JPS60191012A - Method and apparatus for manufacturing high-density carbonaceous material - Google Patents

Method and apparatus for manufacturing high-density carbonaceous material

Info

Publication number
JPS60191012A
JPS60191012A JP59046076A JP4607684A JPS60191012A JP S60191012 A JPS60191012 A JP S60191012A JP 59046076 A JP59046076 A JP 59046076A JP 4607684 A JP4607684 A JP 4607684A JP S60191012 A JPS60191012 A JP S60191012A
Authority
JP
Japan
Prior art keywords
capsule
pressure
gas
temperature
atmosphere adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59046076A
Other languages
Japanese (ja)
Other versions
JPH0696441B2 (en
Inventor
Takao Fujikawa
隆男 藤川
Masato Moritoki
正人 守時
Yoshio Inoue
井上 良男
Morihiko Sugino
守彦 杉野
Junichi Miyanaga
宮永 順一
Takeshi Kanda
剛 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59046076A priority Critical patent/JPH0696441B2/en
Publication of JPS60191012A publication Critical patent/JPS60191012A/en
Publication of JPH0696441B2 publication Critical patent/JPH0696441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the titled carbonaceous material which is isotropic and large-sized and has excellent strength and resistance to corrosion by inserting a specified capsule wherein a carbonaceous molded body is enclosed into a high-pressure vessel, controlling the external pressure of the capsule to the pressure higher than the internal pressure, and calcining. CONSTITUTION:A molded body 13 consisting of a mixture of a carbonaceous filler material such as carbon fiber and an organic material binder such as tar pitch are melted and enclosed in a metallic H2-permeable or H2-occlusive capsule 12 equipped with an atmosphere regulating tube 14 wherein a hardly sintering ceramic powder 14' is packed so that the gas may be passed through. The capsule is inserted into a high- pressure vessel 1, and heated with heating bodies 4 and 4'. While the indicated values of pressure gauges 19 and 20 which are provided to a pressure medium gas and the pressure system in the capsule are compared, the pressure is increased through a pressure medium gas introducing hole 8 by operating a compressor 18 when the internal pressure of the capsule is increased due to the generation of decomposed gases resulting from calcination. Or the pressure is lowered by opening a valve 22 and releasing the internal pressure to control the pressure of the pressure medium gas to the pressure higher than the internal pressure of the capsule.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高密度の炭素材料を工業的に製造する方法なら
びにその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method and apparatus for industrially producing a high-density carbon material.

(従来技術〉 炭素材料(ダイヤモンドを除く)は無定形炭素と黒鉛に
二分されるが、各々成形体、繊維など種々の形態のもの
があり、その優れた耐熱性、化学薬品に対する安定性、
特異な電気的性質のため、近年その利用分野はロケット
ノズルなど宇宙材料から心臓の人工弁まで多岐にわたっ
ており、益々その適用分野は広がる傾向にある。
(Prior art) Carbon materials (excluding diamond) are divided into amorphous carbon and graphite, and each comes in various forms such as molded bodies and fibers, and their excellent heat resistance, stability against chemicals,
Due to its unique electrical properties, its field of application has expanded in recent years, from space materials such as rocket nozzles to artificial heart valves, and its field of application is expanding.

とくに近年、従来の黒鉛等と異なり高強度捷たは高弾性
の炭素繊維が開発されるに及び構造部材としての用途の
増大は急激である。
Particularly in recent years, with the development of high-strength, high-elastic carbon fibers that differ from conventional graphite and the like, their use as structural members has rapidly increased.

しか1.なから、こ扛らの機能的な借造拐料として使用
される部材ば一般に高密度のものが要求され、とりわけ
17ii密度で、等方的で、かつ大形のものの開発が急
がれている。例えば、高密度化することにより材料の強
度や、耐食性が飛躍的に改善され、+g tt下で使用
される化学機器や生体用材料等の用途への利用の拡大が
期待される。また、この数年、需・示が増大している放
電加工用電極では切り出し方向により電気特性が異なる
と電極とし−この性能に影響するため等方的であること
がめられている。
Only 1. Therefore, the parts used as functional materials for these weapons are generally required to have high density, and in particular, the development of 17II density, isotropic, and large-sized materials is urgently needed. There is. For example, increasing the density will dramatically improve the strength and corrosion resistance of the material, and is expected to expand its use in chemical equipment used under +gtt, biological materials, etc. Further, in the case of electrodes for electrical discharge machining, the demand for which has been increasing over the past few years, it has been recommended that the electrodes be isotropic because the electrical properties of the electrodes differ depending on the cutting direction, which affects the performance of the electrodes.

ところで、従来、これらの炭素材料はコークスなどフィ
ラー拐と、タール・ピッチなどのバインダーとを捏合、
成形した後、加熱してバインダーを炭化させるという工
程で製造されるため、バインダーの分解ガスが抜けた気
孔を不可避的に含んでいた。そこで、この気孔の量を減
少させ、高密度化するため、タール・ピッチに含浸し、
こレヲ炭化する操作を繰返し行なうことが行なわれてい
る。
By the way, conventionally, these carbon materials are made by kneading a filler such as coke and a binder such as tar or pitch.
Because it is manufactured through a process of molding and then heating to carbonize the binder, it inevitably contains pores from which decomposed gas from the binder has escaped. Therefore, in order to reduce the amount of pores and increase the density, we impregnated it with tar pitch.
This carbonizing operation is repeated repeatedly.

しかしながら、このような工程では焼成時のバインダー
分解を緩速で行なわないと製品に割れを生じ、かつ炭素
の収率が低いため繰返し数が多くなり、結果として製品
の完成に数ケ月を要するなどの問題が派生しいてる。
However, in such a process, if the binder decomposition during firing is not carried out slowly, the product will crack, and the carbon yield is low, so the number of repetitions will be large, resulting in it taking several months to complete the product. The problem is derived.

また、等方性を得るためには、微粒のコークスを冷間静
水圧成形法(ラバープレス法)で成形するという手段が
採られているが、バインダーの耽を20%以上混合しな
いと成形性が悪く、このため最初の焼成後の気孔率を低
減することが困■[となっていた。
In addition, in order to obtain isotropy, a method of molding fine coke particles using a cold isostatic pressing method (rubber press method) has been adopted, but the moldability is difficult unless 20% or more of the binder is mixed in. This made it difficult to reduce the porosity after the first firing.

このような状況において、上記の各問題を解消する方法
として、分解生成するガス成分のうち、水素のみを透過
するパラジウムなどの缶体に成形体を収納し、缶体外部
からは(等方的に圧縮しつつ炭化を行なう方法(米国特
許第3,249,964号明細書参照)や、成形体を溶
融金属中に浸漬して流体加圧下にて焼成する方法(特公
昭58−1042号公報参照)などが提案されている。
In such a situation, as a method to solve each of the above problems, the molded body is housed in a can made of palladium, etc., which transmits only hydrogen among the gas components produced by decomposition, and from the outside of the can (isotropically A method of carbonizing while compressing the metal (see U.S. Pat. No. 3,249,964), and a method of immersing the compact in molten metal and firing it under fluid pressure (Japanese Patent Publication No. 1042/1982) ) have been proposed.

しかし、前者については、当該方法を実施し得るような
設備が実質上、存在しなかったこともあり、■−二業化
されるに至っていない。捷だ、後者については製品の特
性の再現性確保や、焼成冷却後の固化した溶融金属の除
去など検討課題が多く残されでいる。
However, the former method has not been made into a second industry, partly because there is virtually no equipment that can carry out the method. However, regarding the latter, many issues remain to be considered, such as ensuring the reproducibility of product characteristics and removing solidified molten metal after firing and cooling.

一方、近年、高温下でガス圧力を作用させて圧縮する〃
し間静水圧加II:、法(以下、H’I P法と略記す
る。)が等方性かつ高密度の粉末冶金製品の製造法とし
てtト目を浴び普及しつつある。このHIP法によれば
、例えば粉末原料をカプセルと呼ばれる気密の容器内に
封入して処理することにより、−上程で旨密度の製品を
製造することが可能であるが、炭素利刺、特に黒鉛では
処理温度が約2600℃と極めて旨くなり、カプセルと
してTa、Wなどの高価で、かつ加工の困難な高融点合
金を使用しなければならないことを考えれば実用化に乏
し2 い 。
On the other hand, in recent years, compressing gas by applying pressure at high temperatures has become popular.
The hydrostatic pressing II method (hereinafter abbreviated as the H'IP method) is becoming increasingly popular as a method for producing isotropic and high-density powder metallurgy products. According to this HIP method, for example, by sealing the powder raw material in an airtight container called a capsule and processing it, it is possible to produce a product with a high density in the above step. However, the processing temperature is about 2600°C, which is very effective, and considering that expensive and difficult-to-process high-melting point alloys such as Ta and W must be used as capsules, it is unlikely to be put to practical use.

しかし、このHI P法に使用される装置(以下HIP
装置と略記する〕は上述の粉末冶金関連業界での需要の
増大に伴ない、処理室容積が数百リットルのもの1で製
造されるに至っており、急速に進歩している。そこで、
これら装置技術の進歩の過程で知られた知見をもとに前
記従来技術の欠点を排除(−1かつ工業的に高密度の炭
素材料を製造する方法が種々検11Jされている。
However, the equipment used for this HIP method (hereinafter referred to as HIP
With the increase in demand in the powder metallurgy-related industries mentioned above, apparatuses with a processing chamber capacity of several hundred liters are now being manufactured, and are rapidly progressing. Therefore,
Based on the knowledge gained through the progress of these device technologies, various methods have been investigated to eliminate the drawbacks of the prior art (-1) and industrially produce high-density carbon materials.

