josephson blocks).

第6a図と第6b図に本発明による1I4Jll 論理
回路要素の2つの例を示す。3個の磁束ベクトルφ1.
φ2.φ3が加えられる端子を入力端とし、出力磁束ベ
クトルが取出される端子に出力負荷超伝導インダクタン
スLLを接続して出力端とする。
Figures 6a and 6b show two examples of 1I4Jll logic circuit elements according to the present invention. Three magnetic flux vectors φ1.
φ2. The terminal to which φ3 is applied is the input end, and the output load superconducting inductance LL is connected to the terminal from which the output magnetic flux vector is taken out, and the output end is the terminal.

いま、人力磁束ベクトルが表す2値論理変数をxl、X
、及びI3 とする。出力磁束ベクトルφ4が表す2値
論理変数をX、とすると人出ツノの2値論理変数は次式
の関係を満足する3、 X1=−X、・I2 ・I3 (4) 真、イAを表現するのに磁束の極性C+、−)によって
も、磁束の有jijE (Q 、−1−もしくは−の磁
束)によってもよい。前者によれば式(4)はX→ =
X、■x2■x3 となり、3ヒツトの排泄的論理和回
路であり、後者によればX、=x、&X2 &X3 と
なり、3ビツトの論理積回路となる。
Now, the binary logical variables represented by the human magnetic flux vector are xl,
, and I3. If the binary logical variable represented by the output magnetic flux vector φ4 is X, the binary logical variable of the turnout satisfies the following relationship.3, X1=-X, ・I2 ・I3 (4) True, i It may be expressed by the polarity of the magnetic flux (C+, -) or by the presence of the magnetic flux (Q, -1- or -magnetic flux). According to the former, equation (4) is X→ =
According to the latter, X, x2, x3, which is a 3-bit exclusive OR circuit, and the latter, X, = x, &X2 &X3, which is a 3-bit AND circuit.

第7図に1個の本発明の実施例の114.14 論理回
路要素H4J4 と1個の2次元アダマル回路要素11
2とから成る2ビット選択回路(x、yのいずれがを信
号SO,Slに従って選択して出力する回路)の構成を
示し、表3にその回路の真理値表を示ず。
FIG. 7 shows one 114.14 logic circuit element H4J4 of the embodiment of the present invention and one two-dimensional Hadamal circuit element 11.
Table 3 shows the configuration of a 2-bit selection circuit (a circuit that selects and outputs either x or y according to signals SO and SI) consisting of 2 and 2, and Table 3 does not show the truth table of the circuit.

So Sl x y u v w f −1−1−1−10川 0 川 (X)月 刊 −1+
1 −1 0 −i −1(x)=1 刊 +1 −.
1 tl O41刊 (x)−1刊 +1 +1 0 
+1 0 −1 (x)−1月 −1−10−10−1
(y) −1→] −1tl川 0F111(y)−1tl 4
4 ’−1tl O−1川 くy)−1+] +] ト
1 0 +1 [IIi (y)弓 −1−1−10川
 0 刊 (y)+1. −1 −I Ll −10→
l ト1 (y)→1 −1 →l 刊 tl fl 
−44(y)+1 −1 普1 +1 0 →1 0 
41 (y)41 tl −1−10刊 [1−1(X
)司 44 −1 +1 −1 0 刊−1(×)→]
 +] 、1.1 −1 tl O→l 41 (X)
→l +] +] 司 0 +1 [1月 (×)表 
2 第8図に1個の++、+、i4論理回路要素114.1
4 と1個の2次元アダマル回路要素1−12 とから
成る3人力多数決回路(x、y、zの過半数が真であれ
ば真を、偽であれば偽を出力する回路)の構成を示し、
表4にその回路の真理値表を示す。
So Sl x y u v w f -1-1-1-10 River 0 River (X) Monthly -1+
1 -1 0 -i -1(x)=1 publication +1 -.
1 tl O41 publication (x)-1 publication +1 +1 0
+1 0 -1 (x)-January -1-10-10-1
(y) -1→] -1tl river 0F111 (y) -1tl 4
4'-1tl O-1 river kuy)-1+] +] ト1 0 +1 [IIi (y) Bow -1-1-10 river 0 publication (y)+1. -1 -I Ll -10→
l To1 (y)→1 -1 →l Published tl fl
-44(y)+1 -1 Ordinary 1 +1 0 →1 0
41 (y) 41 tl -1-10 edition [1-1(X
) Tsukasa 44 -1 +1 -1 0 publication -1(×)→]
+] , 1.1 -1 tl O→l 41 (X)
→l +] +] Tsukasa 0 +1 [January (×) table
2 One ++, +, i4 logic circuit element 114.1 in Figure 8
4 and one two-dimensional Hadamal circuit element 1-12 (a circuit that outputs true if the majority of x, y, z is true, and outputs false if it is false) is shown. ,
Table 4 shows the truth table of the circuit.

