JPS6019117B2 - heating element - Google Patents

heating element

Info

Publication number
JPS6019117B2
JPS6019117B2 JP4467878A JP4467878A JPS6019117B2 JP S6019117 B2 JPS6019117 B2 JP S6019117B2 JP 4467878 A JP4467878 A JP 4467878A JP 4467878 A JP4467878 A JP 4467878A JP S6019117 B2 JPS6019117 B2 JP S6019117B2
Authority
JP
Japan
Prior art keywords
heating element
coil
rod
electrical
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4467878A
Other languages
Japanese (ja)
Other versions
JPS54136440A (en
Inventor
忠視 鈴木
敦 西野
林 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4467878A priority Critical patent/JPS6019117B2/en
Publication of JPS54136440A publication Critical patent/JPS54136440A/en
Publication of JPS6019117B2 publication Critical patent/JPS6019117B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 本発明は電気抵抗体をコイル状に形成し、表面に電気絶
縁層を形成した発熱体の保持方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for holding a heating element in which an electrical resistor is formed into a coil shape and an electrically insulating layer is formed on the surface thereof.

一般に発熱体としてはニッケルークローム系の発熱体と
鉄−クロムーアルミ系の発熱体が使用されている。この
うちでも高温特性が要求される発熱体としては鉄ークロ
ムーアルミ系が一般的である。従来、コイル状の発熱体
は第1図のごとく、線怪dとコイルピッチ間pとの関係
はp>幻で使用されるのが一般的であった。
Generally, nickel-chromium heating elements and iron-chromium-aluminum heating elements are used as heating elements. Among these, iron-chromium-aluminum systems are common as heating elements that require high-temperature characteristics. Conventionally, coil-shaped heating elements have generally been used in which the relationship between the line width d and the coil pitch p is p>phantom, as shown in FIG.

p<幻となると発熱体が局部的に接触して放電現象をき
たし、溶融、断線に至る場合がある。また接触しなくて
も近接することによりその部分が局部的に温度上昇をす
ることになり「発熱体の組織が粗大化してくなったり、
あるいは酸化が急速に進行して線径が細くなって断線を
生じたりしていた。このような問題舷るため‘こ発熱体
のピッチ間音をo似下にすることが不可能となり、した
がって高温の発熱体を得るにも種々の困難があった。従
来例2として第2図に示すような構成の発熱体も提案さ
れている。
If p<phantom, the heating element may come into local contact and cause a discharge phenomenon, which may lead to melting and disconnection. In addition, even if there is no contact, the proximity of the part will cause a local temperature rise in that part, causing the structure of the heating element to become coarser,
Alternatively, oxidation progresses rapidly, resulting in the wire diameter becoming thinner and causing wire breakage. Because of these problems, it has become impossible to reduce the pitch noise of the heating element to a level close to 0, and there have been various difficulties in obtaining a high-temperature heating element. As conventional example 2, a heating element having a configuration as shown in FIG. 2 has also been proposed.

この発明体は表面に電気絶縁性が良好な耐熱材1を金属
榛または金属管2に被覆し、この金属榛または金属管の
表面に抵抗発熱体3を巻回し、前記金属様または金属管
と電気抵抗体3の全面に電気絶縁性のセラミック4を被
覆する構成であるが、この種の発熱体は金属管、電気絶
縁層、電気抵抗体、電気絶縁セラミックとが一体化され
ているために電気抵抗体および金属管と電気絶縁物との
熱膨張係数が大きく違うために熱サイクルにより、電気
絶縁物に亀裂が発生し、さらに進行すると電気絶縁物が
剥離し、電気絶縁が破壊され、コイル間および金属間と
コイル間に短絡が生じて断線に至る。
In this invention, a metal rod or metal tube 2 is coated with a heat-resistant material 1 having good electrical insulation on the surface, a resistance heating element 3 is wound around the surface of the metal rod or metal tube, and the metal-like or metal tube is coated with a heat-resistant material 1 having good electrical insulation properties. The structure is such that the entire surface of the electrical resistor 3 is coated with electrically insulating ceramic 4, but since this type of heating element integrates a metal tube, electrically insulating layer, electrical resistor, and electrically insulating ceramic, Due to the large difference in thermal expansion coefficients between electrical resistors and metal pipes and electrical insulators, cracks occur in the electrical insulators due to thermal cycles, and as the process progresses further, the electrical insulators peel off, the electrical insulation is destroyed, and the coil A short circuit occurs between metals and coils, leading to disconnection.