(発明の課題) 本発明は叙−りの如き実状をふ1え、)IiP法におけ
る知見にもとづき高密度炭素材料製品を製造する工業的
方法を提供することを課題とするものである。
(Objectives of the Invention) An object of the present invention is to provide an industrial method for manufacturing high-density carbon material products based on the knowledge of the IiP method, in light of the above-mentioned actual situation.

ところで、本発明者らは、)(IP法の利用に際し本出
願人がさきに特開昭51−88503号をもって提案し
た晶感高圧成形焼結方法を用いることが最も好適である
ことを知見し、その採用を試みた。
By the way, the present inventors have discovered that it is most suitable to use the crystal-sensitive high-pressure molding and sintering method previously proposed by the present applicant in JP-A-51-88503 when using the IP method. , tried to adopt it.

この方法は、被処理体をカプセル内に封入して高圧容器
内に挿入し、高圧容器内に内蔵した発熱体により被処理
体を加熱しつつ高圧容器内の圧力媒体の等方的なITE
縮力により加圧するに際し、前記カプセル内と連通し、
高圧容器外へその端部が勉長する調整管を設け、該調整
管を通じてカプセル内の雰囲気ガスの種類及び/または
IE力を調整しつつ肢処理体全加熱加圧する方法であり
、カプセル内のLlr力を調整しつつ加熱加圧処理でき
ることは極めて有用であるが、これをその捷ま利用しよ
うとしたときには折角の調整管が処理時に圧媒ガスの[
E力により+:i:、潰し閉塞して充分に一調整の役割
を果し得ないことが分った。
In this method, the object to be processed is enclosed in a capsule and inserted into a high-pressure container, and while the object to be processed is heated by a heating element built into the high-pressure container, the pressure medium in the high-pressure container is heated by isotropic ITE.
communicates with the inside of the capsule when pressurizing by contraction force,
This is a method in which an adjustment tube whose end extends outside the high-pressure container is provided, and the entire limb treatment body is heated and pressurized while adjusting the type of atmospheric gas and/or IE force inside the capsule through the adjustment tube. It is extremely useful to be able to perform heating and pressurizing treatment while adjusting the LLR force, but when trying to utilize this, it is necessary to use an adjustment tube to control the amount of pressure gas during treatment.
It was found that the +:i: was crushed and occluded by the E force and could not play a sufficient role of adjustment.

なかでも、高密度の炭素成形体を得るにはタール・ピッ
チあるいはその他樹脂からの炭素の収率を上げることが
極めて重要であり、これは第1図において代表的な石油
ピッチを例にとり、その炭素の収率と圧力の関係を示し
ている通り、圧力の増加と共に炭素の収率は増大する傾
向にあって、[1・:力の影響は関密度炭素材料に大き
な影響を有している。
In particular, it is extremely important to increase the yield of carbon from tar pitch or other resins in order to obtain high-density carbon molded bodies. As shown in the relationship between carbon yield and pressure, the carbon yield tends to increase as the pressure increases, [1.: The influence of force has a large influence on the bond density carbon material. .

従って、前述の本出願人の提案した高温高圧成形焼結力
法にも史にまだ改善すべき余地があり、−i後の大きな
課題であった。
Therefore, there is still room for improvement in the high-temperature, high-pressure molding and sintering force method proposed by the present applicant, which was a major problem after -i.

(発明の14的) 本発明は上述の改善を課題とし、雰囲気調整用管内部に
特に難焼結性のセラミック粉末を充填することにより雰
囲気圧力とカプセル内圧力との調整を良好ならしめ、も
って高密度炭素材料製品の工業的製造を達成することを
目的とするものである。
(Fourteenth Object of the Invention) The present invention aims to achieve the above-mentioned improvement, and by filling the inside of the atmosphere adjustment tube with ceramic powder that is particularly difficult to sinter, the atmospheric pressure and the pressure inside the capsule can be well adjusted. The purpose is to achieve industrial production of high-density carbon material products.

(発明の構成) 即ち、上記目的を達成する本発明の特徴とするところは
、その1つは炭素と、タール・ピンチなどの有機材料か
らなる成形体を雰囲”’L i:::1整用管を有する
水素透過性もしくは水素吸蔵性の金属からなるカプセル
内に収納し、かつ、前記雰囲気調整用管内部に難焼結性
のセラミック粉末を充填して、前記カプセルの外側のガ
ス圧力をカプセル内のガス圧力より高くシ、カプセルを
ガス圧力にて外側から圧縮しグつ加熱昇温すると同時に
前記雰囲気調整粗管全通じてカプセル内のガス圧力を制
御(一つつ焼成する方法にある。
(Structure of the Invention) That is, one of the features of the present invention that achieves the above object is that a molded body made of carbon and an organic material such as tar pinch is placed in an atmosphere "'Li:::1". The gas pressure outside the capsule is housed in a capsule made of hydrogen-permeable or hydrogen-absorbing metal and has a conditioning tube, and the inside of the atmosphere conditioning tube is filled with a ceramic powder that is difficult to sinter. The gas pressure inside the capsule is higher than the gas pressure inside the capsule, and the capsule is compressed from the outside with gas pressure and heated to raise the temperature.At the same time, the gas pressure inside the capsule is controlled through all the atmosphere adjustment tubes (in the method of firing one by one). .

又、本発明の他の特徴とする発明は、前記方法を実施す
るだめの高温高圧装置の具体的構成で、高II:、円筒
と、−L下の蓋によって画成される高圧容器内に断熱層
1発熱体を配設し、発熱体で画成される炉室内に水素透
過性もしくは水素吸蔵性の金1・14拐料からなるカプ
セルを炉室内界囲気ガスに対して気密に配IF□tせし
めると共に前記カプセルの5内7X(Hと連)mし、高
E容器外へその端部が延長する雰囲気調整用管を設け、
かつ該調整用管内部に卸焼結性のセラミック粉末を充填
せしめた点にある。
Another feature of the present invention is a specific configuration of a high temperature and high pressure apparatus for carrying out the above method, in which a high pressure vessel defined by a high II cylinder and a lid below -L is provided. A heat insulating layer 1 A heating element is provided, and a capsule made of hydrogen-permeable or hydrogen-absorbing gold 1.14 gold is airtightly placed in the furnace chamber defined by the heating element with respect to the ambient gas in the furnace chamber. □T, and also provide an atmosphere adjustment tube 7X (connected to H) inside the capsule, the end of which extends outside the high-E container,
Another feature is that the interior of the adjustment tube is filled with ceramic powder that can be sintered.

ここで、+)iJ記記聞囲気調整用管内部充填する彊焼
結性のセラミック粉末としてはアルミナ、シリカ、ジル
コニア、マグネシアなどの酸化物や、又窒化ケイ未、窒
化ボウ素などの窒化物あるいは炭化ケイ素、炭化ホウ素
等の炭化物が含まれ、これらは何れも1種又は2種以上
混合して用いられる。
Here, the sinterable ceramic powder to be filled inside the air conditioning tube includes oxides such as alumina, silica, zirconia, and magnesia, and nitrides such as silicon nitride and boron nitride. Carbides such as silicon carbide and boron carbide are included, and any of these may be used alone or in combination of two or more.

しかし、ガスを流通させることが心安であり、一般には
40〜50%程度の充填割合であるが、処理時に[1:
、媒ガスの圧力により圧潰、閉塞することのないように
留、はすることが肝要である。
However, it is safe to circulate the gas, and the filling ratio is generally about 40 to 50%, but during processing [1:
It is important to ensure that the gas is not crushed or blocked by the pressure of the medium gas.

なお、本発明における炭素とタール、ピッチなどの有機
材料との混合成形体はHIP処理過程で昇温すると分解
して水素、炭化水素の各ガス成分を発生する。このよう
な物質は通常のカプセルに封入する方法で処理すれば上
記ガス成分によりカプセル内部の[T:、力が上昇して
カプセル外側の不活性雰囲気ガスの圧力で十分に圧縮で
きなかったり、カプセルが破裂して了うため高密度化が
できないことがある。
Note that the molded mixture of carbon and organic materials such as tar and pitch in the present invention decomposes when heated during the HIP treatment process and generates gas components such as hydrogen and hydrocarbons. If such substances are processed by the usual method of enclosing them in capsules, the above-mentioned gas components will increase the [T:] force inside the capsule, and the pressure of the inert atmosphere gas outside the capsule may not be able to sufficiently compress the substance, or the capsule may densification may not be possible because the particles will rupture.

そこで、カプセル内部の圧力f、H工P処理中に制御す
ることがめられ、これによって上記の如き成形体は冒密
度製品化が可能となる。とくに分解生成ガスが水素の場
合には水素ガスがカプセル@を拡散してカプセル外側の
圧媒ガス中に散逸する現象を利用することによって効果
的に高密度化を行なうことができる。
Therefore, it is necessary to control the pressure f inside the capsule during the H-processing process, thereby making it possible to convert the above-mentioned molded article into a product with high densities. In particular, when the decomposition product gas is hydrogen, densification can be effectively achieved by utilizing the phenomenon that hydrogen gas diffuses through the capsule and is dissipated into the pressure medium gas outside the capsule.