x y ZIJ VW f −1’−1−10−10−1 −1−1+1−10−1月 −1tl −1440川 川 −1tl tl Q tl tl 、4.1←1−1−
10−10刊 +1 −1 +1 4 [1−1+1 →1 →1 −1 tl O→1−1 +] −11+] O→10川 表 4 第9図に1個の114.14論理回路要素11/l 、
Ill と211.1.1の2次元アダマル回路要素1
−12 とから成る3人カ一致回路(x、y、zがいず
れも真又は偽であるときにのみ真を出力し、それ以外の
場合は偽を出力する)の構成を示し、表5にその回路の
真理値表を示す。
x y ZIJ VW f -1'-1-10-10-1 -1-1+1-10-January-1tl -1440kawa river-1tl tl Q tl tl , 4.1←1-1-
10-10 publication +1 -1 +1 4 [1-1+1 →1 →1 -1 tl O→1-1 +] -11+] O→10 river table 4 One 114.14 logic circuit element 11 in Figure 9 /l,
Ill and 2D Hadamard circuit element 1 of 211.1.1
-12 The configuration of a three-person matching circuit (outputs true only when x, y, and z are all true or false, and outputs false otherwise) is shown in Table 5. Show the truth table of the circuit.

σ: ↓゛l −1−1−1−1刊 ±1」1 月 −1→l −100J1 暑 ト1 −1 3−1 Fl 七1 −暑 +1 司 0 0 [1−1+ 41 川 署 1 ’OO)−1 +l −1tl fl tl tl −!:1+1 何
−11,0[] 川 用 +1 川 」l +1 ±1 a“1表 5 第5図において、例えばX、y、zかいずれも−1であ
ると114.14 の2つの入力し、vは−1゜−1と
なり、残りの1つの入力に出力の極性を定める信号σ(
−±1 )が加わると114JII の出力は式(3)
に従って±1となり、この出力を(2W**−σ)の線
形演算回路を介して最終的に出力することとなる。
σ: ↓゛l -1-1-1-1 publication ±1'' January -1→l -100J1 Hot 1 -1 3-1 Fl 71 -Hot +1 Tsukasa 0 0 [1-1+ 41 Kawa Station 1 'OO)-1 +l -1tl fl tl tl -! :1+1 What -11,0 [] For river +1 River "l +1 ±1 a"1 Table 5 In Figure 5, for example, if X, y, and z are all -1, the two inputs 114.14 , v becomes -1°-1, and the remaining one input is the signal σ(
-±1), the output of 114JII is expressed by formula (3)
Accordingly, it becomes ±1, and this output is finally outputted via a (2W**-σ) linear arithmetic circuit.

第10図に2個の114.14 論理回路要素114.
14 を使用した3中1ビット回路(:3人力のうらと
れか1つ真であればそのときに出力は真とlSす、それ
以外の場合は出力は偽となる)の構成を示し、表5にそ
の回路の真理値表を示す。
In FIG. 10, there are two 114.14 logic circuit elements 114.
14 shows the configuration of a 1 out of 3 bit circuit (: if one of the three is true, then the output is true; otherwise, the output is false), and the table below shows the configuration of a 1 out of 3 bit circuit using Figure 5 shows the truth table of the circuit.

x y Z X* y* Z* a* l’ f(=l
’−2a)−1−1−10000川−1 −1刊 +1 0 (110=i →1−1 tl −
] 0100・1司 −1司 +1 0 1 1 tl 川 −144−1−
1100(1・1−1 +1 −1 tl I OI O、−1川→1 tl 
−111fll tl刊−]司 +1 →l l ] 
tl l +1 同表 5 第10図において3つの入力信号x、y、z (例えば
−1,、−1,+1) は一方のH4J4へそのまま加
えられ、他方のH4J4へはレベル変換しx;I:、y
*。
x y Z X* y* Z* a* l' f(=l
'-2a) -1-1-10000 river-1 -1 edition +1 0 (110=i →1-1 tl -
] 0100・1 Tsukasa-1 Tsukasa +1 0 1 1 tl River -144-1-
1100 (1・1-1 +1 -1 tl I OI O, -1 river → 1 tl
-111fll tl publication-] Tsukasa +1 → l l ]
tl l +1 Same Table 5 In Fig. 10, three input signals x, y, z (for example, -1,, -1, +1) are applied as they are to one H4J4, and are level-converted to the other H4J4. :,y
*.

Z*(例えば0,0.1)として加えられ、前記の一方
の1I4J4 の出力P(例えば]−1)と、前記の他
方の114J4 の出力a*(例えばO)とは(丁〕−
2a*)の演算を行う回路を通して最終的に[(例えば
、+1)として出力される。
Z* (e.g. 0, 0.1), and the output P (e.g.]-1) of the one 1I4J4 and the output a* (e.g. O) of the other 114J4 are (d)-
2a*) and is finally output as [(for example, +1).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はショセフソンンヤンクションと超伝導インダク
タンスとの直列回路ループを示し、第2図はその回路の
特性を示す。 第3図は3人力の奇偶検査回路に適用した本発明の実施
例を示す。 第4図は3人力の多数決回路に適用した不発Iυ1の実
施例を示す。 第5図は2次元アダマル回路の構成を示す。 第6図a図と第6 b図とはそれぞれ本発明の実施例で
ある++4 J4論理回路要素を示す。 第7図は+14 J4 論理回路要素を使用した2人力
選択回路を示す。 第8図は114j4 論理回路要素を使用した3人力多
数決回路を示す。 第9図は114 J4論理回路要素を使用した3人カ一
致回路を示す。 第10図は114J4論理回路要素を使用した3中1ビ
ット回路を示す。 図中:l14 J4 :++4J4論理回路要素1−1
2:2次元アダマル回路 第1図 第5図 第68図 第6b図 I 第7図
FIG. 1 shows a series circuit loop of a Shosefson junction and a superconducting inductance, and FIG. 2 shows the characteristics of the circuit. FIG. 3 shows an embodiment of the present invention applied to an odd-even test circuit operated by three people. FIG. 4 shows an embodiment of the unexploded Iυ1 applied to a three-person majority circuit. FIG. 5 shows the configuration of a two-dimensional Hadamard circuit. FIGS. 6a and 6b each illustrate a ++4 J4 logic circuit element according to an embodiment of the present invention. FIG. 7 shows a two-person selection circuit using +14 J4 logic circuit elements. FIG. 8 shows a three-person majority voting circuit using 114j4 logic circuit elements. FIG. 9 shows a three-person matching circuit using 114 J4 logic circuit elements. FIG. 10 shows a 1-of-3 bit circuit using 114J4 logic circuit elements. In the figure: l14 J4: ++4J4 logic circuit element 1-1
2: Two-dimensional Hadamal circuit Figure 1 Figure 5 Figure 68 Figure 6b Figure I Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)少すくトも1(固のジョセフソンシ\・ンクシ三
17と、 論理変数を表わす複数の磁束人力を加重加算し、この加
重加算した磁束を前記のジ玉jセフソンシャンクショ、
ンに印加する加重加算手段と、ショセフソンシャンクン
ヨンに接続されている出力負荷超伝導インダクタンスと
、 ジョセフソンジャンクションから前記の超伝導インダク
タンスに流れる電流により生ずる磁束を論理出力として
取出す出力手段と をff1fiえることを特徴とするジョセフソンジャン
クション論理回路要素。
(1) Add the weighted magnetic fluxes representing the logical variables with the fixed Joseph Sonshi\Nkushi317, and add this weighted magnetic flux to the above-mentioned J ball j Sefson Shankho.
an output load superconducting inductance connected to the Josephson junction, and an output means for extracting the magnetic flux generated by the current flowing from the Josephson junction to the superconducting inductance as a logical output. A Josephson junction logic circuit element characterized in that it can generate ff1fi.
(2) 前記の加重加算手段が超伝導磁束変圧器を含む
特許請求の範囲第(1)項に記載のジョセフソンジャン
クション論理回路要素。
(2) A Josephson junction logic circuit element according to claim (1), wherein said weighted addition means comprises a superconducting flux transformer.
(3) 前記のジョセフソンジャンクションが特性のは
ソ等しい4個のジョセフソンジャンクションであり、前
記の加重加算手段が3個の磁束人力が加わる超伝導磁束
変圧器を含み、4次元のアダマル行列又はその定数倍の
磁束伝達特性を具現する回路である特許請求の範囲第(
1)項に記載のジョセフソンジャンクション論理回路要
素。
(3) The above-mentioned Josephson junction is composed of four Josephson junctions having the same characteristics, and the weighted addition means includes a superconducting flux transformer to which three magnetic fluxes are applied, and a four-dimensional Hadamard matrix or Claim No.
Josephson junction logic circuit element described in item 1).
JP4772884A 1984-03-13 1984-03-13 Josephson junction logical circuit element Pending JPS60191519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4772884A JPS60191519A (en) 1984-03-13 1984-03-13 Josephson junction logical circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4772884A JPS60191519A (en) 1984-03-13 1984-03-13 Josephson junction logical circuit element

Publications (1)

Publication Number Publication Date
JPS60191519A true JPS60191519A (en) 1985-09-30

Family

ID=12783393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4772884A Pending JPS60191519A (en) 1984-03-13 1984-03-13 Josephson junction logical circuit element

Country Status (1)

Country Link
JP (1) JPS60191519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786748B1 (en) 2009-05-15 2010-08-31 Northrop Grumman Systems Corporation Method and apparatus for signal inversion in superconducting logic gates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622389A (en) * 1979-07-31 1981-03-02 Tsukishima Kikai Co Ltd Treatment of pyrolysis gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622389A (en) * 1979-07-31 1981-03-02 Tsukishima Kikai Co Ltd Treatment of pyrolysis gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786748B1 (en) 2009-05-15 2010-08-31 Northrop Grumman Systems Corporation Method and apparatus for signal inversion in superconducting logic gates
WO2010132074A1 (en) * 2009-05-15 2010-11-18 Northrop Grumman Systems Corporation Method and apparatus for signal inversion in superconducting logic gates

Similar Documents

Publication Publication Date Title
US4906859A (en) Power supply circuit with symmetrically tapped auto-transformer
JP2020149761A (en) Superconducting gate memory circuit
CA3077219C (en) Josephson and/or gate
US3323113A (en) Shift register
JP2021512566A (en) Three stable storage loops
JP7210743B2 (en) Josephson current source system
JPS59143427A (en) Logical operation circuit of superconductive magnetic flux quantum
US2978176A (en) Multipath logical core circuits
JPS60191519A (en) Josephson junction logical circuit element
US2963591A (en) Magnetic control circuits
US2927220A (en) Exclusive or function magnetic circuit
US3077583A (en) Magnetic core flux steering device
US3376562A (en) Magnetic core shift register
US3045215A (en) Electrical control circuits
US3149312A (en) Cryogenic memory device with shifting word registers
US2918664A (en) Magnetic transfer circuit
US2969524A (en) Bidirectional shift register
US2974310A (en) Magnetic core circuit
US3191160A (en) Cryoelectric circuits
US2907987A (en) Magnetic core transfer circuit
US3219841A (en) Superconducting current multiplier
US3290513A (en) Logic circuit
US2818554A (en) Three-state magnetic core circuits
US3009136A (en) Flux-doubling in magnetic cores
US3407307A (en) Magnetic parity function generator