特に高温(100び0以上)での熱サイクルに弱い欠点
がある。加えて、金属管に巻回される電気絶縁性の点か
ら密着巻は不可能である。従来例3は、電気抵抗体をコ
イル状に形成し、表面に電気絶縁層を設ける方法につい
ては種々の提案がなされている。本発明者等は先に従来
例1,2の欠点を解消するために電気抵抗体をコィル状
に巻回し、これに金属酸化物を被覆形成した発熱体を検
討し、コィルピッチ間畠が2.似下でも使用できること
を確認した。すなわち、第3図に示すように電気抵抗体
1の表面の金属酸化物の電気絶縁層4を設けることによ
り電気抵抗体1を密着巻にしてもコイル間の短絡を防止
し、かつ電気抵抗体の酸化を少なくさせることに成功し
たものである。
It has the disadvantage of being particularly susceptible to thermal cycles at high temperatures (100 and above 0). In addition, tight winding is not possible due to the electrical insulation properties of the metal tube. In Conventional Example 3, various proposals have been made regarding methods of forming an electric resistor into a coil shape and providing an electric insulating layer on the surface. In order to eliminate the drawbacks of Conventional Examples 1 and 2, the present inventors previously investigated a heating element in which an electric resistor is wound into a coil and coated with a metal oxide, and the coil pitch is 2. We confirmed that it can be used even under similar conditions. That is, as shown in FIG. 3, by providing an electrically insulating layer 4 of metal oxide on the surface of the electrical resistor 1, short circuits between the coils can be prevented even if the electrical resistor 1 is tightly wound. This succeeded in reducing the oxidation of

その他、電気抵抗体の表面に電気絶縁層を設ける方法と
してはFe−Cr−Aそ系の電気抵抗体を溶融アルカリ
裕中に浸潰して該電気抵抗体の表面に水酸化鉄を主体と
する皮膜を形成させ、次いで強酸化性雰囲気中で加熱し
て水酸化鉄を主体とする皮膜を酸化アルミニュームを主
体とする皮膜に変化させるという方法である。
Another method for providing an electrical insulating layer on the surface of an electrical resistor is to immerse a Fe-Cr-A type electrical resistor in a molten alkali bath and coat the surface of the electrical resistor with mainly iron hydroxide. This method involves forming a film and then heating it in a strongly oxidizing atmosphere to change the film mainly composed of iron hydroxide to a film mainly composed of aluminum oxide.

この方法で得られた電気絶縁層は皮膜の厚さが薄すぎて
コイル間の絶縁は充分とはいえないが実用上は問題がな
い。また従来から電気抵抗体を酸化性雰囲気で高温に加
熱し表面でアルミニュームを選択的に酸化させて酸化ア
ルミニュームを主体とする絶縁皮膜を形成させる方法も
よく知られている。しかしながら、この種の発熱体は保
持方法に問題があった。
Although the electrical insulation layer obtained by this method is too thin to provide sufficient insulation between the coils, there is no problem in practical use. Furthermore, a well-known method is to heat an electrical resistor to a high temperature in an oxidizing atmosphere to selectively oxidize aluminum on the surface to form an insulating film mainly composed of aluminum oxide. However, this type of heating element has a problem in how it is held.

つまり、コイル間を密着させているために第4図に示す
ように発熱体に通電すると自重により亨湾曲し、元の状
態にもどらない。特に高温になるとこの傾向がさらに助
長され、発熱体としての役目を果さなくなる。以上のよ
うな問題点を解決するために本発明等は発熱体の保持方
法について種々の検討を重ね、コイルの中心軸に棒状絶
縁体を挿入することでこの問題を解決した。
In other words, since the coils are in close contact with each other, when the heating element is energized as shown in FIG. 4, it bends excessively due to its own weight and does not return to its original state. In particular, when the temperature rises, this tendency is further exacerbated, and the material no longer functions as a heat generating element. In order to solve the above-mentioned problems, the present invention conducted various studies on the method of holding the heating element, and solved this problem by inserting a rod-shaped insulator into the central axis of the coil.