カプセル内の圧力の制御はカプセル内のガスを高圧容器
外に引き出し、これを発熱体への投入IL力の変化に変
換し、炉内温度を調節することによシ、又は調整用管の
一部からガス全力き出し、その種類又は/及びhkを選
択的に測定しその結果を調°絡用管作動系又は温度、圧
力調整系に指令することにより行なうことも有効である
The pressure inside the capsule can be controlled by drawing the gas inside the capsule out of the high-pressure vessel, converting this into a change in the IL power applied to the heating element, and adjusting the temperature inside the furnace, or by adjusting the temperature in the furnace, or by adjusting the temperature inside the furnace. It is also effective to discharge all the gas from the section, selectively measure its type and/or hk, and issue the results to the tuning pipe operation system or temperature and pressure adjustment system.

(実施例) 以下、本発明製造方法の具体的な態様を本発明装置の実
施例と共に詳述する。
(Examples) Hereinafter, specific aspects of the manufacturing method of the present invention will be described in detail together with examples of the apparatus of the present invention.

第2図は本発明方法を実施するに適切な高温高11−装
置の本体部分およびその内部に配置した被処理体の断面
を示す。
FIG. 2 shows a cross-section of the main body of a high-temperature apparatus 11 suitable for carrying out the method of the present invention and the object to be treated disposed inside the main body.

図において、島田容器は高圧円筒(1)およびその−に
下端部を塞ぐ上蓋(2)と下蓋(3)とによって区画構
成され、各々の嵌合部はシール材(10)α6によって
気密に保持されており、蓋部に作用するガス圧力はブレ
ス枠体(図示せず)によって支持される。そして高圧容
器内部には被処理体θ緩を加熱昇温するための電気加熱
抵抗線よりなる発熱体(4)(4)およびこれら発熱体
からの熱により高圧円筒(])や上蓋(2)。
In the figure, the Shimada container is divided into a high-pressure cylinder (1) and an upper lid (2) and a lower lid (3) that close the lower end of the cylinder, and each fitting part is made airtight by a sealing material (10) α6. The gas pressure acting on the lid is supported by a breath frame (not shown). Inside the high-pressure container are heating elements (4) (4) made of electrically heated resistance wires for heating and raising the temperature of the object to be processed (θ), and the heat from these heating elements is used to create a high-pressure cylinder (]) and an upper lid (2). .

下6(3)への熱の散逸を抑制する断熱層(6)が組み
込まれている。
A heat insulating layer (6) is incorporated which suppresses the dissipation of heat to the bottom 6 (3).

被処理体(13)は水素ガス透過性もしくは水素ガス吸
蔵性を有する材料からなるカプセル(12)の中に収納
される。カプセルθ2)には雰囲気調整用管04)が取
り付けられており、この管0→は継手05)ヲ介して下
蓋(3)に設けられたカプセル内雰囲気調整孔(1りに
連通ずる如く着脱自在かつ炉室(7)内の■媒ガスとは
シールリング06)により気密を保つように接続されて
いる。
The object to be processed (13) is housed in a capsule (12) made of a material having hydrogen gas permeability or hydrogen gas storage property. An atmosphere adjustment tube 04) is attached to the capsule θ2). It is freely connected to the medium gas in the furnace chamber (7) through a seal ring 06) so as to maintain airtightness.

M tL JM 体(+3)は石油コークス、アンスラ
センコークス、炭素繊維などの炭素系フィラー材と、コ
ールタール・ピッチやフェノ−7′I/などの有機材料
バインダーとの混合物からなる成形体である。一方、カ
プセルθ2)の材料としては軟鋼、ステンレス鋼などの
鋼材の外、白金、パラジウムなども勿論、使用可能であ
る。又、雰囲気調整用管0→は前記カプセル(ロ)と同
一材質または継手α5)との結合の容易さ等から鋼材が
通常使用され製作される。そして、この管0→の内部に
は本発明の特徴として説明した如く処理時に圧媒ガスの
圧力による圧潰で閉塞することがないよう難焼結性のセ
ラミック粉末(143が充填される。これは管0→自体
に圧潰に耐える十分な肉1!A k Ijえても可能で
あるが、前記の充填と併用すれば更に好適である。又、
セラミック粉末の代りに多孔性のセラミックス焼結体を
詰めておくことも本発明の含むところである。
M tL JM Body (+3) is a molded body made of a mixture of carbon-based filler materials such as petroleum coke, anthracene coke, and carbon fiber, and organic material binders such as coal tar pitch and pheno-7'I/. . On the other hand, as the material for the capsule θ2), in addition to steel materials such as mild steel and stainless steel, platinum, palladium, etc. can of course be used. Further, the atmosphere adjusting pipe 0→ is usually made of the same material as the capsule (b) or made of steel because it can be easily connected to the joint α5). As explained as a feature of the present invention, the inside of this tube 0→ is filled with a hard-to-sinter ceramic powder (143) so that it will not be clogged by crushing due to the pressure of the pressure medium gas during processing. Although it is possible to add enough meat 1!A k Ij to the tube 0→ itself to withstand crushing, it is more preferable to use it in combination with the above-mentioned filling.Also,
The present invention also includes packing a porous ceramic sintered body instead of ceramic powder.

なお、雰囲気調整用管(4)と調整孔(11)との接合
部にはセラミック粉末が低温部になり液分と固結するの
を防■Itするだめ金網フィルターが設けられる。
Note that a wire mesh filter is provided at the junction between the atmosphere adjustment tube (4) and the adjustment hole (11) to prevent the ceramic powder from becoming a low-temperature part and solidifying with the liquid.

第3図、第4図は前記装置におけるカプセル02)と雰
囲気調整用管0→との接合部の各個を示し、筒状のカプ
セル本体(12a)の上下に蓋(12b)(12c)が
溶接手段等によって取り付けられており、第3図では下
蓋(12c)と被処理成形体α3)との間に断熱材から
なる中子θ2)が介装され、蓋と成形体との間に距離が
置かれている。
Figures 3 and 4 show each joint between the capsule 02) and the atmosphere adjustment tube 0→ in the device, and the lids (12b) (12c) are welded to the top and bottom of the cylindrical capsule body (12a). In Fig. 3, a core θ2) made of a heat insulating material is interposed between the lower lid (12c) and the molded object α3), and the distance between the lid and the molded object is is placed.

一方、第4図では下蓋(12c)が上げ庇状となってい
て蓋と距離をおいて溶接がなされている。
On the other hand, in FIG. 4, the lower lid (12c) has an eave-like shape and is welded at a distance from the lid.

これらは溶接時に1500℃という高温となるので成形
体に与える影響を考慮したためである。
This was done in consideration of the effect it would have on the molded product since the temperature would be as high as 1500°C during welding.

次に、上記装置により成形体の高密度化を行なう手順に
ついて説明するが、成形体は種々の方法により製造が可
能である。例えば石油コークス粉末に20〜30重量部
のコールタール・ピッチを混合し100℃前後で捏合し
金型にて成形する。
Next, a procedure for increasing the density of a molded body using the above-mentioned apparatus will be explained, but the molded body can be manufactured by various methods. For example, petroleum coke powder is mixed with 20 to 30 parts by weight of coal tar pitch, kneaded at around 100°C, and molded using a mold.

又、炭素fa雑を使用し、かつ異方性を余り持たせない
場合には適量のタールピッチ等のバインダーを混合した
後、冷間又は温間で静水圧成形することにより目的が達
成される。又、樹脂成形体を加熱し、一部を炭化したも
のを成形体に用いることも可能である。
In addition, when using carbon fa and not having much anisotropy, the purpose can be achieved by mixing an appropriate amount of a binder such as tar pitch and then performing cold or warm isostatic pressing. . It is also possible to heat a resin molded body and partially carbonize the resin molded body and use it as a molded body.

そして、かかる成形体はカプセルに収納されるが、カプ
セルの製造および成形体のカプセルへの収納方法として
は以下の如き手法が本発明方法では好適である。
Then, such a molded body is housed in a capsule, and the following methods are suitable for manufacturing the capsule and storing the molded body in the capsule in the method of the present invention.

即ち、軟鋼製の薄肉の管材と円板とを溶接にて容器状に
なし、これに成形体を挿入した後、雰囲気調整用管0→
の付いた蓋を同じく溶接により前記容器に結合する方法
である。(第3図、第4図参照) この場合、蓋をカプセル本体に溶接する際に溶接時の熱
が成形体に伝わってバインダーを分解せしめることがあ
るので、好ましくは容器を外側から冷却するか、第3図
の如く蓋と成形体の距離を離し、間に断熱材を充填する
ようにするか、あるいは第4図のような形状のカプセル
を使用する。
That is, after welding a thin-walled mild steel tube and a disk into a container shape and inserting the molded body into the container, the atmosphere adjustment tube 0→
In this method, a lid with an attached lid is joined to the container by welding. (See Figures 3 and 4) In this case, when welding the lid to the capsule body, the heat from welding may be transmitted to the molded body and cause the binder to decompose, so it is preferable to cool the container from the outside. , the distance between the lid and the molded body may be increased as shown in FIG. 3, and a heat insulating material may be filled in between, or a capsule shaped as shown in FIG. 4 may be used.

