JPS60191212A - Optical circuit device - Google Patents

Optical circuit device

Info

Publication number
JPS60191212A
JPS60191212A JP4740384A JP4740384A JPS60191212A JP S60191212 A JPS60191212 A JP S60191212A JP 4740384 A JP4740384 A JP 4740384A JP 4740384 A JP4740384 A JP 4740384A JP S60191212 A JPS60191212 A JP S60191212A
Authority
JP
Japan
Prior art keywords
optical
semiconductor laser
optical circuit
holding member
holding part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4740384A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Yoshio Manabe
由雄 真鍋
Hidetaka Tono
秀隆 東野
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4740384A priority Critical patent/JPS60191212A/en
Publication of JPS60191212A publication Critical patent/JPS60191212A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To obtain a stable, low-power consumption, and small-capacity optical circuit device by arranging an optical circuit substrate having an optical waveguide and a semiconductor laser connected to the optical waveguide on a holding member having a low heat conductibility and a holding member having a high heat conductibility, which form a holding base body, respectively and short- circuiting thermally the latter holding member to a casing. CONSTITUTION:An optical circuit substrate 12 having an optical waveguide 11 is arranged on the first holding member of a holding base body 33 provided with the first holding member 31 consisting of low-heat conduction materials and the second holding member 32 consisting of high-heat conduction materials, and a semiconductor laser 13 coupled optically to the optical waveguide 11 is arranged on the second holding member 32, and the second holding member 32 is short- circuited thermally to a part of a casing 15. Heat of the semiconductor laser is radiated through the casing, and the optical circuit substrate 12 is insulated thermally from the casing 15 used as a radiating plate, and thus, stable characteristics are attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光回路デバイスに関する。特に半導体レーザと
光集積回路を一体化した光回路デバイスに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to optical circuit devices. In particular, it relates to an optical circuit device that integrates a semiconductor laser and an optical integrated circuit.

従来例の構成とその問題点 従来、半導体レーザ七光集積回路との一体化したデバイ
スは、第1図に示す構成が考えられていた。すなわち、
光回路基板11上の光導波路12と光結合する半導体レ
ーザ13を同一基体14上に固定し、半導体レーザの発
光端面の酸化劣下を防ぐため窒素零四気にした筺体16
に保持される構成であった。半導体レーザはレーザ光励
振時に発熱するため、励振波長が変化する。従って、半
導体レーザ13は基体14を介して筐体15で放熱を行
っていた。しかし、半導体レーザ13の放熱により基体
14の熱膨張の不均一が発生し、光結合の低下および光
導波路11の特性が変化するという問題を有していた。
Conventional Structure and Problems Conventionally, a device integrated with a semiconductor laser and a seven-light integrated circuit has been considered to have the structure shown in FIG. That is,
A semiconductor laser 13 optically coupled to an optical waveguide 12 on an optical circuit board 11 is fixed on the same substrate 14, and a housing 16 is filled with nitrogen to prevent oxidation deterioration of the light emitting end face of the semiconductor laser.
The configuration was maintained as follows. Since a semiconductor laser generates heat when excited with laser light, the excitation wavelength changes. Therefore, the semiconductor laser 13 radiates heat in the housing 15 via the base 14. However, heat dissipation from the semiconductor laser 13 causes non-uniform thermal expansion of the base 14, resulting in problems such as a decrease in optical coupling and a change in the characteristics of the optical waveguide 11.