次に本発明の具体的な特徴についてのべる。Next, specific features of the present invention will be described.

電気抵抗体として鉄−クロムーアルミ系の電熱線(JI
S.FCH−1)を用いてコイル状の密着巻に形成し、
表面を洗浄後、弾性限界内においてコイルをのばし、各
コイル間に空隙を設け保持し、そのコイルを回転させな
がら、SICIOOを用いて圧力5k9/めでブラスチ
ングにて表面を粗面化する。ブラスチングの方法として
はコイルに対してブラストノズルを直回方向、左右45
oの方向にそれぞれ対向させ、コイルと平行にブラスト
ノズルを移動させながらブラスチングする。
Iron-chrome-aluminum heating wire (JI
S. FCH-1) is used to form a tightly wound coil,
After cleaning the surface, the coils are stretched within the elastic limit, gaps are provided between each coil, and while the coils are being rotated, the surface is roughened by blasting at a pressure of 5k9/m using SICIOO. The blasting method is to rotate the blast nozzle in the direction perpendicular to the coil, 45 degrees to the left and right.
Blast while moving the blast nozzle parallel to the coil while facing each other in the direction o.

上記の方法でブラスチングするとコイルの内外面ともに
均一に粗面化することができる。ブラスチングが終了後
、プラズマ溶射にてィットリア安定化によるジルコニア
粉末を総射被覆させた。
By blasting using the above method, both the inner and outer surfaces of the coil can be uniformly roughened. After the blasting was completed, zirconia powder stabilized with yttria was coated by plasma spraying.

プラズマ溶射の方法はブラスチングと同様に行なったの
で内外面ともに均一な港射被覆層が形成された。プラズ
マ溶射の条件は、プラズマダィン社の80KWのSG−
100タイプを使用し、電流:900A、電圧:41V
、アークガスにアルゴン、補助ガスとしてへりュームを
用いた。プラズマ溶射が終了後、コイルの回転を停止し
て各コイル間に空隙を設けて保持していた状態を解くと
元の密着巻のコイルの状態にもどる。この理由としては
コイルの弾性限界内で保持することと、プラズマ溶射の
特徴として高融点の粉末を半溶融状態にはするが、基材
(この場合コイル)を熱変形する温度以下にして熔射被
覆層を形成することができるためである。ブラスチング
が終了後、コイル表面を洗浄すると溶射被覆層の密着強
度はさらに強くなることも確認できたが用途により使い
分けが必要である。
Since the plasma spraying method was the same as blasting, a uniform spray coating layer was formed on both the inner and outer surfaces. The conditions for plasma spraying are Plasma Dyne's 80KW SG-
Uses 100 type, current: 900A, voltage: 41V
, argon was used as the arc gas, and helium was used as the auxiliary gas. After the plasma spraying is completed, the rotation of the coils is stopped and the state in which the coils are held with gaps between them is released, returning to the original state of tightly wound coils. The reason for this is that the coil must be kept within its elastic limit, and the characteristic of plasma spraying is that the powder with a high melting point is turned into a semi-molten state. This is because a covering layer can be formed. It was also confirmed that the adhesion strength of the sprayed coating layer could be further strengthened by cleaning the coil surface after blasting, but it is necessary to use it properly depending on the application.

以上のようにして、コイル状に形成した電熱線3に絶縁
被覆層4を設けた電気抵抗体を作成し、そのコイルの中
心軸に金属管1の表面に電気絶縁層2を形成した棒状絶
縁体を挿入して第5図に示すような発熱体を得た。棒状
絶縁体の実施例としては第6図に示すような形状につい
て検討した。
As described above, an electric resistor was created by providing an insulating coating layer 4 on a heating wire 3 formed in a coil shape, and a rod-shaped insulator having an electric insulating layer 2 formed on the surface of a metal tube 1 at the central axis of the coil. A heating element as shown in FIG. 5 was obtained by inserting the heating element. As an example of the rod-shaped insulator, a shape as shown in FIG. 6 was studied.