このようにしてカプセルに収納された被処理体(成形体
)はその後、第1図に示した如く炉室(7)内の台座に
に気密に載1a固定される。なお、発熱体保持円筒(5
)に保持された発熱体(4) (4)や断熱層(6)な
どが耐酸化性に乏しいモリブデンやグラファイトからな
る場合にはカプセル固定時に炉室(7)内に混入した空
’At ff:排出するために真空引き用穴(9)を通
じ高圧容器内を真空排気する。その後、必要に応じ圧媒
ガス導入孔(8)から圧媒ガスを数〜数10”/crd
 導入、排出して高圧容器内のガスを置換洗浄する。
The object to be processed (molded object) accommodated in the capsule in this manner is then airtightly mounted 1a on a pedestal in the furnace chamber (7) as shown in FIG. In addition, the heating element holding cylinder (5
) If the heating element (4) held in (4) or the heat insulating layer (6) is made of molybdenum or graphite, which have poor oxidation resistance, the air that got into the furnace chamber (7) when the capsule was fixed is : Evacuate the inside of the high-pressure container through the vacuum hole (9) for discharge. After that, the pressure medium gas is supplied from the pressure medium gas introduction hole (8) at several to several tens of inches/crd as necessary.
It is introduced and discharged to replace and clean the gas inside the high-pressure container.

次いで、圧媒ガスを充填し、徐々に昇温を開始する。こ
のとき昇温の初期、即ち100℃強に至るまでの期間は
、カプセル内を真空引きすることによりカプセルの内表
面や成形体に吸着された水分性を除妻寸入とシφ;昇ネ
iルし百f−41滓咎加熱し、昇温するとバインダーの
重合および炭化が始まるが、晶密度の製品を得るために
は重合開始後、カプセル外側からの圧媒ガスの圧力によ
り圧縮することと、バインダー成分中の炭素生成成分が
最終的に炭素と水素にまで分解し、この炭素が成形体の
空隙中にできるだけ多く残留すること、即ち、炭素の収
率を向上させるような操作を行なうことが好ましい。後
者の観点からはカプセル内に数10Kf’ly/lのA
rガスを充填した状態で昇温することにより良い結果が
得られる。
Next, the chamber is filled with pressure medium gas and the temperature is gradually increased. At this time, at the beginning of the temperature rise, that is, until the temperature reaches over 100°C, the inside of the capsule is vacuumed to remove moisture adsorbed on the inner surface of the capsule and the molded body. The binder starts to polymerize and carbonize when heated and heated to a temperature of 100 F-41, but in order to obtain a product with a high crystal density, after the start of polymerization, it must be compressed using the pressure of a pressure medium gas from the outside of the capsule. Then, the carbon-generating component in the binder component is finally decomposed into carbon and hydrogen, and the operation is performed so that as much carbon as possible remains in the voids of the compact, that is, to improve the carbon yield. It is preferable. From the latter point of view, several tens of Kf'ly/l of A are present in the capsule.
Good results can be obtained by raising the temperature in a state filled with r gas.

このカプセル内の圧力は4温時のArガスの膨張に伴な
う圧力上昇およびバインダーが分解して発生するガス成
分の圧力により変動するので、前記の被処理体、即ち成
形体圧縮のための圧媒ガスの圧力はこのカプセル内圧力
より高く保持する必要がある。特に450℃前後からは
バインダーの分解により生成するガス(主としてOH,
)の圧力が急激に上昇し、カプセル内の圧力が圧媒ガス
より高くなってカプセルを破損することがないよう注意
が必要である。
The pressure inside this capsule fluctuates depending on the pressure increase due to the expansion of Ar gas at 4 temperatures and the pressure of the gas component generated by decomposition of the binder. The pressure of the pressurized gas must be maintained higher than the pressure inside the capsule. In particular, from around 450℃, gases (mainly OH,
) must be careful not to cause the pressure inside the capsule to rise higher than the pressure of the pressurized gas and damage the capsule.

本発明によれば圧媒ガス圧力のみならず、カプセル内の
][力の制御も可能であるため適切な制御が可能となる
。600℃位からはカプセル材料である銅相などが触媒
的な役割を果たし、バインダーの分解が史に進み発生ガ
ス成分の多くは水素となる。ry+Jも、バインダー中
の炭素は成形体の緻密化に寄!Jする。この段階ではカ
プセル内の圧力の制御を昇温速度を制御することにより
実施することが炭素の収率向上の立場から好ましい。
According to the present invention, it is possible to control not only the pressure of the pressurized gas but also the force inside the capsule, so that appropriate control is possible. From about 600°C, the copper phase, which is the capsule material, plays a catalytic role, and the decomposition of the binder progresses, and most of the generated gas components become hydrogen. In ry+J, the carbon in the binder contributes to the densification of the molded product! Do J. At this stage, it is preferable to control the pressure inside the capsule by controlling the rate of temperature rise from the standpoint of improving the carbon yield.

なお、この点に関し先に第1図に石油ピッチの炭素の収
率と[」H力の関係を示しているが、炭素のII′y、
率は1トカの増加と共に増大する傾向にあり、この傾向
は約501<g諷i位寸でか顕著であることが看取され
る。
Regarding this point, Fig. 1 shows the relationship between the carbon yield of petroleum pitch and the [''H force].
It can be seen that the rate tends to increase with an increase of 1 toka, and this tendency is noticeable for about 501<g scale.

かくして昇温速度、カプセル内圧力および圧媒ガスの圧
力を各温度段階において適宜制御することによって高密
度の炭素製品を製造することが可能となる。
In this way, it is possible to produce a high-density carbon product by appropriately controlling the heating rate, the pressure inside the capsule, and the pressure of the pressure medium gas at each temperature stage.

第5図にカプセル内圧力および雰囲気全制御するだめの
配管系統図を示す。
FIG. 5 shows a piping system diagram for the tank that fully controls the pressure and atmosphere inside the capsule.

初期におけるカプセル内部の真空排気は塞止弁(2榎お
よび塞止弁1:24+ ’ffi閉じた状態で塞■1―
弁(23)全開き、真空ポンプ(2n全運転して行なう
At the initial stage, the inside of the capsule is evacuated by closing the blocking valve (2 Enoki and blocking valve 1: 24 + 'ffi in the closed state).
Fully open the valve (23) and run the vacuum pump (2N) at full capacity.

カプセル内に数10 K?、!のArガスを導入する操
作は、塞止弁(221、塞止弁(23)を閉じ、塞止弁
(2d+および塞止弁(2″Oを開き、炉室内のアルゴ
ンガスを流入させるか、アルゴンガス集合装置0′7)
からコンプレッサ08)の経路から塞止弁(24)を経
て注入するなどにより行なう。勿論、塞止弁04) 、
 (23、(23)で閉じられた回路に別途アルゴンガ
スボンベあるいは更にコンプレッサ全接続して行なって
も良い。
Several 10K in the capsule? ,! The operation to introduce Ar gas is to close the blocking valve (221 and blocking valve (23), open the blocking valve (2d+) and blocking valve (2″O), and allow the argon gas in the furnace chamber to flow in, or Argon gas collection device 0'7)
This is done by injecting the water from the compressor 08) through the blocking valve (24). Of course, the blocking valve 04),
(23) A separate argon gas cylinder or a compressor may be connected to the circuit closed in (23).

カプセル内圧力と炉室的圧媒の圧力との関係の制御、即
ち、圧媒ガスによる被処理体の圧縮力の制御は、圧媒ガ
スの■力系統に設けられたH−6力計(19)と、カプ
セル内[1:、力系統に設けられた■力甜の指示値を比
較しつつ行なうことにより実現が可能である。昇温過程
で両者の差が所期の値より小さくなりつつある時には、
コンプレッサ(18)を駆動して圧媒ガスの圧力を増加
させるか、塞止弁(22)を開くことによりカプセル内
のガス圧力を低下させることにより実現が可能である。
Control of the relationship between the pressure inside the capsule and the pressure of the pressure medium in the furnace chamber, that is, the compression force of the object to be processed by the pressure medium gas, is controlled by the H-6 force meter ( 19) and the indicated value of the power supply (1) installed in the power system in the capsule. When the difference between the two becomes smaller than the expected value during the temperature rising process,
This can be achieved by increasing the pressure of the pressurized gas by driving the compressor (18) or by decreasing the gas pressure within the capsule by opening the blocking valve (22).

どちらの方法により制御するかは、前記の如く、処理工
程のステージによって選択が可能である。
Which method to use for control can be selected depending on the stage of the processing process, as described above.

処理1.程の中11JJ以降において、炭素の収率を向
」するには、前記のす11<昇温速度を制御する方が効
果的であるか、これは、カプセル内l:、力系統にある
[1−:力泪(20)の指示値の変化を見ながら発熱体
(4)(41)への投入’+、lL力を制御することに
より、容易に実現さノ1.る。
Processing 1. In order to improve the carbon yield after 11JJ in the middle of the process, is it more effective to control the heating rate described above? 1-: Easily achieved by controlling the input '+' and 1L forces to the heating elements (4) and (41) while observing changes in the indicated value of force (20). Ru.