また、特に高出力の半導体レーザを用いる場合は、第2
図の構成が考えられた。同図中11+12.13,14
.15は第1図と同一である。すなわち、筐体16に半
導体冷却素子21の冷却面を取り付け、発熱面に放熱板
22を取り付けた構成がなされた。この構成は、筐体1
5自体を冷却しているので、半導体レーザ13のみなら
ず基体14も冷却される。このため、基体14の熱膨張
の不均一が小さく、光結合効率が高く光導波路の特性モ
安定していた。しかし、筺体16全体の冷却のため、半
導体冷却素子21の動作電流も敬アンペア以上必要とな
り、放熱板22も大面積が要求される。デバイスの消電
労化、小型化がむずかしく、光回路デバイスの用途を大
きく制限するという問題を有していた。加えて、低出力
半導体レーザの場合でも、第2図の構造が可能である。
In addition, especially when using a high-output semiconductor laser, the second
The composition of the diagram was considered. 11+12.13,14 in the same figure
.. 15 is the same as in FIG. That is, the configuration is such that the cooling surface of the semiconductor cooling element 21 is attached to the casing 16, and the heat sink 22 is attached to the heat generating surface. In this configuration, the housing 1
Since the semiconductor laser 5 itself is cooled, not only the semiconductor laser 13 but also the base 14 are cooled. Therefore, non-uniformity in thermal expansion of the base body 14 was small, optical coupling efficiency was high, and characteristics of the optical waveguide were stable. However, in order to cool the entire housing 16, the operating current of the semiconductor cooling element 21 is also required to be at least 100 amperes, and the heat sink 22 is also required to have a large area. It is difficult to reduce power consumption and size of the device, which greatly limits the applications of optical circuit devices. In addition, the structure shown in FIG. 2 is possible even in the case of a low-power semiconductor laser.

しかし、同様に筐体15全体の冷却が必要であり、デバ
イスの低消費電力化・小型化には問題を有している発明
者らは、光回路デバイスの構造と構成材料に工夫を加え
、低電力で小型軽量が可能で、しかも特性の安定化を実
現したものである。
However, it is also necessary to cool the entire housing 15, which poses a problem in reducing power consumption and downsizing the device. It can be made small and lightweight with low power consumption, and has stable characteristics.

発明の目的 本発明の目的は、従来の特性の不安定さ、あるいは高消
費電力、大容積を改善し、特性の安定した低消費電力・
小容積の光回路デバイスを提供するものである。
Purpose of the Invention The purpose of the present invention is to improve the instability of conventional characteristics, high power consumption, and large volume, and to create a low power consumption and large volume with stable characteristics.
This provides a small volume optical circuit device.

発明の構成 本発明は、低熱伝導材料からなる第1保持部と高熱伝導
材料からなる第2保持部とを有する保持基体において、
上記第1保持部に光導波路を有する光回路基板を架設し
、上記第2保持部に上記光導波路と光結合するべく半導
体レーザを配置し、上記第2保持部を筐体の一部に熱的
に短絡させた構造を有している。
Structure of the Invention The present invention provides a holding base having a first holding part made of a low heat conductive material and a second holding part made of a high heat conductive material.
An optical circuit board having an optical waveguide is installed in the first holding part, a semiconductor laser is arranged in the second holding part to be optically coupled to the optical waveguide, and the second holding part is heated to a part of the housing. It has a short-circuited structure.

特に、第2保持部に熱的に短終して半導体冷却素子を設
け、さらに上記半導体冷却素子を上記筐体の一部に熱的
に短絡させた構造とし、半導体冷却素子によりi度制御
を行っている。
In particular, a structure is adopted in which a semiconductor cooling element is provided with a thermal short circuit in the second holding part, and the semiconductor cooling element is thermally short-circuited to a part of the casing, and the semiconductor cooling element is used for i-degree control. Is going.

実施例の説明 本発明を第3図に示す実施例に基づき説明する。Description of examples The present invention will be explained based on the embodiment shown in FIG.

間両において、11.12.13,14.15は第1図
と同じである。本発明にかかる構造は、低熱伝導材料か
らなる第1保持部31と高熱伝導材料からなる第2保持
部32を有する保持基体33において、第1保持部31
に光導波路11を有する光回路基板12を架設し、第2
保持部32に光導波路11と光結合すべく半導体レーザ
13を配置し、第2保持部32を筐体15の一部に熱的
に短絡させている。
In between, 11, 12, 13 and 14, 15 are the same as in FIG. In the structure according to the present invention, in a holding base 33 having a first holding part 31 made of a low heat conductive material and a second holding part 32 made of a high heat conductive material, the first holding part 31
An optical circuit board 12 having an optical waveguide 11 is installed on the second
A semiconductor laser 13 is arranged in the holding part 32 to be optically coupled to the optical waveguide 11, and the second holding part 32 is thermally short-circuited to a part of the casing 15.