第6図は形状の断面図であり、aは円筒状、bは管状、
cは二個穴円筒、dは三角、Eは板状、Fは四角、であ
る。
Figure 6 is a cross-sectional view of the shape, a is cylindrical, b is tubular,
c is a cylinder with two holes, d is triangular, E is plate-shaped, and F is square.

その他多角形のものでも可能であり、特殊な形状として
はGのようなものでも充分使用に耐える。材質は耐熱性
合金でFe−Cで一Aそ系、Ni−Cr系、等が寿命、
高温時の機械的強度等の点から良好な結果が得られた。
Other polygonal shapes are also possible, and as a special shape, a shape like G can be sufficiently used. The material is a heat-resistant alloy, Fe-C, 1A type, Ni-Cr type, etc. have a long lifespan.
Good results were obtained in terms of mechanical strength at high temperatures, etc.

電気絶縁被覆層の形成方法は電気抵抗体への被覆と同様
プルズマ漆射を用いたが、電気絶縁性を有する塗料、耐
熱ホーロでも充分な電気絶縁性が得られた。
The electrically insulating coating layer was formed using Prusma lacquering, similar to the method used to coat electrical resistors, but sufficient electrical insulation was also obtained with electrically insulating paint and heat-resistant hollow.

1000午0以上の高温使用においてはプラズマ溶射皮
膜が熱衝撃に対しても良く耐えた。
When used at high temperatures of 1,000 pm or higher, the plasma sprayed coatings withstood well against thermal shock.

耐熱塗料は1000℃以下の使用には充分耐える。耐熱
ホーロは600qo以下の使用には適している。以上の
ように電気絶縁被覆層の形成は使用条件によって便に分
けが必要である。電気絶縁被覆層の厚みは5山以上あれ
‘よ電気絶縁性は保持できるが被覆層の厚みが厚すぎる
と熱衝撃に対して被覆層に亀裂が発生しやすくなるので
好ましくは5〜500山以内にすべきである。
Heat-resistant paints can withstand use at temperatures below 1000°C. Heat-resistant hollow hollow is suitable for use below 600 qo. As mentioned above, the formation of the electrically insulating coating layer needs to be divided depending on the conditions of use. The thickness of the electrically insulating coating layer should be 5 or more. Electrical insulation can be maintained, but if the coating layer is too thick, cracks will easily occur in the coating layer due to thermal shock, so it is preferably between 5 and 500 strands. should be.

タ棒状絶縁体としては耐熱性合金に電気絶縁層を形
成する方法の他に陶磁器の使用についても検討した。材
質としては、アルミナ、ムラィト、滑石、スピネル、ジ
ルコニア、ベリリア、トリア等の陶磁器が適していた。
その他の金属酸化物の鱗Z縞体、あるいはガラス質のも
の、窒化物、オゥ化物、ケィ化物等の暁給体、耐火物等
でも電気絶縁性と機械的強度、耐熱性があれば使用でき
る。次に電気抵抗体と棒状絶縁体の関係についてのべる
。 Z電気抵抗体をコ
イル状に形成し、各コイル間がそれぞれ分解できるよう
に電気絶縁層を形成した電気抵抗電熱体の中心軸に棒状
絶縁体を着脱可能に挿入して構成した本発明の発熱体に
ついて種々の検討を重ねた。
2棒状絶縁体の形成による電気抵抗発熱体の昇温ス
ピードーこついて検討した結果を第7図に示す。なお、
電気抵抗発熱体は線径◇0.5肋、コイル窪め5柳、の
Fe−Cr−Aク系の電熱線を用い、100Vで300
Wになるように調節し、表面にプラズマ熔射にて絶縁被
覆層を設けたものを使用した。棒状絶縁体は外径をぐ4
柳とし、耐熱性合金の表面に電気絶縁層を設けたものを
用いた。第7図から明きらかなようにいずれの形状の棒
状絶縁体を用いても従来例2より昇温スピードは早かっ
た。
In addition to forming an electrically insulating layer on a heat-resistant alloy, we also investigated the use of ceramics as the rod-shaped insulator. Suitable materials include ceramics such as alumina, mullite, talc, spinel, zirconia, beryllia, and thoria.
Other metal oxide scales, glass materials, nitrides, oxides, silicides, etc., and refractory materials can also be used as long as they have electrical insulation, mechanical strength, and heat resistance. . Next, we will discuss the relationship between electrical resistors and rod-shaped insulators. The heat generating device of the present invention is constructed by removably inserting a rod-shaped insulator into the central axis of an electric resistance heating element in which a Z electric resistance element is formed into a coil shape and an electric insulation layer is formed between each coil so that each coil can be disassembled. We have repeatedly considered various aspects of the body.
FIG. 7 shows the results of an investigation into the temperature rise speed of an electric resistance heating element due to the formation of two rod-shaped insulators. In addition,
The electric resistance heating element uses a Fe-Cr-A heating wire with a wire diameter of ◇0.5 ribs and a coil depression of 5 willow.
The material was adjusted so that it was W, and an insulating coating layer was provided on the surface by plasma spraying. The rod-shaped insulator has an outer diameter of 4.
Willow was used, and a heat-resistant alloy with an electrically insulating layer provided on the surface was used. As is clear from FIG. 7, the temperature rise speed was faster than in Conventional Example 2 no matter which shape of the rod-shaped insulator was used.

その中でも棒状絶縁体の熱容量が小さいもの程、その効
果は大きかった。次に電気抵抗電熱体と棒状絶縁体のク
リアランスについて検討した結果についてのべる。
Among them, the smaller the heat capacity of the rod-shaped insulator, the greater the effect. Next, we will discuss the results of examining the clearance between the electric resistance heating element and the rod-shaped insulator.

電気抵抗電熱体のコイルの蓬D,と棒状絶縁体の外律D
2とコイルの線径dとの関係を種々変化させて、熱サイ
クルテストを行なった。
D of the coil of an electric resistance electric heating body, and external law D of a rod-shaped insulator
A thermal cycle test was conducted by variously changing the relationship between No. 2 and the wire diameter d of the coil.

実験 1 電気抵抗発熱体は線径00.5肌、コイルの内径マ4.
5側のFe−Cr‐A〆系の電熱線を用い、100V、
300Wになるように調節し、棒状絶縁体の外径を種々
変化させた。
Experiment 1 The electric resistance heating element has a wire diameter of 00.5 mm and an inner diameter of the coil of 4.
Using a Fe-Cr-A heating wire on the 5 side, 100V,
The power was adjusted to 300 W, and the outer diameter of the rod-shaped insulator was varied.

実験 2 電気抵抗発熱体を線径?0.5肋、コイル内蓬ぐ6.5
肌のFe−Cr−Aそ系の電熱線とし、電気容量100
V、300Wに調節し、棒状絶縁体の外径を種々変化さ
せた。
Experiment 2 Wire diameter of electrical resistance heating element? 0.5 ribs, coil inner fold 6.5
The heating wire is based on the Fe-Cr-A type of skin, and the electric capacity is 100.
The voltage was adjusted to 300 W, and the outer diameter of the rod-shaped insulator was varied.

前記、実験の結果からD.−D2をコイル蚤dの倍数に
おきかえて熱サイクルとの関数をグラフ化すると第8図
のような結果が得られた。
From the above experimental results, D. When -D2 was replaced with a multiple of the coil flea d and the function with the thermal cycle was graphed, the results shown in FIG. 8 were obtained.

なお、この時の熱サイクル条件は電圧120Vで、13
分通電、1粉ふ放冷とし、実験室内で行ない各試料が断
線した時の熱サイクルの回数を測定した。
The thermal cycle conditions at this time were a voltage of 120V and a
The test was carried out in a laboratory by energizing for a few minutes and letting it cool for one minute, and the number of thermal cycles when each sample broke was measured.