又、上記投入電力制御を自動的に行なうには加熱電力制
御装置(30)を利用し、これにU:、力計(ロ)から
のIF力Gt 壮を主力電気信号線に上り同装竹内に取
り込むようにすると共に、所期の圧力値とこの■力信号
値を比較し所期の圧力値より小さい場合には投入電力を
増加させ、逆の場合には減少させる制御装置を組み込め
ば充分、そのl]的を達成することができる。
In addition, in order to automatically control the input power, a heating power control device (30) is used, and the IF power Gt from the power meter (B) is connected to the main electric signal line and connected to the same equipment Takeuchi. It is sufficient to incorporate a control device that compares the desired pressure value with this force signal value and increases the input power if it is smaller than the desired pressure value, and decreases it in the opposite case. , the l] target can be achieved.

これを更にタールピッチと石NI+コークスからなる成
形体を処理する場合で詳述すれば、成形体を管系及びカ
プセル内部を真空引きし、炉室内部も真空ポンプ+2[
i)にて真空排気する。続いて塞dz弁(24)’ff
i開とした状態でアルゴンガスをアルゴンガス集合装置
07)から50〜loo”’学イ充填し、向弁(24)
を閉止する。このときカプセル内に通じる配管系(イ)
内の圧力は300句Wに保持するように設定する。
To further explain this in detail in the case of processing a molded body made of tar pitch and stone NI + coke, the pipe system and the inside of the capsule of the molded body are evacuated, and the inside of the furnace chamber is also vacuum pumped +2 [
Evacuate in step i). Next, close the dz valve (24)'ff
Fill the argon gas from the argon gas collecting device 07) with argon gas in the open state, and then open the opposite valve (24).
Close. At this time, the piping system leading into the capsule (a)
The internal pressure is set to be maintained at 300 W.

炉室内のみを配管系(ロ)からアルゴンガスを供給して
加1:、すると共に発熱体(4) (4’)に電力を投
入する。
Argon gas is supplied only into the furnace chamber from the piping system (b), and at the same time, power is applied to the heating elements (4) (4').

このとき、成形体は加熱されるとタールピッチが分解し
て01(、、H□などの分解ガスが生成する。このうち
I(2はカプセルが水素透過性材料でできているため透
過し、炉室内のアルゴンガス中に散逸する。
At this time, when the molded body is heated, the tar pitch decomposes and decomposed gases such as 01 (, H□) are generated. Of these, I (2) permeates because the capsule is made of a hydrogen permeable material It dissipates into the argon gas inside the furnace chamber.

この散逸鼠と分解生成ガスのhtとの割合が略同等であ
ればカプセル内、即ち配管系(イ)内の圧力は一定値と
なる。
If the ratio of this dissipated gas and ht of the decomposition product gas is approximately equal, the pressure within the capsule, that is, within the piping system (a), will be a constant value.

ところで、配管系(イ)内の圧力はタールピッチが分解
して生成するガスにより上昇するが、300ゝり論に達
すると、前記制御機能により4温速度が制御され、保持
される。そして、一定時間経過すると、分解−するター
ルピッチの11)が少なくなり昇Ini M度が速くな
る。更に時間を紅ると分解は終了し、配管系(イ)内の
V(電力は減少を始める。この場合、i1d制御系には
湿度の一1限値を例えば]−000℃と設’jjL L
でおく。従って、炉室内圧力はこの間、1000”47
に保持しておくと、成形体は炉室内圧力とカプセル内L
E力の差圧、IffJち700Kg諷dにより1[二相
される。[r:、力調節計は例えば980Kg箋に設定
しておけばカプセル内の圧力が炉室内のLlE力より7
fi6 <なってカプセルが膨張して破裂することを避
けることができる。
Incidentally, the pressure in the piping system (a) rises due to gas generated by decomposition of tar pitch, but when it reaches 300 degrees, the temperature rate is controlled and maintained by the control function. Then, after a certain period of time has elapsed, the amount of tar pitch decomposed (11) decreases, and the temperature rises faster. As the time increases further, the decomposition ends and the V (power) in the piping system (a) begins to decrease. L
I'll leave it there. Therefore, the pressure inside the furnace was 1000"47 during this time.
If the molded body is held at
The differential pressure of E force, IffJ, is 700Kg, which results in two phases. [r:, If the force controller is set to 980Kg, the pressure inside the capsule will be 7
It is possible to prevent the capsule from expanding and bursting due to fi6 <.

又、前記の如き加熱電力制御装Vを用いず発生ガスの種
類、 tItにより選択的に指令を出し、温度。
Also, without using the heating power control device V as described above, commands can be selectively issued based on the type of generated gas and tIt to control the temperature.

圧力の制御を図ることもできる。It is also possible to control the pressure.

第6図はその1例を示し、被処理体の加熱による発生ガ
スの分子量1分子数の変動がカプセル内の圧力変動にな
ることに立脚するもので、先ず指標となるガスを選択的
に取り出す。そのため安全弁(331をもつ雰囲気調整
用管O→の一部の系から電磁弁ぐ川を介して吸引装置0
邊が連結されており、電磁弁64)が閉じているときに
電磁弁C31)を開け、吸引袈裟(321により定11
〔的に発生ガスを4Iu定装!i’7 C3(ト)に供
給する。
Figure 6 shows an example of this, and it is based on the fact that a change in the molecular weight of the generated gas due to heating of the object to be processed results in a pressure change inside the capsule.First, the gas serving as an indicator is selectively taken out. . Therefore, a safety valve (331) is connected to the suction device 0 via a solenoid valve from a part of the system of the atmosphere adjustment pipe O→.
When the sides are connected and the solenoid valve 64) is closed, the solenoid valve C31) is opened and the suction cap (321) is set to 11.
[Equipped with 4Iu of generated gas! i'7 Supply to C3 (g).

なお、この取出系路では高1r容器内の温度との間で大
きな差があるため系路内で凝縮が起る。このため、防止
策として糸路の保温、加熱を行なうか、凝縮]〜たもの
を除去するl・ラップを設置する方法があるが、前者が
好適である。
In addition, since there is a large difference in temperature between this extraction system and the temperature inside the high 1R container, condensation occurs within the system. Therefore, as a preventive measure, there are methods of keeping the yarn path warm or heating it, or installing a wrap to remove condensation, but the former is preferred.

又、発生ガスを採取する調整用管について、加熱時に被
処理体から発生するガス−の排出管、採取管として必要
な数の複数個を設置し、あるいは2重管構造として設置
aシてもよく、このように調整用管の複数設置、複数利
用によってガス引きのみならず雰囲気ガスを連続的に任
意の圧力で任意の操作時に独立又はHI P処理と平行
的に□供給riJ能とすることができる。
In addition, regarding the adjustment pipes for collecting the generated gas, it is possible to install the necessary number of plural pipes as exhaust pipes and collection pipes for the gas generated from the object to be processed during heating, or to install it as a double pipe structure. Often, by installing and using multiple adjustment pipes in this way, it is possible to not only draw gas but also continuously supply atmospheric gas at any pressure during any operation, either independently or in parallel with HIP processing. I can do it.

かくして指標となるガスの発生が測定装置(35)によ
り検出されたときに、もう1つの測定装置 cxaに切
り替え、この装置側にて特定ガスの定量を行なう。切替
えの方法としては指標とするガスが特定波長の位置で赤
外線に吸収されるという既知の原理を利用し、等定波長
の位置に検知器を設置し、4]1定装置f7 (3G)
を作動する。
In this way, when the measurement device (35) detects the generation of a gas serving as an index, the measurement device (35) switches to the other measurement device cxa, and this device performs the quantitative determination of the specific gas. The switching method uses the known principle that the index gas is absorbed by infrared rays at a specific wavelength position, and a detector is installed at a constant wavelength position.
operate.

一般に被処理体が発生するガスは炭素、水素。Generally, the gases generated by the object to be processed are carbon and hydrogen.

酸素等の成分を数種含有しているところから、加熱時に
蒸発又は/及び分解して発生するガスの中より適宜選択
し、1jiJ記指標ガスとして測定する。
Since it contains several types of components such as oxygen, it is appropriately selected from among the gases generated by evaporation and/or decomposition during heating, and is measured as the index gas in 1jiJ.

そして、この測定結果はH工P装置における温度。This measurement result is the temperature in the H-P equipment.

圧力の制御に指令を出す機能を有し温度、圧力を調整で
きる。
It has a function to issue commands to control pressure, and can adjust temperature and pressure.

なお、以上はカプセル内圧力と雰囲気圧力との間の処理
時の関連した制御であるが、カプセルは処理時、カプセ
ル全体が外側から圧縮される関係−に、降温、降■後、
熱膨張係数がカプセルの方が通常大きい焼きばめ状態と
なっている。そして、このカプセルから中にある成形体
を取り出すには化学的にカプセルを腐食させて除去する
か、機械的に削り取る方法が採られる。しかし、前者は
除去に長時間を要することや、成形体に浸透した除去の
ための薬品等を除去する必要があって問題が多く、通常
は後者により除去される。1〜かし、前述の如くカプセ
ルの焼きばめ状1川で成形体を圧縮した状態にあるため
、機械的に除去する際に急激に応力が解放され成形体に
大きなりラックを惹起する。
The above is related control between the pressure inside the capsule and the atmospheric pressure during processing, but when the capsule is processed, the entire capsule is compressed from the outside.
The capsule is in a shrink fit state where the coefficient of thermal expansion is usually larger. In order to take out the molded body inside the capsule, the capsule is either chemically corroded and removed, or mechanically scraped off. However, the former method is problematic in that it takes a long time to remove and it is necessary to remove chemicals that have permeated into the molded body, so the latter method is usually used for removal. However, as mentioned above, the molded body is in a compressed state due to the shrink fit of the capsule, so when it is mechanically removed, the stress is suddenly released, causing a large rack in the molded body.