本発明にかかる上記構成においては、半導体レーザ13
の出力1 mW以下の場合、半導体レーザ13の発熱は
筐体16により発熱が充分になされておシ、励振波長の
ずれも問題がなかった。址だ、光導波路11と半導体レ
ーザ13との光結合も安定しておシ、かつ先導波路の特
性の変化も問題とならなかった。これは、従来の構成と
異なり放熱板として利用している筐体15と光回路基板
12が熱的に絶縁されているため、熱膨張変化が小さく
なったためと考えられる。さらに、詳細は不明であるが
、第1保持部31の光回路基板12側と筐体16側の温
度差による熱膨張による曲りは少ないため、光結合効率
の低下を防いでいると思われる。そのため、本構成を第
4図のようにしても同様の効果の得られることを確認し
た。同図において、11.12.’13,1’5,31
.32,33鉱第3図と同じである。すなわち、第1保
持部31と筺体15との間に空隙41を設けて熱絶縁を
一層確実にした場合も同様の効果が得られた。
In the above configuration according to the present invention, the semiconductor laser 13
When the output was 1 mW or less, the heat generated by the semiconductor laser 13 was sufficiently generated by the casing 16, and there was no problem with the deviation of the excitation wavelength. However, the optical coupling between the optical waveguide 11 and the semiconductor laser 13 was stable, and changes in the characteristics of the leading waveguide did not cause any problems. This is considered to be because, unlike the conventional configuration, the casing 15 used as a heat sink and the optical circuit board 12 are thermally insulated, so that the change in thermal expansion is reduced. Furthermore, although the details are unknown, it is believed that the first holding part 31 is less bent due to thermal expansion due to the temperature difference between the optical circuit board 12 side and the housing 16 side, thereby preventing a decrease in optical coupling efficiency. Therefore, it was confirmed that the same effect could be obtained even if the present configuration was changed as shown in FIG. In the same figure, 11.12. '13,1'5,31
.. It is the same as Figure 3 for ores 32 and 33. That is, the same effect was obtained when the gap 41 was provided between the first holding part 31 and the housing 15 to further ensure thermal insulation.

更に光回路デバイスの安定を計るためには従来例に説明
したように半導体冷却素子を利用するのが良い。しかし
、従来例では省エネルギの点で不充分であったが、本発
明者らは上記の構成に半導体冷却素子の配置に改善を加
え、新規な小電力で特性の優れた光回路デバイスを発明
した。すなわち、第5図に示す実施例に基づき説明する
。同図において、11.12,13,15,31.32
゜33は第3図と同じである。同図において、第2保持
部32に熱的に短絡して半導体冷却素子61を設け、さ
らに半導体冷却素子51を筐体16の一部に熱的に短絡
させた。本発明のかかる構成においては、従来例とは全
く異なシ、半導体冷却素子51で冷却しているのは第2
保持部32のみである。しかも、第2保持部32の冷却
のみであるため、筐体15のみを放熱板として利用する
のみで光学的特性は安定して得られた。例えば、波長0
.83μm、出力25 mWの半導体レーザを用い、光
回路基板12にサフフイヤ基板を利用し、さらにPLZ
T薄膜光導波路からなる全反射型光スイッチを構成した
。第1保持部31に低熱伝導材料であるステンレス鋼(
1a/s ) (0,151J7hrS−K)を用い、
第2保持部32に高熱伝導材料である銅(417cm−
S −K )を用い、筺体15に7 /l/ ミニラム
(2,4,I/car S−K )を用い、筐体内を窒
素零四気として半導体レーザ13の出射端面の劣化を防
いで光回路デバイスを試作した。半導体冷却素子61に
1A程度の電流容量で例えば25℃の一定温度制御が可
能であり、半導体レーザ13の励振波長の変化もなく良
好であった。これは、従来同様の冷却を行う場合5A程
度必要でかっ、別に放熱板も必要なととに比べ、はるか
に小電力・小型化を可能としたものである。さらに、半
導体素子13を筺体15内に収めたため、外気対流によ
る半導体素子13自体の不均一温度分布に起因する冷却
効率の低下も防ぎ、このような高効率を可能とした。ま
た、光結合効率の変化も少なく、全反2射型光スイッチ
の特性も、駆動電圧5V、消光比15dBが安定して得
られることを確認した。
Furthermore, in order to stabilize the optical circuit device, it is preferable to use a semiconductor cooling element as explained in the conventional example. However, the conventional example was insufficient in terms of energy saving, but the present inventors improved the arrangement of the semiconductor cooling element to the above configuration and invented a new optical circuit device with low power consumption and excellent characteristics. did. That is, the explanation will be based on the embodiment shown in FIG. In the same figure, 11.12, 13, 15, 31.32
33 is the same as in FIG. In the figure, a semiconductor cooling element 61 is provided by being thermally short-circuited to the second holding part 32, and further, the semiconductor cooling element 51 is thermally short-circuited to a part of the casing 16. In this configuration of the present invention, which is completely different from the conventional example, the semiconductor cooling element 51 is used for cooling.
It is only the holding part 32. Moreover, since only the second holding part 32 was cooled, stable optical characteristics were obtained by using only the housing 15 as a heat sink. For example, wavelength 0
.. A semiconductor laser of 83 μm and an output of 25 mW was used, a sapphire substrate was used as the optical circuit board 12, and a PLZ
A total reflection type optical switch consisting of a T-thin film optical waveguide was constructed. The first holding part 31 is made of stainless steel, which is a low thermal conductive material (
1a/s) (0,151J7hrS-K) using
The second holding part 32 is made of copper (417cm-
A 7/l/mini ram (2,4, I/car S-K) is used in the housing 15, and the interior of the housing is filled with zero nitrogen to prevent deterioration of the emission end face of the semiconductor laser 13. We prototyped a circuit device. A constant temperature control of, for example, 25° C. was possible with a current capacity of about 1 A in the semiconductor cooling element 61, and there was no change in the excitation wavelength of the semiconductor laser 13, which was good. This enables much lower power consumption and miniaturization than conventional cooling, which requires about 5 A and also requires a separate heat sink. Furthermore, since the semiconductor element 13 is housed within the housing 15, a decrease in cooling efficiency due to non-uniform temperature distribution of the semiconductor element 13 itself due to outside air convection is also prevented, making such high efficiency possible. It was also confirmed that there was little change in the optical coupling efficiency, and that the characteristics of the total reflection type optical switch were such that a driving voltage of 5 V and an extinction ratio of 15 dB were stably obtained.

第5図に示した第3の実施例は、第3図に示す実施例と
第4図に示した第2の実施例との関係から明らかなよう
に、第6図に示した第4の実施例も可能であった。第6
図に丸・いて、11’ 、 12 。
As is clear from the relationship between the embodiment shown in FIG. 3 and the second embodiment shown in FIG. 4, the third embodiment shown in FIG. Examples were also possible. 6th
Circles in the figure are 11' and 12.

13.15,31.32,33,51は第6図と同じで
ある。すなわち、第1保持部31と筐体61との間に空
隙61を用いて熱絶縁を確実にしても、第3の実施例と
同様の効果の得られることを確認している。
13.15, 31.32, 33, and 51 are the same as in FIG. That is, it has been confirmed that even if the gap 61 is used between the first holding part 31 and the housing 61 to ensure thermal insulation, the same effect as in the third embodiment can be obtained.

本発明にかかる第2保持部の形状は半導体レーザが固定
できる高熱伝導材料から構成されればよく、例えば第7
図に示す構造でも可能であり本発明に含まれるものであ
る。同図に赴いて、11゜12.13,15,31.3
2,33.51は第5図と同じである。第2保持部32
をU字形にして、U字形の内部に半導体レーザ13の駆
動部を設けて、構成を小型にしても同様の効果が得られ
た。以」二の説明から明らかなように、U字形ヂも、そ
れ以外、の形上でも9g2保持部32は可能である。
The shape of the second holding part according to the present invention may be made of a highly thermally conductive material that can fix the semiconductor laser.
The structure shown in the figure is also possible and is included in the present invention. Go to the same figure, 11° 12.13, 15, 31.3
2,33.51 is the same as in FIG. Second holding part 32
Similar effects were obtained even when the structure was made smaller by making the structure U-shaped and providing a drive section for the semiconductor laser 13 inside the U-shape. As is clear from the following explanation, the 9g2 holding portion 32 can be formed in a U-shape or in any other shape.

以上の説明で光回路基板は第1保持部に直接設けた実施
例であったけれども、本発明にかかる構造においては光
回路基板が低熱伝導材料からなる第1保持部に固定され
ておれば、本発明に含まれる効果が実現されるものであ
る。例えば、第8図に示す構成も当然本発明に含まれる
ものである。
In the above explanation, the optical circuit board was directly provided on the first holding part, but in the structure according to the present invention, if the optical circuit board is fixed to the first holding part made of a low thermal conductive material, The effects included in the present invention are realized. For example, the configuration shown in FIG. 8 is also naturally included in the present invention.

同図において、11.12,13,15,31 。In the same figure, 11, 12, 13, 15, 31.

32.33.51は第7図と同じである。すなわち、同
図において光回路基板12と第2保持部31との間にテ
ーパ支持体81を挿入した構成でも同様の効果が得られ
た。テーパ支持体81を用いると半導体レーザ13と光
導波路11との光結合が容易となるこ表は明らかである
32.33.51 are the same as in FIG. That is, the same effect was obtained with the configuration in which the tapered support body 81 was inserted between the optical circuit board 12 and the second holding portion 31 in the same figure. It is clear that the use of the tapered support 81 facilitates optical coupling between the semiconductor laser 13 and the optical waveguide 11.

以上の実施例は全て筐体内には半導体レーザと光回路基
板が光伝送路として含捷れた例であった。
All of the embodiments described above are examples in which a semiconductor laser and an optical circuit board are combined as an optical transmission path within the housing.

しかし、本発明の効果は光回路基板と半導体レーザとの
光学的特性の安定化を実現したもので、光導波路に光フ
ァイバを光結合してもその効果は同様であり本発明に含
まれるものである。すなわち、第9・図にその実施例を
示す。同図において、11゜12.13,15,31.
32.33は第3図と同じである。光導波路11の出射
端に光ファイバ91を光結合させ、光ファイバ91の他
端を筺体外に出すことによシ、例えば先導波路11にP
LZT系薄膜からなる全反射型光スイッチを用いると、
オン(ON)−オフ(OFF)からなるデジタル光出力
を持つ変調光源が構成された。この場合も、同様に駆動
電圧5V、消光比1sdBの特性が安定して得られるこ
とを確認した。
However, the effect of the present invention is that the optical characteristics of the optical circuit board and the semiconductor laser are stabilized, and the effect is the same even if an optical fiber is optically coupled to the optical waveguide, which is included in the present invention. It is. That is, an example thereof is shown in FIG. 9. In the same figure, 11°12.13,15,31.
32.33 are the same as in FIG. By optically coupling the optical fiber 91 to the output end of the optical waveguide 11 and taking the other end of the optical fiber 91 out of the housing, for example,
When using a total reflection type optical switch made of LZT thin film,
A modulated light source with an ON-OFF digital optical output was constructed. In this case as well, it was confirmed that the characteristics of a driving voltage of 5 V and an extinction ratio of 1 sdB could be stably obtained.

以上の実施例は全て半導体レーザと光導波路とを端面励
振で光結合していた。しかし、光結合方法の差異に関係
なく本発明の効果は同一である。
In all of the above embodiments, the semiconductor laser and the optical waveguide were optically coupled by end-face excitation. However, the effects of the present invention are the same regardless of the difference in optical coupling method.

したがって、半導体レーザと先導波路との間に光学レン
ズを挿入して光結合しても同様の効果が得られた。加え
て、テーパ結合と呼ばれる方法でも同様である。
Therefore, similar effects were obtained even when an optical lens was inserted between the semiconductor laser and the guide waveguide for optical coupling. In addition, the same applies to a method called taper coupling.

発明の効果 以上の説明から明らかなように本発明は小型・小電力で
しかも光学特性の安定した光回路デバイス構成を提供す
るもので、その光回路デバイス応用分野を大きく広げる
もので実用価値の高いものである。
Effects of the Invention As is clear from the above explanation, the present invention provides an optical circuit device configuration that is small, low-power, and has stable optical characteristics, greatly expands the field of application of the optical circuit device, and has high practical value. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の光回路デバイスの要部断面図、
第3図は本発明の一実施例の光回路デバイスの要部断面
図、第4図は本発明の第2の実施例の光回路デバイスの
要部断面図、第5図は本発明の第3の実施例の光回路デ
バイスの要部断面図、第6図は本発明の第4の実施例の
デバイスの要部断面図、第7図は本発明の第5の実施例
のデバイスの要部断面図、第8図(a) t (b)は
それぞれ本発明の第6の実施例のデバイスの要部断面図
、要部側面断面図、第9図は本発明の第7の実施例のデ
バイスの要部断面図である。 11・・・・・・光導波路、12・・・・・・光回路基
板、13・・・・・・半導体レーザ、15・・・・・・
筐体、31・・・・・・第1保持部、32・・・・・・
第2保持部、33・・・・・・保持基fべ41・・・・
・・空隙、61・・・・・・半導体冷却素子、61・・
・・・・空隙、81・・・・・・テーパ支持体、91・
・・・・・光ファーイバ。 第1図 I 第3図 1 3 第4図 1 第5図 3 3 第6図 3
Figures 1 and 2 are cross-sectional views of main parts of conventional optical circuit devices.
FIG. 3 is a cross-sectional view of a main part of an optical circuit device according to an embodiment of the present invention, FIG. 4 is a cross-sectional view of a main part of an optical circuit device according to a second embodiment of the present invention, and FIG. 6 is a cross-sectional view of a main part of an optical circuit device according to a fourth embodiment of the present invention, and FIG. 7 is a cross-sectional view of a main part of a device according to a fifth embodiment of the present invention. 8(a) and 8(b) are a sectional view and a side sectional view of a main part of a device according to a sixth embodiment of the present invention, respectively, and FIG. 9 is a sectional view of a main part of a device according to a seventh embodiment of the present invention. FIG. 2 is a sectional view of a main part of the device. 11... Optical waveguide, 12... Optical circuit board, 13... Semiconductor laser, 15...
Housing, 31... First holding part, 32...
Second holding part, 33... Holding base f 41...
...Gap, 61...Semiconductor cooling element, 61...
...Gap, 81... Taper support, 91.
...Optical fiber. Figure 1 I Figure 3 1 3 Figure 4 1 Figure 5 3 3 Figure 6 3

Claims (2)

【特許請求の範囲】[Claims] (1)低熱伝導材料からなる第1保持部と高熱伝導材料
からなる第2保持部とを有する保持基体に上記第1保持
部に光導波路を有する光回路基板を架設し、上記第2保
持部に上記光導波路と光結合するべく半導体レーザを配
置し、上記第2保持部を筐体の一部に熱的に短絡させた
ことを特徴とする光回路デバイス。
(1) An optical circuit board having an optical waveguide in the first holding part is installed on a holding base having a first holding part made of a low thermal conductive material and a second holding part made of a high thermal conductive material, and the second holding part An optical circuit device, characterized in that a semiconductor laser is arranged to be optically coupled to the optical waveguide, and the second holding part is thermally short-circuited to a part of the casing.
(2)第2保持部に熱的に短絡して半導体冷却素子を設
け、さらに上記半導体冷却素子を上記筐体の一部に熱的
に短絡させたことを特徴とする特許請求の範囲第1項記
載の光回路デバイス。
(2) A semiconductor cooling element is thermally short-circuited to the second holding part, and the semiconductor cooling element is thermally short-circuited to a part of the casing. Optical circuit device described in section.
JP4740384A 1984-03-12 1984-03-12 Optical circuit device Pending JPS60191212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4740384A JPS60191212A (en) 1984-03-12 1984-03-12 Optical circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4740384A JPS60191212A (en) 1984-03-12 1984-03-12 Optical circuit device

Publications (1)

Publication Number Publication Date
JPS60191212A true JPS60191212A (en) 1985-09-28

Family

ID=12774148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4740384A Pending JPS60191212A (en) 1984-03-12 1984-03-12 Optical circuit device

Country Status (1)

Country Link
JP (1) JPS60191212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188711U (en) * 1986-05-20 1987-12-01
JPH0326105U (en) * 1989-07-24 1991-03-18
EP0759538A2 (en) * 1995-08-17 1997-02-26 Kabushiki Kaisha Topcon Laser system for surveying

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188711U (en) * 1986-05-20 1987-12-01
JPH0326105U (en) * 1989-07-24 1991-03-18
EP0759538A2 (en) * 1995-08-17 1997-02-26 Kabushiki Kaisha Topcon Laser system for surveying
EP0759538A3 (en) * 1995-08-17 1998-07-08 Kabushiki Kaisha Topcon Laser system for surveying
EP1717548A1 (en) * 1995-08-17 2006-11-02 Kabushiki Kaisha Topcon Laser system for surveying

Similar Documents

Publication Publication Date Title
US4949346A (en) Conductively cooled, diode-pumped solid-state slab laser
US3753145A (en) Compact end-pumped solid-state laser
US6826916B2 (en) Laser module, Peltier module, and Peltier module integrated heat spreader
US5561684A (en) Laser diode pumped solid state laser construction
JP2000156538A (en) Temperature-controlled microchip laser assembly and associated submount assembly
US20220263293A1 (en) Semiconductor laser and material machining method using a semiconductor laser
KR20090073985A (en) Thermal shunt for active devices on silicon-on-insulator wafers
CN108429120B (en) Fiber laser output device
US6130902A (en) Solid state laser chip
US5982792A (en) Solid-state laser device
JP2000031575A (en) Ld module
JP2002280621A (en) Laser module, peltier module and heat spreader with built-in peltier module
JPS60191212A (en) Optical circuit device
CN1286229C (en) Vertical laser with external cavity of transmitting semiconductor with telescopic resonant cavity
JP2001518235A (en) Laser and amplifier device for generating single frequency laser beam
Semenyuk et al. Miniature thermoelectric coolers for semiconductor lasers
JPH11195827A (en) Optical fiber type light amplifier
JPH04134326A (en) Short wavelength laser beam source and production thereof
JPH05235486A (en) Multi-beam semiconductor laser device
JPH05167142A (en) Solid state laser equipment
JP3248569B2 (en) Tunable semiconductor laser
CN219041029U (en) Optical fiber integrated device for pulse optical fiber laser and pulse optical fiber laser
US6094445A (en) High-efficiency cavity doubling laser
JPH0685357A (en) Solid laser oscillator
JPH06120593A (en) Solid laser device