第8図から明きらかなようにD・一D2が3dを越える
と熱サイクルによる寿命が急激に低下することが判明し
た。
As is clear from FIG. 8, it was found that when D.-D2 exceeds 3d, the life due to thermal cycling decreases rapidly.

これはつまり、電気抵抗発熱体の内径と棒状絶縁体の外
径との空隙が線径の3倍以上になると熱サイクルによる
電気抵抗発熱体の機械的変形が大きくなりすぎて、電気
抵抗発熱体の表面に形成された電気絶縁層が破壊されて
、コイル間が接触し断線を早めるためである。以上のよ
うに本発明はD,一D2<紅とすることにより、長寿命
の発熱体が得られることを確認した。
This means that if the gap between the inner diameter of the electrical resistance heating element and the outer diameter of the rod-shaped insulator becomes more than three times the wire diameter, the mechanical deformation of the electrical resistance heating element due to thermal cycles will become too large. This is because the electrical insulating layer formed on the surface of the coil is destroyed, causing contact between the coils and hastening disconnection. As described above, in the present invention, it has been confirmed that a long-life heating element can be obtained by setting D, -D2<Red.

電気抵抗体、および棒状絶縁体に電気絶縁層を設ける方
法としては<棒状絶縁体>の項でのべた通り、ガス溶射
被覆法、プラズマ溶射被覆法、耐熱塗装、耐熱ホーロ等
があるが、本発明の実施例においては基材との密着性、
熱衝撃性等から評価してプラズマ溶射被覆法で行なった
As mentioned in the section <Rod-shaped insulators>, methods for providing electrical insulation layers on electrical resistors and rod-shaped insulators include gas spray coating, plasma spray coating, heat-resistant coating, heat-resistant hollow, etc. In the embodiments of the invention, adhesion to the base material,
The plasma spray coating method was used to evaluate thermal shock properties and other factors.

被覆層の最も大きな特徴はその多孔質層にある。The most significant feature of the coating layer is its porous layer.

すなわち基材と酸化物層を密着し、かつ高温で、かつ過
酷な熱サイクルに耐え得るために酸化物層を多孔質体に
することにより熱膨張係数の極端な相違の緩衝作用をさ
せている所にある。したがって過酷な熱サイクル試験に
おいてめ剥離することなく、電気絶縁層としての効果を
発揮夕しているのである。酸化物層の下地処理用として
の合金層の形成も効果的である。
In other words, the base material and the oxide layer are in close contact with each other, and the oxide layer is made porous in order to withstand high temperatures and severe thermal cycles, thereby buffering the extreme differences in coefficient of thermal expansion. It's there. Therefore, it exhibits its effectiveness as an electrical insulating layer without peeling during severe thermal cycle tests. Formation of an alloy layer as a base treatment for the oxide layer is also effective.

すなわち前記したように基材と酸化物層の極端な熱膨張
係数の差のために密着強度に問題がある0時には(これ
は使用温度、使用状態等によって各々決定される)基材
と熱膨張係数が比較的類似した合金粉末を酸化物層の下
地に溶射被覆してその上に酸化物層を溶射させる方法で
ある。
In other words, as mentioned above, when there is a problem in adhesion strength due to the extreme difference in thermal expansion coefficient between the base material and the oxide layer (this is determined by the operating temperature, usage conditions, etc.), the thermal expansion between the base material and This is a method of thermally spraying an alloy powder having relatively similar coefficients onto the base of an oxide layer, and then thermally spraying the oxide layer thereon.

このようにすると基材と下地処理用の合金層の熱膨張係
数が類似のために密着強度が強くなり、かつ、金属層の
表面積が拡大するために金属層と酸化物層との密着強度
が増大し、熱サイクル強度が増大する。
In this way, the adhesion strength becomes stronger because the thermal expansion coefficients of the base material and the alloy layer for surface treatment are similar, and the adhesion strength between the metal layer and the oxide layer increases because the surface area of the metal layer is expanded. The thermal cycle strength increases.

しかしながら金属層の表面積が拡大すするため若干酸化
増量が増加する傾向にあり、用途により使い分けが必要
である。そころがこの場合においても金属外部層には必
ず酸化物層で電気絶縁層を設けなければ本発明の効果は
発揮しないものである。
However, as the surface area of the metal layer increases, the weight gain due to oxidation tends to increase slightly, so it is necessary to use them appropriately depending on the application. However, even in this case, the effects of the present invention will not be exhibited unless the metal outer layer is necessarily provided with an electrically insulating layer made of an oxide layer.

この場合に用いる粉体としては基材と同一な粉体が好ま
しく、Fe−Cr−A夕、Ni−Cr等の合金が良好な
結果が得られる。
The powder used in this case is preferably the same powder as the base material, and alloys such as Fe-Cr-A, Ni-Cr, etc. can give good results.

本実施例で適用される電気絶縁性を有する酸化物層とし
ては高温で安定でかつ溶射に使用される粉体であれば電
気絶縁層として効果があることも確認した。
It was also confirmed that the oxide layer having electrical insulation properties applied in this example is effective as an electrical insulation layer if it is a powder that is stable at high temperatures and used for thermal spraying.

なお高温で導電性を有する酸化物もあるが一部にはある
が金属発熱体の導電率から比較して少なく無視できる値
であり、実際に問題なく効果を発揮した。実施例で実施
したィットリア安定化によるジルコニアも高温で導電性
を生ずる酸化物であるが何ら問題はなかった。適用でき
る酸化物としてはAそ203,Y203,Si02,F
e203,Ti02,Ca○,Na20,B203Li
20,Cr203,Z^〕2,N蜂○,Be○,Nj○
,Tho2,Hf02La2Q,Ce02等の金属酸化
物もしくはスピネル型構造を有する複酸化物よりなる材
料、MgA〆204,CoAそ204,ZnAそ204
,MgCr204等の郡から一部もしくは、それ以上選
択したものを含有した材質が良かった。以上詳述のごと
く、本発明の発熱体の発明の効果を要約すると、1 同
一電気容量で発熱温度が高くできること。
Although there are some oxides that have conductivity at high temperatures, the conductivity of the metal heating element is small and negligible compared to the conductivity of metal heating elements, and the effect was actually achieved without any problems. The yttria-stabilized zirconia used in the examples is also an oxide that becomes conductive at high temperatures, but there were no problems. Applicable oxides include Aso203, Y203, Si02, F
e203, Ti02, Ca○, Na20, B203Li
20, Cr203, Z^] 2, N bee○, Be○, Nj○
, Tho2, Hf02La2Q, Ce02, etc., materials made of metal oxides or double oxides having a spinel structure, MgA204, CoA204, ZnA204
, MgCr204, etc., or a material containing some or more selected materials was good. As detailed above, the advantages of the heating element of the present invention can be summarized as follows: 1. The heat generation temperature can be increased with the same electric capacity.

2 断線不良、耐電圧不良、絶縁抵抗不良を大中に改善
できること。
2. It should be possible to improve defects such as wire breakage, withstand voltage defects, and insulation resistance defects.

3 高温酸化に対する抑制効果が高いこと。3. Highly effective in suppressing high-temperature oxidation.

4 4・型、高容量にできること。4 4-type, high capacity.

5 コイル径が限定されないこと。5. Coil diameter is not limited.

6 寿命が長くなる等、数々の特徴を有し、応用製品の
小型化等、付価価値を大中に向上できる。
6. It has many features such as a longer lifespan, and can significantly improve the value of applied products by making them smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は従来例を示す発熱体の断面図、第5図
は本発明の−実施例を示す発熱体の断面図、第6図は棒
状絶縁体の一実施例の断面図、第7図、第8図は本発明
の発熱体の効果を説明するための説明図である。 1・・・耐熱材、2・・・金属管、3・・・抵抗発熱体
、4…セラミック。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図
Figures 1 to 4 are sectional views of a heating element showing a conventional example, Figure 5 is a sectional view of a heating element showing an embodiment of the present invention, and Figure 6 is a sectional view of an embodiment of a rod-shaped insulator. , FIG. 7, and FIG. 8 are explanatory diagrams for explaining the effects of the heating element of the present invention. 1...Heat-resistant material, 2...Metal tube, 3...Resistance heating element, 4...Ceramic. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1 電気抵抗体をコイル状に形成し、各コイル間がそれ
ぞれ分離できるような電気絶縁層を形成した電気抵抗電
熱体の中心軸に棒状絶縁体を着脱可能に挿入し電気抵抗
電熱体のコイルの内径D_1と棒状絶縁体の外径D_2
とコイルの線径dとの関係をD_1−D_2<3dとす
るとともに、前記棒状絶縁体が耐熱性合金の表面に電気
絶縁を形成したもの、あるいは陶磁器から構成してなる
発熱体。
1. A rod-shaped insulator is removably inserted into the central axis of an electric resistance electric heating element in which an electric resistance body is formed into a coil shape, and an electric insulation layer is formed so that each coil can be separated from the other. Inner diameter D_1 and outer diameter D_2 of the rod-shaped insulator
and the wire diameter d of the coil is set to D_1-D_2<3d, and the rod-shaped insulator is made of a heat-resistant alloy with electrical insulation formed on the surface or ceramics.
JP4467878A 1978-04-14 1978-04-14 heating element Expired JPS6019117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4467878A JPS6019117B2 (en) 1978-04-14 1978-04-14 heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4467878A JPS6019117B2 (en) 1978-04-14 1978-04-14 heating element

Publications (2)

Publication Number Publication Date
JPS54136440A JPS54136440A (en) 1979-10-23
JPS6019117B2 true JPS6019117B2 (en) 1985-05-14

Family

ID=12698091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4467878A Expired JPS6019117B2 (en) 1978-04-14 1978-04-14 heating element

Country Status (1)

Country Link
JP (1) JPS6019117B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214294A (en) * 1982-06-08 1983-12-13 初鹿野 清 Sheathed insulator
JPS59167985A (en) * 1982-11-29 1984-09-21 西堀 稔 Heat generating element
JPS59151798A (en) * 1983-02-18 1984-08-30 松下電器産業株式会社 High frequency heater with heater
JP2792438B2 (en) * 1994-07-06 1998-09-03 松下電器産業株式会社 Heat storage electric heating device

Also Published As

Publication number Publication date
JPS54136440A (en) 1979-10-23

Similar Documents

Publication Publication Date Title
US4808490A (en) Plasma sprayed film resistor heater
WO2021057507A1 (en) Ceramic electric heating body having two-layer structure, and electric soldering iron
WO2021120802A1 (en) Flexible heating element, fabrication method therefor, flexible heating assembly thereof, and aerosol generator
JPS6019117B2 (en) heating element
JPH07190362A (en) Ceramic glowing plug
US7989739B2 (en) Electric heater assembly
JP3128325B2 (en) Small electric furnace for optical fiber processing
JP2503077B2 (en) Electric heater and heating method using the same
JP2000055740A (en) Thermocouple protection pipe for measuring temp. of molten metal
JPS6057662B2 (en) heating element
JP4807681B2 (en) Thermal spray heating element for low temperature, method for manufacturing the same, and heating apparatus using the same
JPH04143262A (en) Ceramic coated heat resistant member
JPH0869856A (en) Tube type heater and its manufacture
CN219679778U (en) Heating pipe of electronic cigarette and heating non-burning smoking set
JPS61134776A (en) Heat roll of copying machine
JP2002214052A (en) Thermocouple for molten metal and manufacturing method thereof
JPH0311072B2 (en)
JPH01150096A (en) Conduit having heat-insulating function
JPS599805B2 (en) ignition heater
JPH01100888A (en) Ceramic heater
JPH08202194A (en) Fixing roller
JPH07208739A (en) Ceramic heater
JPH0810936Y2 (en) Electrical equipment insulation structure
JPH05205858A (en) Resistance heater and manufacture thereof
JPH04356361A (en) Soldering iron and its manufacture