第7図ばかがる問題に対処するカプセルの構成を示し、
!Iit焼結性(本発明での処理温度ではポーラスな状
1庫を保つという意味で用いる)のセラミックスもしく
は炭素の粉末Gηをカプセル(12)内面と成形体(I
3)との間に緩衝材として介在せしめている。
Figure 7 shows the configuration of a capsule that deals with the problem of
! Ceramic or carbon powder Gη with sinterability (used to maintain a porous shape at the processing temperature in the present invention) is applied to the inner surface of the capsule (12) and the molded body (I).
3) as a buffer material.

従って、これにより上記応力の解放時にその応力がこの
緩衝材により吸収され成形体は破損することがない。
Therefore, when the stress is released, the stress is absorbed by the buffer material and the molded article is not damaged.

なお、難焼結性のセラミック粉末は処理中に発生するH
2がカプセルを透過して外へ散逸してゆくことを妨げな
いので本来の効果はそのまま持続される。又、セラミッ
ク粉末は水分等を吸着しているため処理前にカプセル内
を真空引きしておくことが好ましい。
Note that ceramic powder that is difficult to sinter is free from H generated during processing.
2 permeates the capsule and dissipates to the outside, so the original effect is maintained as is. Furthermore, since ceramic powder adsorbs moisture and the like, it is preferable to evacuate the inside of the capsule before processing.

本発明は以上のようにして雰囲気調整用管内に難焼結性
のセラミック粉末を充填し、該管全通してカプセル山田
力の調整制御を図りつつ焼成するものであるが、高密度
炭素成形体の製造方法には又、次のようなことがある。
In the present invention, as described above, difficult-to-sinter ceramic powder is filled into an atmosphere adjusting tube, and fired while controlling the capsule Yamada force through the entire tube. The manufacturing method also includes the following.

即ち、最も一般的な編密度化法として知られるa r、
 p法で予備成形した原料を常温かつ2000〜500
0”q−でしに液状圧媒を用いて加■高密度化−すると
きは常温のためガス発生も起らず、従って揮発成分も閉
じ込められたま1加田されるためその後の焼成において
この揮発成分が分解飛散し空孔を生じる。
That is, a r, which is known as the most common editing density method,
The raw material preformed by the P method is heated to room temperature and 2000 to 500
When densifying 0"q using a liquid pressure medium, no gas is generated because it is at room temperature, and therefore the volatile components are also trapped during the heating process, so this volatilization is removed during subsequent firing. The components decompose and scatter, creating pores.

又、含浸法として知られる方法は、予め焼成した成形体
にピッチやフェノール、フランなどを加]Iニ含浸し、
オートクレーブ中などで硬化せしめる方法であるが、こ
の方法においても揮発成分の蒸発をオートクレーブの圧
力によって減少させる効果しか期待できず空孔の存在は
避けられない。又、炭素成形体が多孔性の、例えば炭素
繊維からなるような場合も同様で、これらは結局、強度
面において所期の特性金得ることが困難である。
In addition, a method known as the impregnation method involves adding pitch, phenol, furan, etc. to a pre-fired molded body and impregnating it.
This method involves curing in an autoclave, but even in this method, the only effect that can be expected is to reduce the evaporation of volatile components by the pressure of the autoclave, and the presence of pores is unavoidable. The same applies to cases where the carbon molded body is porous, for example, made of carbon fibers, and it is ultimately difficult to obtain the desired properties in terms of strength.

このような場合にはカプセル内部にカプセル外部の不活
性ガス圧力より低い圧力で炭化性のガスを導入し成形体
中に生じた空隙に侵入せしめ熱分解により炭素として沈
積せしめることが好適である。
In such a case, it is preferable to introduce a carbonizing gas into the capsule at a pressure lower than the inert gas pressure outside the capsule, allow it to enter the voids formed in the compact, and deposit it as carbon by thermal decomposition.

このとき、炭化性ガスの導入は前記雰囲気調整用の管を
通じて導入することもできるが、又、別の管を用いて導
入することもできる。
At this time, the carbonizing gas can be introduced through the atmosphere adjustment tube, but it can also be introduced using another tube.

第8図は雰囲気調整用管f:′M1じて炭化性ガスを導
入ブる配管系統図であり、通常の系統に対し炭化性ガス
ボンベ国と減圧調整器G陽及びフンブレツサod+が設
けられていて、所期の温度を保持しつつカプセル内部に
炭化性ガス全圧入し、炭化性ガスの圧入量が所定の値よ
り小さくなったら降温すると同時にカプセルの内部圧力
を下げるようになっている。
Fig. 8 is a piping system diagram for introducing carbonizing gas through the atmosphere adjustment pipe f:'M1, in which a carbonizing gas cylinder, a pressure reducing regulator G+, and a humbretsor OD+ are installed in the normal system. The carbonizing gas is fully pressurized into the capsule while maintaining the desired temperature, and when the amount of carbonizing gas injected becomes smaller than a predetermined value, the temperature is lowered and the internal pressure of the capsule is lowered at the same time.

なお、カプセル内に炭化性ガスを導入するときは、該導
入された炭化性ガスは分解して最終的には固体としての
炭素と、ガス体としての水素に分解する。このうち炭素
は成形体中の孔に蓄積され、一方、ガス体としての水素
はカプセル壁中金拡散してカプセル外側のArガス中に
散逸する。従って多lIkの炭素を成形体の孔中に作り
出すには多fi−tの炭化性ガスを供給し、かつ分解生
成する水素を効率よくカプセル外に散逸させれば良い。
Incidentally, when a carbonizing gas is introduced into the capsule, the introduced carbonizing gas is decomposed and finally decomposed into carbon as a solid and hydrogen as a gaseous body. Of these, carbon is accumulated in the pores in the molded body, while hydrogen as a gas diffuses into the capsule wall and dissipates into the Ar gas outside the capsule. Therefore, in order to create carbon of many lIk in the pores of the molded body, it is sufficient to supply carbonizing gas of many fi-t and to efficiently dissipate hydrogen produced by decomposition to the outside of the capsule.

これを行なうにはカプセル内の圧力を」二げ炭化性ガス
の絶’X・I’ i、itを増加し、かつこれにより分
解生成する水素の分1〔を上げることが効果的である。
To do this, it is effective to increase the pressure inside the capsule by increasing the absolute value of the carbonizing gas and thereby increasing the amount of hydrogen produced by decomposition.

第9図は前記炭化性ガスの導入口(川をカプセル内のガ
スリ1気口(46と別個に形成し、カプセル(12)上
方より排気管(41)を通じてガスを排気すると共に、
下方より炭化性ガスを導入するようにしたものである。
FIG. 9 shows that the carbonizing gas inlet (river) is formed separately from the gas outlet (46) in the capsule, and the gas is exhausted from above the capsule (12) through the exhaust pipe (41).
Carbonizing gas is introduced from below.

この場合もその作用に関しては同様であるが、1aする
ことが好適である。
In this case as well, the effect is the same, but 1a is preferred.

以下、更に本発明を比較例と対比し実施した結果を示す
Below, the results of implementing the present invention in comparison with comparative examples will be shown.

(比較例) ity &=+ 4’+ 代りn r+ −高7: 会
b ”’7−々スフ 0 m ft+部に、コールター
ルピッチ30重量部を加え、140℃にて捏合した後、
室温まで冷却し粉砕した。得られた粉末をゴム袋に入れ
、ラバープレス装置により3000’&yの圧力にて成
形した。旋削により円柱状とし、1251のサンプルを
得た。とnを1気圧の窒素雰囲気下で150 %rの昇
温速度にて850℃まで昇温して2時間保持した後、降
温した。得られた焼成体の重量は1olfで、嵩密度1
.38%5;4であった。また得らnた焼成体には無数
のクラックが生じていた。
(Comparative Example) ity &=+ 4'+ Instead n r+ -High 7: 30 parts by weight of coal tar pitch was added to 0 m ft+ part of ity &=+ 4'+ and after kneading at 140°C,
It was cooled to room temperature and ground. The obtained powder was placed in a rubber bag and molded using a rubber press at a pressure of 3000'&y. It was turned into a cylindrical shape and 1251 samples were obtained. and n were heated to 850° C. at a heating rate of 150% r under a nitrogen atmosphere of 1 atm, held for 2 hours, and then cooled down. The weight of the obtained fired body is 1olf, and the bulk density is 1
.. It was 38% 5;4. Moreover, numerous cracks were generated in the obtained fired body.

(実施例) 上記比較例と同様の円柱状のサンプル(直径5Q 1f
fl X高さ50問1重量126.97)を、第3図の
形状の軟鋼カプセルに収納した。このカプセルを第2図
に示したような状態で高温開田装置に装着した。装置の
炉室内を真空引き、アルゴンガス置換した後、12””
1yllのアルゴンガスを炉室内に充填し、第10図に
示すように温度および炉室山田力を変化させて成形体を
圧縮炭化させた。この時カプセル内の圧力は、主として
大気圧への解放するための基11−介を操作し、0〜2
0””/cr/lの範囲を越えないように調節した。降
温、降圧後、軟鋼カプセルを取り除き焼成体を取り出し
た。得られた焼結体の寸法および重量は、直径44簡、
高さ45 mm 、 重量10’7.4ffあツ* o
 m 密度u、]−56’4r1(で、クラックの発生
も軽微でやった。
(Example) Cylindrical sample similar to the above comparative example (diameter 5Q 1f
fl x height 50 questions 1 weight 126.97) was housed in a mild steel capsule having the shape shown in Figure 3. This capsule was attached to a high-temperature field excavation device in the state shown in FIG. After evacuating the furnace chamber of the device and replacing it with argon gas, 12""
The furnace chamber was filled with 1 yll of argon gas, and the compact was compressed and carbonized by varying the temperature and the Yamada force in the furnace chamber as shown in FIG. At this time, the pressure inside the capsule is controlled mainly by operating the group 11 for releasing to atmospheric pressure, and the pressure within the capsule is 0 to 2.
It was adjusted so as not to exceed the range of 0""/cr/l. After lowering the temperature and pressure, the mild steel capsule was removed and the fired body was taken out. The dimensions and weight of the obtained sintered body were as follows:
Height: 45 mm, Weight: 10'7.4ff*o
m density u, ]-56'4r1 (and the occurrence of cracks was slight.

(比較例) 次に−1−記実施例と同様な工程を第2図に図示した構
成で、調整用管内にセラミック粉末を充填していない高
温面圧装置を用いて行なった。その結果、得られた結体
の寸法及び重量は直径46 tan 。
(Comparative Example) Next, a process similar to that in Example 1-1 was carried out using a high-temperature surface pressure device having the configuration shown in FIG. 2 and in which the adjusting tube was not filled with ceramic powder. As a result, the dimensions and weight of the obtained compact were 46 tan in diameter.

晶さ47鰭、重1jll15.8s’fあった。It had 47 fins and a weight of 1 jll and 15.8 s'f.

処理後、同装置を開放し前記実施例と対比したところ、
雰囲気調整用管の一部に圧潰現象が見られ、カプセル内
部の圧力制御が充分でなかったことが分った。
After the treatment, the same device was opened and compared with the previous example.
A collapse phenomenon was observed in a portion of the atmosphere adjustment tube, indicating that the pressure inside the capsule was not adequately controlled.

(発明の効果) 本発明は以上のように炭素とタールピッチなどの有機林
料からなる成形体を焼成するにあたり、雰囲気調整用管
を有する水素透過性もしくは水素吸蔵性の金属からなる
カプセルを使用し、該カプセル内に前記成形体を収納し
、かつ雰囲気調整用管内部に難焼結性セラミック粉末を
充填してカプセルをカプセル外側圧力で田縮しつつ昇温
し、同時に前記雰囲気調整用Wを通じてカプセル内のガ
ス圧力を制御しつつ焼成するものであり、前記難焼結性
セラミック粉末充填の雰囲気調整用管を使用することに
よりカプセル外側の圧力が高い場合でも処理時、該圧力
により雰囲気調整用管が上清されることがなく、適切な
カプセル内圧力の制御を確保して高密度化処理を円滑に
遂行することができると共に、カプセル内における成形
体周囲の雰囲気および圧力を上記の如く確実に調整する
ことにより有機林料の固定炭素分の収率を向上でき、高
性能の密度の高い製品を得ることができる顕軽な効果7
fr:奏する。
(Effects of the Invention) As described above, the present invention uses a capsule made of a hydrogen-permeable or hydrogen-absorbing metal having an atmosphere adjustment tube when firing a molded body made of carbon and organic forest materials such as tar pitch. Then, the molded body is stored in the capsule, and the inside of the atmosphere adjustment tube is filled with hard-to-sinter ceramic powder, and the capsule is heated while being compressed by pressure outside the capsule, and at the same time, the atmosphere adjustment tube is heated. By using the atmosphere adjustment tube filled with the hard-to-sinter ceramic powder, the atmosphere can be adjusted by the pressure during processing even when the pressure outside the capsule is high. The densification process can be carried out smoothly by ensuring appropriate control of the pressure inside the capsule without supernatant the supernatant, and the atmosphere and pressure around the molded product in the capsule can be controlled as described above. Significant effect 7: Through accurate adjustment, the yield of fixed carbon in organic forest materials can be improved and high-performance, high-density products can be obtained.
fr: play.

又、本発明方法はカプセル外側のガス圧力をカプセル内
のガス圧力に比し高くすることと、前記カプセル内の適
確な圧力制御とを組合せることにより、製品特性、経済
性の両面から幅の広い制御が可能となり、■業性を高め
得ると共に静水圧的にIE縮しながら焼成することによ
り成形体の膨張等によるクラックの発生を抑制すること
もでき、今後における。冒j密度炭素材料の工業的製造
にその有用性が期待される方法である。
In addition, the method of the present invention combines increasing the gas pressure outside the capsule with respect to the gas pressure inside the capsule and controlling the pressure within the capsule accurately, thereby achieving a wide range from both product characteristics and economic efficiency. This makes it possible to control over a wide range of conditions, improve workability, and suppress the occurrence of cracks due to expansion of the molded product by sintering it while compressing it hydrostatically. This method is expected to be useful in the industrial production of low-density carbon materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石油ピッチの炭素の収率と圧力との関係金示す
図表、第2図は本発明方法を実施する装置1′Jの1例
を示す断面概要図、第3図及び第4図は本発明に使用す
る雰囲気調整用管利きカプセルの各個を示す断面概要図
、第5図はカプセル内IE力及び雰囲気制御配管系統図
、第6図は制御機構の他の例を示すHIP装置概要図、
第7図はカプセルの他の実施例を示す断面図、第8図及
び第9図は炭化性ガス導入機構をもつ本発明装置の配管
系統図及び断面概要図、第10図は本発明を実施した場
合の炉室内L(:、力と炉内温度の変化を示)図表であ
る。 (1)・・・・・1〜’(i目:、円筒、(2)・・・
・・・・]二蓋。 (3)・・・・・・下 蓋、 (4)(4)・・・発熱
体。 (6)・・−・・断熱層、(7)・・・・・・炉 室。 (9)・・・・・・真空引き孔。 (1])・・・・・・カプセル内雰囲気調整孔。 (+2)・・・・・・・カプセル、 (+3)・曲・・
成形体(被処理体)。 (l→・・・・・・・雰囲気調整用管。 0ゐ・・・・・・・難焼結性セラミック粉末。 第1図 圧 力 (ん44勿り 第2図 第3図 第4図 第f図 第9図 4θ
Fig. 1 is a diagram showing the relationship between the carbon yield and pressure of petroleum pitch, Fig. 2 is a cross-sectional schematic diagram showing an example of the apparatus 1'J for carrying out the method of the present invention, and Figs. 3 and 4. 5 is a cross-sectional schematic diagram showing each of the tube-controlled capsules for atmosphere adjustment used in the present invention, FIG. 5 is a diagram of the IE force and atmosphere control piping system inside the capsule, and FIG. 6 is an outline of the HIP device showing another example of the control mechanism. figure,
Fig. 7 is a sectional view showing another embodiment of the capsule, Figs. 8 and 9 are a piping system diagram and a cross-sectional schematic diagram of the device of the present invention having a carbonizing gas introduction mechanism, and Fig. 10 is a cross-sectional diagram showing the present invention. This is a diagram of the inside of the furnace L (showing changes in force and temperature inside the furnace) when (1)...1~'(i-th:, cylinder, (2)...
...] Two lids. (3)...Lower lid, (4)(4)...Heating element. (6)...Heat insulation layer, (7)...Furnace chamber. (9)...Vacuum hole. (1))... Capsule internal atmosphere adjustment hole. (+2)... Capsule, (+3) Song...
Molded object (object to be processed). (l→・・・・・・Pipe for atmosphere adjustment. 0ゐ・・・・・・Difficult to sinter ceramic powder. Figure 1 Pressure (N44, Figure 2, Figure 3, Figure 4) Fig. f Fig. 9 4θ

Claims (1)

【特許請求の範囲】 1、 炭素とタールピッチなどの有機材料からなる成形
体全焼成するに際し、該成形体を雰囲気調整用管を有す
る水素透過性もしくは水素吸蔵性の金属からなるカプセ
ル内に収納し、かつ前記雰囲気調整用管内部に傭焼結性
セラミック粉末をガス流通可能に充填して、該カプセル
の少なくとも外側をガス圧力で満たし加熱昇温すると同
時にカプセル外側の1E力をカプセル内圧力より高くし
てカブ力)つ セルをガス目E力にて外側から圧縮しつつメ前記硫位結
性セラミック粉末充填の雰囲気調整用管を通じてカプセ
ル内のガス圧力を制御しつつ焼成フることを特徴とする
高密度炭素材料の製造方法。 2 昇温の初期、即ちタールピッチ成分中の炭素生成成
分が分解開始する以前に予めカプセル内部を特徴とする
特許請求の範囲第1項記載の高密度炭素材料の製造方法
。 8、 加熱昇温時、カプセル内部にカプセル外側のの製
造方法。 4、 炭化性のガスを雰囲気調整用管を通じて導入する
特許請求の範囲第8項記載の高密度炭素材料の製造方法
。 5、 炭化性のガスを雰囲気調整用管とは別系統の管を
通じて導入する特許請求の範囲第8項記載の高密度炭素
材料の製造方法。 6、 カプセル内に成形体全収納するに際し、カプセル
との間に難焼結性のセラミックス又は炭素粉末を介在さ
せて収納する特許請求の範囲第1〜5項の何れか各項に
記載の高密度炭素材料の製造方法。 7、 カプセル内のガス圧力の制御に雰囲気調整用管内
を流れるガスの種類又は/及び量を選択的に測定した結
果が用いられる特許請求の範囲第1〜6項の何れかの項
に記載の高密度炭素材料の製造方法。 8、 カプセル内のガスL1・:力の制御にカプセル内
から引き出されたガス変換による加熱温度の調節が用い
られる特許請求の範囲第1〜6項の何れかの川に記載の
、′、−6密度炭素材料の製造方法。 9、 雰囲気調整用管の内部に充填されるセラミック粉
末がアルミナ、シリカ、ジルフニア、マグネシアなどの
酸化物、窒化ケイ素、窒化ホウ素などの窒化物ならびに
炭化ケイ素、炭化ホウ素などの炭化物からなる群より選
ばれた少くとも1種の粉末である特rt’+誼求の範囲
第1〜8項の何れかの項に記載の高密度炭素材料の製造
方法。 10、高11:、円筒と十Fの蓋とによって画成される
高L1・、容器内に断熱層とその内部に発熱体全配設し
て発熱体で画成される炉室内に水素透過性もしくは水素
吸藏性の金属材料からなるカプセルを炉室内刃囲気ガス
に対して気密に配置せしめると共に、tfiJ記カプセ
ルの内部と連通し高圧容器外へその端部が延長する雰囲
気調整用管を設け、かつ該雰囲気調整用管内部に難焼結
性のセラミック粉末を充填してなることを特徴とする高
温高圧装置。 11 カプセルが成形体と下部蓋との間に断熱材からな
る中子を具えている特許請求の範囲第10項記載の高温
高圧装置。 12、カプセルの下部蓋が」二げ底となっている特許請
求の範囲第10項記載の高温高圧装置θ。 13、雰囲気調整用管がカプセルの上方に連結している
特許Ni!、請求の範囲第10項記載の高温高圧装置?
1゜
[Claims] 1. When completely firing a molded product made of carbon and an organic material such as tar pitch, the molded product is housed in a capsule made of a hydrogen-permeable or hydrogen-absorbing metal and has an atmosphere adjustment tube. Then, the inside of the atmosphere adjustment tube is filled with sinterable ceramic powder to allow gas flow, and at least the outside of the capsule is filled with gas pressure, and the temperature is increased by heating, and at the same time, the 1E force on the outside of the capsule is applied from the pressure inside the capsule. The capsule is fired while compressing the cell from the outside with a gas force (E force) and controlling the gas pressure inside the capsule through the atmosphere adjustment tube filled with the sulfur-binding ceramic powder. A method for producing a high-density carbon material. 2. The method for producing a high-density carbon material according to claim 1, wherein the inside of the capsule is characterized in advance at the beginning of temperature rise, that is, before the carbon-generating component in the tar pitch component starts to decompose. 8. A method for manufacturing the outside of the capsule inside the capsule when heating and raising the temperature. 4. The method for producing a high-density carbon material according to claim 8, wherein a carbonizing gas is introduced through an atmosphere adjustment tube. 5. The method for producing a high-density carbon material according to claim 8, wherein the carbonizing gas is introduced through a pipe that is separate from the atmosphere adjustment pipe. 6. The molded article according to any one of claims 1 to 5, wherein the molded article is housed with a hard-to-sinter ceramic or carbon powder interposed between it and the capsule when the entire molded article is housed in the capsule. Method for manufacturing density carbon material. 7. The method according to any one of claims 1 to 6, wherein the results of selectively measuring the type and/or amount of gas flowing in the atmosphere adjustment tube are used to control the gas pressure in the capsule. Method for manufacturing high-density carbon material. 8. Gas L1 in the capsule: ', - according to any one of claims 1 to 6, in which the force is controlled by adjusting the heating temperature by converting the gas extracted from the capsule. A method for manufacturing a 6-density carbon material. 9. The ceramic powder filled inside the atmosphere adjustment tube is selected from the group consisting of oxides such as alumina, silica, zilphnia, and magnesia, nitrides such as silicon nitride and boron nitride, and carbides such as silicon carbide and boron carbide. The method for producing a high-density carbon material according to any one of items 1 to 8, wherein the material is at least one type of powder. 10. Height 11: Height L1 defined by the cylinder and the 10F lid.Hydrogen permeation into the furnace chamber defined by the heating element by placing a heat insulating layer inside the container and all heating elements inside the container. A capsule made of a metal material capable of absorbing hydrogen or hydrogen is arranged airtight with respect to the ambient air gas in the furnace chamber, and an atmosphere adjustment pipe is provided, which communicates with the inside of the TFIJ capsule and whose end extends outside the high-pressure vessel. 1. A high-temperature, high-pressure device, characterized in that the atmosphere-adjusting tube is filled with a ceramic powder that is difficult to sinter. 11. The high temperature and high pressure device according to claim 10, wherein the capsule includes a core made of a heat insulating material between the molded body and the lower lid. 12. The high-temperature and high-pressure device θ according to claim 10, wherein the lower lid of the capsule is double-bottomed. 13. Patent Ni where the atmosphere adjustment tube is connected above the capsule! , the high temperature and high pressure device according to claim 10?
1゜
JP59046076A 1984-03-10 1984-03-10 High-density carbon material manufacturing equipment Expired - Fee Related JPH0696441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59046076A JPH0696441B2 (en) 1984-03-10 1984-03-10 High-density carbon material manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59046076A JPH0696441B2 (en) 1984-03-10 1984-03-10 High-density carbon material manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS60191012A true JPS60191012A (en) 1985-09-28
JPH0696441B2 JPH0696441B2 (en) 1994-11-30

Family

ID=12736897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59046076A Expired - Fee Related JPH0696441B2 (en) 1984-03-10 1984-03-10 High-density carbon material manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0696441B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847021A (en) * 1986-06-26 1989-07-11 Union Carbide Corporation Process for producing high density carbon and graphite articles
JP2002294439A (en) * 2001-01-23 2002-10-09 Tosoh Corp Sputtering target and manufacturing method
JP4819204B2 (en) * 2009-10-28 2011-11-24 パナソニック株式会社 Lens sheet, display panel device, and display device
US9042040B2 (en) 2012-07-27 2015-05-26 Samsung Electro-Mechanics Co., Ltd. Lens module
WO2019049873A1 (en) * 2017-09-11 2019-03-14 いすゞ自動車株式会社 Variable nozzle turbocharger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847021A (en) * 1986-06-26 1989-07-11 Union Carbide Corporation Process for producing high density carbon and graphite articles
JP2002294439A (en) * 2001-01-23 2002-10-09 Tosoh Corp Sputtering target and manufacturing method
JP4819204B2 (en) * 2009-10-28 2011-11-24 パナソニック株式会社 Lens sheet, display panel device, and display device
US8500302B2 (en) 2009-10-28 2013-08-06 Panasonic Corporation Display panel apparatus, display apparatus, and method of manufacturing display panel apparatus
US9042040B2 (en) 2012-07-27 2015-05-26 Samsung Electro-Mechanics Co., Ltd. Lens module
US9304233B2 (en) 2012-07-27 2016-04-05 Samsung Electro-Mechanics Co., Ltd. Lens module
WO2019049873A1 (en) * 2017-09-11 2019-03-14 いすゞ自動車株式会社 Variable nozzle turbocharger

Also Published As

Publication number Publication date
JPH0696441B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US4264556A (en) Thermal isostatic densifying method and apparatus
US4041123A (en) Method of compacting shaped powdered objects
US4693863A (en) Process and apparatus to simultaneously consolidate and reduce metal powders
US7544222B2 (en) Activated, coal-based carbon foam
US2725288A (en) Process and apparatus for fabricating metallic articles
US4241135A (en) Polycrystalline diamond body/silicon carbide substrate composite
US20020020292A1 (en) Microporous carbons for gas storage
Kenichi et al. Versatile gas-loading system for diamond-anvil cells
US4171339A (en) Process for preparing a polycrystalline diamond body/silicon carbide substrate composite
US3249964A (en) Producing dense articles from powdered carbon and other materials
US3517092A (en) Process for preparing high-density isotropic graphite structures
JP2006124831A (en) Reaction vessel for vapor phase growth, and vapor phase growth method
JPH0218359A (en) Method and equipment for impregnation and carbonization
US7858024B2 (en) Non-evaporable getter alloys based on yttrium for hydrogen sorption
JPS60191012A (en) Method and apparatus for manufacturing high-density carbonaceous material
US3246056A (en) Production of low-permeability, highdensity, carbon and graphite bodies
Bershadsky et al. Permeability and thermal conductivity of porous metallic matrix hydride compacts
US4591481A (en) Metallurgical process
WO2007017086A1 (en) Method for hot isostatic pressing
US2818339A (en) Method for producing malleable and ductile beryllium bodies
US3240479A (en) Apparatus useful in the production of low-permeability, high-density, carbon and graphite bodies
JPH0458428B2 (en)
Hoinkis The volume of small micropores in unmodified, oxidized or irradiated graphitic matrix
Boyer Historical review of HIP equipment
Christensen et al. Immobilization and leakage of krypton encapsulated in zeolite or glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees