JPS60190330A - Manufacture of superhigh molecular weight polyethylene stretched product - Google Patents

Manufacture of superhigh molecular weight polyethylene stretched product

Info

Publication number
JPS60190330A
JPS60190330A JP4558684A JP4558684A JPS60190330A JP S60190330 A JPS60190330 A JP S60190330A JP 4558684 A JP4558684 A JP 4558684A JP 4558684 A JP4558684 A JP 4558684A JP S60190330 A JPS60190330 A JP S60190330A
Authority
JP
Japan
Prior art keywords
molecular weight
stretching
weight polyethylene
ultra
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4558684A
Other languages
Japanese (ja)
Other versions
JPH0379174B2 (en
Inventor
Masanori Motooka
本岡 正則
Hitoshi Mantoku
万徳 均
Takao Ono
隆夫 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP4558684A priority Critical patent/JPS60190330A/en
Publication of JPS60190330A publication Critical patent/JPS60190330A/en
Publication of JPH0379174B2 publication Critical patent/JPH0379174B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain a superhigh molecular weight polyethylene stretched product having a high elasticity modulus and a high tensile strength by a method in which a blend of a superhigh molecular weight polyethylene of a specific intrinsic viscosity and a paraffinic wax of a low molecular weight is molted, extruded and stretched under specific temperature condition. CONSTITUTION:A blend of 15-80pts.wt. a superhigh molecular weight polyethylene of an intrinsic viscosity of at least 5dl/g or more A and 85-20pts.wt. a paraffinic wax of a molecular weight of 2,000 or less B having a melting point of 40-120 deg.C is melted and mixed at 190-280 deg.C in a screw extruder. The mixture is extruded from a die kept at the melting point -210 deg.C and stretched at a draw ratio more than at least 3 times to obtain an aimed stretched product.

Description

【発明の詳細な説明】 本発明は、超高分子量ポリエチレンの溶融押出延伸方法
に関する。更に詳しくは超高分子量ポリエチレンと特定
のパラフィン系ワックスとからなる組成物を溶融押出延
伸することにより、引張強度、弾性率が共に大きい超高
分子量ポリエチレン延伸物を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for melt extrusion drawing of ultra-high molecular weight polyethylene. More specifically, the present invention relates to a method for producing a stretched ultra-high molecular weight polyethylene having high tensile strength and elastic modulus by melt-extruding and stretching a composition comprising ultra-high molecular weight polyethylene and a specific paraffin wax.

超高分子量ポリエチレンは汎用のポリエチレンに比べ耐
衝撃性、耐摩耗性、耐薬品性、引張強度等に優れており
、エンジニアリングプラスチックとしてその用途が拡が
りつつある。しかしながら汎用のポリエチレンに比較し
て溶融粘度が極めて高く流動性が悪いため、押出成形や
射出成形によって成形することは非常に難しく、その殆
どは圧縮成形によって成形されており、一部ロッド等が
極めて低速で押出成形されているのが現状であった。
Ultra-high molecular weight polyethylene has superior impact resistance, abrasion resistance, chemical resistance, tensile strength, etc. compared to general-purpose polyethylene, and its use as an engineering plastic is expanding. However, compared to general-purpose polyethylene, the melt viscosity is extremely high and the fluidity is poor, so it is very difficult to mold by extrusion molding or injection molding.Most of the polyethylene is molded by compression molding, and some rods etc. Currently, extrusion molding is performed at low speed.

一方、高密度ポリエチレンのモノフィラメントを高倍率
で延伸する方法として、ポリエチレンの融点より高い高
沸点の添加剤をポリエチレンの重量に対し20〜150
%の範囲内で共存せしめ、得られた高濃度分散体から第
1次繊維状物を形成させ、次いでこの紡出糸中にその5
〜25%相当量の添加剤を残存せしめたまま元の長さの
3〜15倍に熱延伸する方法(特公昭37−9765号
)あるいは分子量が400,000以上の線状ポリエチ
レンの溶液を紡糸して、少なくとも20GPaになるよ
うな温度で延伸する方法が提案されている。しかしなが
らこれらの方法は、具体的には0−ジクロルベンゼン、
キシレンあるいはデカリン等の溶媒に分散あるいは溶解
させて特定の方法で紡糸する方法であり、スクリュー押
出機により連続的に押出紡糸する方法にこのような液状
の溶媒を分子量が高い超高分子量ポリエチレンの延伸性
改良剤として用いようとしても、溶媒と粉末との粘度差
が大き過ぎて溶媒と粉末との混合が全く出来ず、また溶
媒が粉末とスクリューとの間の滑剤として働き、粉末と
スクリューとが共回りを起こして殆ど押出しが出来ない
。また、たとえ押出せたとしても均一に混合されていな
いので延伸が全く不可能であり、スクリュー押出機を用
いて連続的に溶融押出紡糸することは出来ないのが現状
であった。またそれらの溶媒は低沸点で引火性が大きい
ので、電熱で加熱するスクリュー押出機には危険で使用
に際しては格別注意を払う必要もある。
On the other hand, as a method for drawing high-density polyethylene monofilaments at a high magnification, additives with a high boiling point higher than the melting point of polyethylene are added at 20 to 150% by weight based on the weight of polyethylene.
%, a primary fibrous material is formed from the obtained high concentration dispersion, and then the 5
A method of hot stretching to 3 to 15 times the original length while leaving an amount equivalent to ~25% of the additive (Japanese Patent Publication No. 37-9765), or spinning a solution of linear polyethylene with a molecular weight of 400,000 or more. A method of stretching at a temperature of at least 20 GPa has been proposed. However, these methods specifically use 0-dichlorobenzene,
This is a method in which the fibers are dispersed or dissolved in a solvent such as xylene or decalin and then spun using a specific method.This method involves continuous extrusion spinning using a screw extruder, and the drawing of ultra-high molecular weight polyethylene with a high molecular weight using such a liquid solvent. Even if you try to use it as a property improver, the difference in viscosity between the solvent and powder is so large that the solvent and powder cannot be mixed at all, and the solvent acts as a lubricant between the powder and the screw, causing the powder and screw to stick together. Co-rotation occurs and extrusion is almost impossible. Further, even if it could be extruded, it would be completely impossible to draw it because it was not mixed uniformly, and it was currently impossible to perform continuous melt extrusion spinning using a screw extruder. Furthermore, since these solvents have low boiling points and are highly flammable, they are dangerous to use in screw extruders heated by electric heat, and special care must be taken when using them.

他方、超高分子量ポリエチレンの成形性を改善するため
に分子量が5.000〜20,000の低分子量ポリエ
チレンを超高分子量ポリエチレン100重量部に対して
10〜60重量部を添加した組成物(特開昭57−17
7036号公報)が提案されているが、これらの組成物
では添加された低分子量ポリエチレンの分子量が大きす
ぎて溶融押出紡糸されたモノフィラメントを20倍以上
の高倍率には延伸出来ず、高弾性率、高引張強度のモノ
フィラメントを得ることはできない。
On the other hand, in order to improve the moldability of ultra-high molecular weight polyethylene, 10 to 60 parts by weight of low-molecular-weight polyethylene with a molecular weight of 5.000 to 20,000 is added to 100 parts by weight of ultra-high molecular weight polyethylene. Kaisho 57-17
However, in these compositions, the molecular weight of the low molecular weight polyethylene added is too large, making it impossible to draw the melt extrusion spun monofilament to a high magnification of 20 times or more, resulting in a high elastic modulus. , it is not possible to obtain monofilaments with high tensile strength.

かかる観点から本発明者らは、スクリュー押出機による
高弾性率、高引張強度を有する超高分子量ポリエチレン
の延伸物の連続押出成形方法の開発を目的とし種々検討
した結果、超高分子量ポリエチレンに特定のパラフィン
系ワックスを配合した組成物を用いることにより本発明
の目的を達することができ、先に特願昭57−2274
.47号および特願昭58−59976号を出願した。
From this point of view, the present inventors conducted various studies aimed at developing a continuous extrusion molding method for drawn products of ultra-high molecular weight polyethylene having high elastic modulus and high tensile strength using a screw extruder, and as a result, they identified ultra-high molecular weight polyethylene. The object of the present invention can be achieved by using a composition containing paraffin wax, which was previously disclosed in Japanese Patent Application No. 57-2274
.. 47 and Japanese Patent Application No. 58-59976.

その後更に検討した結果、スクリュー押出機のダイの温
度を210℃未満にしても、スクリュー押出機のダイ内
での滞留時間を増やすことにより、即ち溶融樹脂の押出
速度を下げることによっても、超高分子量ポリエチレン
とパラフィン系ワックスとをスクリュー押出機で安定に
連続押出成形できることが分かり、本発明を完成するに
至った。
After further investigation, we found that even if the temperature of the die of the screw extruder was lower than 210℃, by increasing the residence time in the die of the screw extruder, that is, by lowering the extrusion speed of the molten resin, it was possible to achieve ultrahigh It has been found that molecular weight polyethylene and paraffin wax can be stably and continuously extruded using a screw extruder, and the present invention has been completed.

すなわち本発明は、少な(とも極限粘度〔η〕が5dl
/g以上の超高分子量ポリエチレン(A):15ないし
80重量部と融点が40ないし120℃で且つ分子量が
2,000以下のパラフィン系ワックス(B):85な
いし20重量部との混合物を190ないし280℃の温
度でスクリュー押出機で溶融混練し、前記混合物の融点
以上210℃未満のダイより未延伸物を押出し、次いで
少なくとも3倍を越える延伸比で延伸することを特徴と
する引張強度、弾性率が共に大きい超高分子量ポリエチ
レン延伸物の製造法を提案するものである。
In other words, the present invention has a low intrinsic viscosity [η] of 5 dl.
A mixture of 15 to 80 parts by weight of ultra-high molecular weight polyethylene (A) having a molecular weight of 40 to 120°C and 85 to 20 parts by weight of a paraffin wax (B) having a melting point of 40 to 120°C and a molecular weight of 2,000 or less. Tensile strength characterized by melt-kneading in a screw extruder at a temperature of 280° C. to 280° C., extruding the unstretched material through a die at a temperature higher than the melting point of the mixture and lower than 210° C., and then stretching at a stretching ratio of at least 3 times, This paper proposes a method for producing stretched ultra-high molecular weight polyethylene that has both high elastic modulus.

本発明の方法に用いる超高分子量ポリエチレン(A)と
は、デカリン溶媒135℃における極限粘度〔η〕が5
dl/g以上、好ましくはフないし30di/gの範囲
のものである。〔η〕が5dl1g未満のものは、延伸
しても引張 強度に優れた延伸物が得られない。又〔η
〕の上限はとくに限定はされないが、3041/gを越
えるものは後述のパラフィン系ワックス(B)を添加し
ても溶融粘度が高く後述の温度範囲でのスクリュー押出
機による溶融紡糸性に劣る。
The ultra-high molecular weight polyethylene (A) used in the method of the present invention has an intrinsic viscosity [η] of 5 at 135°C in decalin solvent.
dl/g or more, preferably in the range of F to 30 di/g. If [η] is less than 5 dl1g, a stretched product with excellent tensile strength cannot be obtained even if stretched. Also [η
] is not particularly limited, but if it exceeds 3041/g, the melt viscosity is high even if the paraffin wax (B) described below is added, and the melt spinnability with a screw extruder in the temperature range described below is poor.

本発明の方法に用いるパラフィン系ワックス(B)とは
、融点が40ないし120℃、好ましくは45ないし1
10℃で且つ分子量が2,000以下、好ましくはi 
、 ooo以下、特に好ましくは800以下のパラフィ
ン系ワックスである。融点が40℃未満のものあるいは
液状パラフィンを用いると超高分子量ポリエチレン(A
)とスクリューとが共回りを起こして均一な溶融紡糸が
出来ない。一方融点が120℃を越え、且つ分子量が2
,000を越えるものは、冷却固化する前にドラフトを
かけると延伸切れを起こし、高弾性率、高引張強度の延
伸物が得られず、更に後述の如く延伸物から過剰のパラ
フィン系ワックスを抽出することも出来ない。また分子
量が800以下のものを用いる場合は冷却固化する前に
ドラフトをかけることにより3倍を越える延伸比でも充
分高弾性率の延伸物が得られるが、分子量が800〜2
,000のパラフィン系ワックスを用いる場合は冷却固
化する前にドラフトをかけて5倍、好ましくは10倍以
」二の延伸比で延伸することが好ましい。
The paraffin wax (B) used in the method of the present invention has a melting point of 40 to 120°C, preferably 45 to 1
at 10°C and a molecular weight of 2,000 or less, preferably i
, ooo or less, particularly preferably 800 or less. Ultra-high molecular weight polyethylene (A
) and the screw rotate together, making uniform melt spinning impossible. On the other hand, the melting point exceeds 120℃ and the molecular weight is 2
,000, if a draft is applied before cooling and solidifying, drawing breaks will occur, making it impossible to obtain a drawn product with high elastic modulus and high tensile strength, and as described below, excessive paraffin wax can be extracted from the drawn product. I can't even do that. In addition, when using a material with a molecular weight of 800 or less, by applying a draft before cooling and solidifying, a drawn product with a sufficiently high elastic modulus can be obtained even at a drawing ratio of more than 3 times.
,000, it is preferable to apply a draft and stretch at a stretching ratio of 5 times, preferably 10 times or more, before cooling and solidifying.

本発明における融点は、ASTM D 3417により
示差走査型熱量針(DSC>により測定した値である。
The melting point in the present invention is a value measured using a differential scanning calorimeter (DSC) according to ASTM D 3417.

また分子量はGPC法(ゲル・パーミェーション・クロ
マトグラフィー)により次の条件で測定して得た重量平
均分子量(Mw)である。
Moreover, the molecular weight is a weight average molecular weight (Mw) measured by GPC method (gel permeation chromatography) under the following conditions.

装 置 :ウォーターズ社製 150C型カラム :東
洋曹達社製 TSK GMH−6(6mmφX 600
mm ) 溶 媒 :オルソジクロルベンゼン(○DCB)温度:
135℃ 流量: 1.Om e /min 注入濃度:30mg/ 20m1!0DCB (注入量
400μl) 尚、東洋曹達社製およびプレッシャー・ケミカル社製、
標準ポリエチレンを用いてユニバーサル法によりカラム
溶出体積は較正した。
Equipment: Waters Co., Ltd. 150C type column: Toyo Soda Co., Ltd. TSK GMH-6 (6mmφX 600
mm) Solvent: Orthodichlorobenzene (○DCB) Temperature:
135℃ Flow rate: 1. Om e /min Injection concentration: 30mg/20ml1!0DCB (Injection volume 400μl) In addition, manufactured by Toyo Soda Co., Ltd. and Pressure Chemical Co., Ltd.
Column elution volumes were calibrated by the universal method using standard polyethylene.

本発明の方法に用いるパラフィン系ワックス(B)は前
記範囲の融点及び分子量を有するものであれば、とくに
炭素と水素のみからなる化合物には限定されず、少量の
酸素、その他の元素を含んでいてもよい。
The paraffin wax (B) used in the method of the present invention is not particularly limited to a compound consisting only of carbon and hydrogen, as long as it has a melting point and molecular weight within the above range, and may contain a small amount of oxygen or other elements. You can stay there.

前記パラフィン系ワックス(B)としては、飽和脂肪族
炭化水素化合物を主体とするもので、具体的にはトコサ
ン、トリコサン、テトラコサン、トリアコンタン等の炭
素数22以上のn−アルカンあるいはこれらを主成分と
した低級n−アルカンとの混合物、石油から分離精製さ
れた所謂パラフィンワックス、エチレンあるいはエチレ
ンと他のα−オレフィンとを共重合して得られる低分子
量重合体である中・低圧法ポリエチレンワックス、高圧
法ポリエチレンワックス、エチレン共重合ワックスある
いは中・低圧法ポリエチレン、高圧法ポリエチレン等の
ポリエチレンを熱減成等により分子量を低下させたワッ
クス及びそれらのフックスの酸化物あるいはマレイン酸
変性物等の酸化ワックス、マレイン酸変性ワックス等が
挙げられる。
The paraffinic wax (B) is mainly composed of saturated aliphatic hydrocarbon compounds, specifically, n-alkanes having 22 or more carbon atoms such as tocosan, tricosane, tetracosane, triacontane, etc., or n-alkanes mainly composed of these. mixture with lower n-alkanes, so-called paraffin wax separated and purified from petroleum, medium/low pressure polyethylene wax which is a low molecular weight polymer obtained by copolymerizing ethylene or ethylene with other α-olefins, High-pressure polyethylene wax, ethylene copolymer wax, medium/low-pressure polyethylene, high-pressure polyethylene, and other waxes whose molecular weight has been lowered by thermal degradation, and oxidized waxes such as Fuchs oxides or maleic acid modified products. , maleic acid-modified wax, and the like.

本発明に用いる前記パラフィン系ワックス(B)の融点
及び分子量範囲に入る他の炭化水素化合物として例えば
ナフタリン、ジメチルナフタリン等の芳香族炭化水素化
合物があるが、これらのものはパラフィン系ワックスと
異なり超高分子量ポリエチレン(A)との相溶性が劣り
、本発明の方法に用いると超高分子量ポリエチレン(A
)への芳香族炭化水素の分散むらが生じ、均一延伸ある
いは高延伸倍率の達成が困難である。
Other hydrocarbon compounds that fall within the melting point and molecular weight range of the paraffinic wax (B) used in the present invention include aromatic hydrocarbon compounds such as naphthalene and dimethylnaphthalene, but unlike paraffinic waxes, these It has poor compatibility with high molecular weight polyethylene (A), and when used in the method of the present invention, it has poor compatibility with ultra high molecular weight polyethylene (A).
), and it is difficult to achieve uniform stretching or a high stretching ratio.

超高分子量ポリエチレン(A)とパラフィン系ワックス
(B)等との相溶性を調べる方法としては、具体的には
高倍率走査型電子顕微鏡による未延伸糸の断面の観察法
が例示出来る。すなわち、超高分子量ポリエチレン(A
)とパラフィン系ワックス(B)等との等量ブレンド物
を溶融混練後溶融紡糸する。次いで得られた未延伸原糸
をその長手方向に直交するようにミクロトーム等の鋭利
な刃で切断する。当該断面と同様の処理により切り出し
た断面をさらにヘキサンあるいはへブタン等の無極性溶
剤に少なくとも1時間以上室温で浸漬して、パラフィン
系ワックス(B)等を抽出除去した抽出処理断面を少な
くとも3,000倍以上の倍率で走査型電子顕微鏡にて
比較観察する。本発明のパラフィン系ワックス(B)は
超高分子量ポリエチレン(A)に対して相溶性が良好で
あるため、0.1 μ以上の陥没は殆ど観察されず、パ
ラフィン系ワックス(B)の代わりにナフタリンを用い
た場合は分散不良を起こし、0.1μ以上の陥没が無数
に観察される。
A specific example of a method for examining the compatibility between ultra-high molecular weight polyethylene (A) and paraffin wax (B) is a method of observing the cross section of an undrawn yarn using a high-magnification scanning electron microscope. That is, ultra-high molecular weight polyethylene (A
) and paraffin wax (B) in equal amounts are melt-kneaded and then melt-spun. Next, the obtained undrawn yarn is cut perpendicularly to its longitudinal direction with a sharp blade such as a microtome. A cross section cut out by the same process as the cross section was further immersed in a non-polar solvent such as hexane or hebutane at room temperature for at least 1 hour to extract and remove paraffin wax (B), etc. Comparative observation is made using a scanning electron microscope at a magnification of 1,000 times or more. Since the paraffin wax (B) of the present invention has good compatibility with ultra-high molecular weight polyethylene (A), depressions of 0.1 μ or more are hardly observed, and it can be used instead of paraffin wax (B). When naphthalene is used, poor dispersion occurs and numerous depressions of 0.1 μm or more are observed.

本発明の方法は前記超高分子量ポリエチレン(A):t
5ないし80重量部、好ましくは30ないし50重量部
と前記パラフィン系ワックス(B) :85ないし20
重量部、好ましくは70ないし50重量部との混合物を
190ないし280℃、好ましくは190ないし250
℃の温度でスクリュー押出機で溶融混練し前記混合物の
融点以上210℃未満、好ましくは前記混合物の融点+
10℃以上210℃未満のグイより未延伸物を押出し、
次いで少なくとも3倍、好0 ましくは5倍以上の延伸比で延伸する方法である。
The method of the present invention includes the ultra-high molecular weight polyethylene (A):t
5 to 80 parts by weight, preferably 30 to 50 parts by weight, and the paraffin wax (B): 85 to 20 parts by weight.
parts by weight, preferably 70 to 50 parts by weight, at 190 to 280°C, preferably 190 to 250°C.
The melting point of the mixture is melted and kneaded in a screw extruder at a temperature of 210°C, preferably the melting point of the mixture is +210°C.
Extruding the unstretched material through a Gui at a temperature of 10°C or higher and lower than 210°C,
The film is then stretched at a stretching ratio of at least 3 times, preferably 5 times or more.

超高分子量ポリエチレン(A)の量が15重量部未満で
はスクリュー押出機での溶融混練が困難であり、また押
出されたものの延伸性が劣り、ブッ切れを起こし高倍率
延伸あるいはドラフトをかけることができない。一方8
0重量部を越えると、溶融粘度が高くなり溶融押出しが
困難であり、また押出された未延伸物(ストランド)の
肌荒れが激しく延伸切れを起こし易い。
If the amount of ultra-high molecular weight polyethylene (A) is less than 15 parts by weight, it will be difficult to melt and knead it in a screw extruder, and the extruded product will have poor drawability, causing breakage and making it difficult to draw at high magnification or draft. Can not. On the other hand 8
If the amount exceeds 0 parts by weight, the melt viscosity becomes high, making melt extrusion difficult, and the extruded unstretched product (strand) has a rough surface and is likely to break during stretching.

グイの温度が混合物の融点未満の温度では、溶融粘度が
高く、溶融押出しが困難である。尚超高分子量ポリエチ
レン(A)とパラフィン系ワックス(B)との混合はヘ
ンシェルミキザー、■−プレンダー等による混合、ある
いは混合後更に単軸あるいは多軸押出機で溶融混練して
造粒する方法により行い得る。
When the temperature of the goo is below the melting point of the mixture, the melt viscosity is high and melt extrusion is difficult. The ultra-high molecular weight polyethylene (A) and the paraffin wax (B) can be mixed using a Henschel mixer, ■-blender, etc., or after mixing, the mixture can be further melt-kneaded using a single-screw or multi-screw extruder for granulation. This can be done by

未延伸物をグイから押出した際に、該溶融物が冷却固化
する前に少なくとも1、好ましくは2を越えるドラフト
をかけることにより、ドラフトをかけないものの延伸物
に比べて高弾性率で高引張1 強度の延伸物が得られる。
When an undrawn material is extruded from a gooey, by applying at least one draft, preferably more than two drafts, before the molten material is cooled and solidified, it has a higher modulus of elasticity and a higher tensile strength than a drawn material that is not drafted. A stretched product with 1 strength can be obtained.

本発明におけるドラフトとは、スクリュー押出機より押
出された溶融物の溶融時における延伸を意味し、溶融物
の引き落としのことである。即ち、溶融樹脂のグイ・オ
リフィス内での押出速度υ。と冷却固化した繊維の巻き
取り速度υとの比をドラフト比として次式で定義した。
The term "draft" in the present invention refers to the drawing of the melt extruded from the screw extruder during melting, and refers to the drawing down of the melt. That is, the extrusion speed υ of the molten resin within the Gui orifice. The ratio of the winding speed υ of the cooled and solidified fiber to the draft ratio was defined as the following equation.

ドラフト比−υ/υ0 又、前記冷却は空冷、水冷いずれの方法でも良い。Draft ratio −υ/υ0 Further, the cooling may be performed by either air cooling or water cooling.

延伸時の温度は通常60℃ないし混合物の融点+20℃
未満の範囲内であり、60℃未満では高倍率の延伸が達
成されない場合があり、一方、混合物の融点+20℃を
越えると超高分子量ポリエチレン(A)が軟化し、延伸
はされるものの、高弾性率の延伸物が得られない虞れが
ある。
The temperature during stretching is usually 60℃ to the melting point of the mixture + 20℃
If the temperature is lower than 60°C, high-stretching may not be achieved.On the other hand, if the temperature exceeds the melting point of the mixture +20°C, the ultra-high molecular weight polyethylene (A) will be softened and stretched, but the There is a possibility that a stretched product with a good elastic modulus cannot be obtained.

上記延伸時の熱媒は空気、水蒸気、溶媒のいずれを用い
ても高弾性率の延伸物が得られるが、熱媒として前記パ
ラフィン系ワックス(B)を溶出あるいは滲出除去する
ことが出来る溶媒で沸点が2 混合物の融点以上のもの、具体的には例えばデカリン、
デカン、灯油を用いると延伸時に過剰のパラフィン系ワ
ックス(B)を抽出あるいは)釡出したワックスの除去
ができ、延伸時の延伸むらの低減ならびに高延伸倍率の
達成が可能となるので好ましい。また超高分子量ポリエ
チレン(A)の延伸物から過剰のパラフィン系ワックス
(B)を除去する手段としては前記方法に限らず、未延
伸物をヘキサン、ヘプタン等の溶剤で処理後延伸する方
法、延伸物をヘキサン、ヘプタン等の溶剤で処理する方
法によってもパラフィン系ワックス(B)を抽出除去出
来しかも高弾性率、高強度の延伸物が得られる。
A stretched product with a high elastic modulus can be obtained by using air, water vapor, or a solvent as a heating medium during the above-mentioned stretching process. However, as a heating medium, a solvent that can elute or ooze out the paraffin wax (B) is used. A substance with a boiling point of 2 or higher than the melting point of the mixture, specifically, for example, decalin,
It is preferable to use decane or kerosene because it is possible to extract excess paraffinic wax (B) or remove boiled wax during stretching, reduce stretching unevenness during stretching, and achieve a high stretching ratio. In addition, methods for removing excess paraffin wax (B) from a stretched product of ultra-high molecular weight polyethylene (A) are not limited to the above-mentioned method, but include a method in which an unstretched product is treated with a solvent such as hexane or heptane, and then stretched. The paraffin wax (B) can also be extracted and removed by treating the product with a solvent such as hexane or heptane, and a stretched product with high elastic modulus and high strength can be obtained.

上記溶媒あるいは溶剤でパラフィン系ワックス(B)を
抽出する際に、延伸物におけるパラフィン系ワックス(
B)の残量を10重量%以下にすると微細孔繊維が得ら
れ、重量換算によって真断面積をめる方法から得た弾性
率、強度ともに抽出前の延伸物の値を上進ることがなく
好ましい。
When extracting the paraffin wax (B) with the above solvent or solvent, the paraffin wax (B) in the stretched product
When the remaining amount of B) is 10% by weight or less, microporous fibers can be obtained, and both the elastic modulus and strength obtained from the method of calculating the true cross-sectional area by weight conversion can exceed the values of the stretched product before extraction. Very preferable.

前記溶媒中での延伸比が3倍未満では高引張強3 度、高弾性率化の程度が少なく、また延伸物に延伸むら
が随伴するため、外観を損う例が多い。尚延伸は、ドラ
フトをかける場合は最終延伸比が3倍以上好ましくは5
倍以上になればよく、1段延伸でも2段以上の多段延伸
でもよい。また、ドフラフトをかけない場合には、最終
延伸比が10倍以上にすると高強度、高弾性率化が計れ
る。
When the stretching ratio in the solvent is less than 3 times, the degree of high tensile strength and high elastic modulus is small, and the stretched product is accompanied by uneven stretching, which often impairs the appearance. When drawing, the final drawing ratio is 3 times or more, preferably 5.
It is sufficient that the stretching is doubled or more, and may be one-stage stretching or multi-stage stretching of two or more stages. Furthermore, when no drafting is applied, high strength and high elastic modulus can be achieved by increasing the final stretching ratio to 10 times or more.

また延伸の際の最終延伸速度はとくに限定はされないが
、生産性から3m/min以上、好ましくは5m/mi
n以上がよい。
Further, the final stretching speed during stretching is not particularly limited, but from the viewpoint of productivity it is 3 m/min or more, preferably 5 m/min.
It is better to have n or more.

本発明に用いる超高分子量ポリエチレン(A)には、耐
熱安定剤、耐候安定剤、顔料、染料、無機充填剤等通常
ポリオレフィンに添加することが出来る添加剤を本発明
の目的を損わない範囲で添加しておいてもよい。
The ultra-high molecular weight polyethylene (A) used in the present invention contains additives that can be normally added to polyolefins, such as heat stabilizers, weather stabilizers, pigments, dyes, and inorganic fillers, within a range that does not impair the purpose of the present invention. It may be added in advance.

本発明の方法により得られる超高分子量ポリエチレンの
延伸物は、従来の通常のポリエチレンの延伸物では得ら
れない高引張強度を有し、且つ高弾性率であるので、モ
ノフィラメント、テープ等の従来の延伸糸の分野に加え
て高弾性率、高強度4 繊維の分野への利用が可能となり、軽量性が要求される
各種補強材に使用できる。さらには、超高延伸による結
晶配列の高度な整列ならびに過剰のパラフィン系ワック
ス(B)を抽出することにより副次的に生成する微孔を
利用した選択膜、エレクトレット等の機能材料への適性
にも優れている。
The drawn product of ultra-high molecular weight polyethylene obtained by the method of the present invention has high tensile strength and high elastic modulus that cannot be obtained with conventional drawn products of ordinary polyethylene. In addition to the field of drawn yarn, it can be used in the field of high elastic modulus, high strength 4 fibers, and can be used in various reinforcing materials that require lightness. Furthermore, it is suitable for functional materials such as selective membranes and electrets that utilize the highly aligned crystal arrangement achieved by ultra-high stretching and the micropores that are generated as a by-product by extracting excess paraffin wax (B). is also excellent.

次に実施例を挙げて本発明を更に具体的に説明するが、
本発明の要旨を越えない限りそれらの実施例に制約され
るものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these embodiments unless it goes beyond the gist of the invention.

実験例1 超高分子量ポリエチレン(〔η) −8,20dl!/
g)とパラフィンワックス(融点=69℃、分子i!=
 460)との25 : 75ブレンド物を次の条件下
で溶融紡糸延伸を行った。超高分子量ポリエチレンの粉
末とパラフィンワックスの粉砕品とを混合後、20mm
φ、■、/D=20のスクリュー押出機を用い樹脂温度
200℃で溶融混練を行った。次いで該溶融物をオリフ
ィス径が4 、0mmでグイ温度を170℃に設定した
ダイより押し出し、エアーギャップ1 ヘ :5cmで0°Cの氷水中にて固化させた。この際、溶
融樹脂の押出速度は6.0cm/minであり、巻き取
り速度が0.3m/minになる様に引き落としを行っ
た。即ちドラフト比を5とした。引き続き二対のゴデツ
トロールを用いてn−デカンを熱媒とした延伸槽(槽内
温度=130℃、槽の長さ”40cm)で延伸を行った
Experimental example 1 Ultra high molecular weight polyethylene ([η) -8,20dl! /
g) and paraffin wax (melting point = 69°C, molecule i!=
460) was melt-spun and drawn under the following conditions. After mixing ultra-high molecular weight polyethylene powder and crushed paraffin wax, 20mm
Melt kneading was performed at a resin temperature of 200° C. using a screw extruder with φ, ■, /D=20. The melt was then extruded through a die with an orifice diameter of 4.0 mm and a goose temperature set at 170°C, and solidified in ice water at 0°C with an air gap of 1:5 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the withdrawal was performed so that the winding speed was 0.3 m/min. That is, the draft ratio was set to 5. Subsequently, the film was stretched using two pairs of godet rolls in a stretching bath using n-decane as a heating medium (temperature inside the bath was 130° C., length of the bath was 40 cm).

延伸に際しては、第1ゴデツトロールの回転速度を0.
5m/minとして、第2ゴデツトロールおよび第3ゴ
デツトロールの回転速度を適宜変更することによって延
伸比の異なる繊維を得た。延伸は、第2ゴデツトロール
で予め延伸比4.0倍に延伸した後、引き続き2段目の
延伸を第3ゴデツトロールで所定の延伸比迄行った。但
し、延伸比はゴデツトロールの回転比より計算してめた
。各延伸比における引張弾性率、引張強度および破断点
伸度を表1に示す。尚、引張弾性率、引張強度および破
断点伸度はインストロン万能試験機1123型(インス
トロン社製)を用いて室温(23℃)にて測定した。こ
の時、クランプ間の試料長は100mmで引張速度10
0mm 7分とした。但し、引張弾性率は2%歪におけ
る応力を用いて計算した。計算に必要な繊維断面積は、
ポリエチレンの密度を0.96g/c4として繊維の重
量と長さを測定してめた。
During stretching, the rotational speed of the first godet roll is set to 0.
Fibers with different drawing ratios were obtained by appropriately changing the rotation speeds of the second godet roll and the third godet roll at 5 m/min. For stretching, the film was first stretched to a stretching ratio of 4.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. However, the stretching ratio was calculated from the rotation ratio of the godet roll. Table 1 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. The tensile modulus, tensile strength, and elongation at break were measured at room temperature (23° C.) using an Instron universal testing machine model 1123 (manufactured by Instron). At this time, the sample length between the clamps was 100 mm, and the tensile speed was 10
0mm and 7 minutes. However, the tensile modulus was calculated using stress at 2% strain. The fiber cross-sectional area required for calculation is
The weight and length of the fibers were measured assuming that the density of polyethylene was 0.96 g/c4.

表 1 実験例2 超高分子量ポリエチレン((η) =8.20dI/g
)とパラフィンワックス(融点−69℃、分子11= 
460)との25 : 75ブレンド物を実験例1と同
一条件下で溶融紡糸延伸を行った。但し、オリフィス径
が4111Inでグイ温度を170℃に設定したダ7 6 イより溶融物を押し出し、エアーギャップ:5Qで0℃
の氷水中にて固化させた。この際、溶融樹脂の押出速度
は6.0cm/minであり、巻き取り速度が0.6m
/minになる様に引き落としを行った。
Table 1 Experimental Example 2 Ultra-high molecular weight polyethylene ((η) = 8.20 dI/g
) and paraffin wax (melting point -69℃, molecule 11=
460) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the molten material is extruded through a holder with an orifice diameter of 4111 In and a temperature of 170°C, and the air gap is set at 0°C with an air gap of 5Q.
It was solidified in ice water. At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the winding speed was 0.6 m/min.
I made a withdrawal so that the amount would be /min.

即ち、ドラフト比を10とした。延伸は、第2ゴデツト
ロールで予め延伸比3.0倍に延伸した後、引き続き2
段目の延伸を第3ゴデツトロールで所定の延伸比迄行っ
た。各延伸比における引張弾性率、引張強度および破断
点伸度を表2に示す。ドラフト比を上げることにより、
表1の延伸物に較べ引張強度の高い延伸物が得られるこ
とが分る。
That is, the draft ratio was set to 10. Stretching is carried out by pre-stretching to a stretching ratio of 3.0 times using a second Godet roll, and then
Stretching of each stage was carried out using a third godet roll to a predetermined stretching ratio. Table 2 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. By increasing the draft ratio,
It can be seen that a drawn product having higher tensile strength than the drawn product in Table 1 can be obtained.

表 2 8 実験例3 超高分子量ポリエチレン((η) =8.20dl/g
)とパラフィンワックス(融点−69℃、分子量−46
0)との25 : 75ブレンド物を実験例1と同一条
件下で溶融紡糸延伸を行った。但し、オリフィス径が4
mmでダイ温度を170℃に設定したダイより溶融物を
押し出し、エアーギャップ:5ctnで0℃の氷水中に
て固化させた。この際、溶融樹脂の押出速度は6.0c
m/minであり、巻き取り速度が3.0m/minに
なる様に引き落としを行った。
Table 2 8 Experimental Example 3 Ultra-high molecular weight polyethylene ((η) = 8.20 dl/g
) and paraffin wax (melting point -69℃, molecular weight -46
A 25:75 blend of 0) was melt-spun and drawn under the same conditions as in Experimental Example 1. However, if the orifice diameter is 4
The melt was extruded through a die with a die temperature of 170° C. and solidified in ice water at 0° C. with an air gap of 5 ctn. At this time, the extrusion speed of the molten resin was 6.0c.
m/min, and the withdrawal was performed so that the winding speed was 3.0 m/min.

即ち、ドラフト比を50とした。延伸は、第2ゴデツト
ロールで予め延伸比3.0倍に延伸した後、引き続き2
段目の延伸を第3ゴデツトロールで所定の延伸比迄行っ
た。各延伸比における引張弾性率、引張強度および破断
点伸度を表3に示す。ドラフト比を上げることにより、
表1の延伸物に較べ引表 3 実験例4 超高分子量ポリエチレン(〔η) =8.20dl/g
)とパラフィンワックス(融点=69℃、分子量= 4
60)との25 : 75ブレンド物を実験例1と同一
条件下で溶融紡糸延伸を行った。但し、オリフィス径が
41でグイ温度を170℃に設定したダイより溶融物を
押し出し、エアーギャップ:2Qcmで室温の空気中に
て固化させた。この際、溶融樹脂の押出速度は6.0c
m/minであり、巻き取り速度が0.3m/minに
なる様に引き落としを行った。
That is, the draft ratio was set to 50. Stretching is carried out by pre-stretching to a stretching ratio of 3.0 times using a second Godet roll, and then
Stretching of each stage was carried out using a third godet roll to a predetermined stretching ratio. Table 3 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. By increasing the draft ratio,
Table 3 Compared to the stretched product in Table 1 Experimental example 4 Ultra-high molecular weight polyethylene ([η) = 8.20 dl/g
) and paraffin wax (melting point = 69℃, molecular weight = 4
A 25:75 blend with 60) was subjected to melt-spinning and drawing under the same conditions as in Experimental Example 1. However, the molten material was extruded through a die with an orifice diameter of 41 and a temperature of 170° C., and was solidified in air at room temperature with an air gap of 2 Qcm. At this time, the extrusion speed of the molten resin was 6.0c.
m/min, and the withdrawal was performed so that the winding speed was 0.3 m/min.

即ち、ドラフト比を5とした。延伸は、第2ゴデツトロ
ールで予め延伸比4.0倍に延伸した後、引き続き2段
目の延伸を第3ゴデツトロールで所定の延伸比迄行った
。各延伸比における引張弾性率引張強度および破断点伸
度を表4に示す。ドラフト比を上げることにより、引張
強度の高い延伸物が得られることが分る。
That is, the draft ratio was set to 5. For stretching, the film was first stretched to a stretching ratio of 4.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 4 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. It can be seen that by increasing the draft ratio, a drawn product with high tensile strength can be obtained.

表 4 実施例5 超高分子量ポリエチレン(〔η) =8.20c11/
g)とパラフィンワックス(融点=69℃、分子量−4
60)との25 : 75ブレンド物を実験例1と1 0 同一条件下で溶融紡糸延伸を行った。但し、オリフィス
径が4nunでグイ温度を170℃に設定したダイより
溶融物を押し出し、エアーギャップ:20cmで室温の
空気中にて固化させた。この際、溶融樹脂の押出速度は
6.0cm/minであり、巻き取り速度が0.8m/
minになる様に引き落としを行った。
Table 4 Example 5 Ultra-high molecular weight polyethylene ([η) =8.20c11/
g) and paraffin wax (melting point = 69°C, molecular weight -4
A 25:75 blend with 60) was melt-spun and stretched under the same conditions as in Experimental Example 1 and 10. However, the molten material was extruded through a die with an orifice diameter of 4 nm and a temperature of 170° C., and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the winding speed was 0.8 m/min.
I made a withdrawal so that it would be min.

即ち、ドラフト比を10とした。延伸は、第2ゴデツト
ロールで予め延伸比3.0倍に延伸した後、引き続き2
段目の延伸を第3ゴデツトロールで所定の延伸比迄行っ
た。各延伸比における引張弾性率、引張強度および破断
点伸度を表5に示す。ドラフト比を上げることにより、
表4の延伸物に較べ引2 表 5 23 実験例6 超高分子量ポリエチレン(〔η) =8.20dl/g
)とパラフィンワックス(融点=69℃、分子量= 4
60)との25 : 75ブレンド物を実験例1と同一
条件下で溶融紡糸延伸を行った。但し、オリフィス径が
4mmでグイ温度を170℃に設定したグイより溶融物
を押し出し、エアーギャップ:20cI11で室温の空
気中にて固化させた。この際、溶融樹脂の押出速度は6
.Ocm/minであり、巻き取り速度が3.0m/m
inになる様に引き落としを行った。
That is, the draft ratio was set to 10. Stretching is carried out by pre-stretching to a stretching ratio of 3.0 times using a second Godet roll, and then
Stretching of each stage was carried out using a third godet roll to a predetermined stretching ratio. Table 5 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. By increasing the draft ratio,
Comparison with the drawn product in Table 4 Table 5 23 Experimental Example 6 Ultra-high molecular weight polyethylene ([η) = 8.20 dl/g
) and paraffin wax (melting point = 69℃, molecular weight = 4
A 25:75 blend with 60) was subjected to melt-spinning and drawing under the same conditions as in Experimental Example 1. However, the melt was extruded through a gouie with an orifice diameter of 4 mm and a gouie temperature set at 170° C., and solidified in air at room temperature with an air gap of 20 cI11. At this time, the extrusion speed of the molten resin was 6
.. Ocm/min, and the winding speed is 3.0m/m
I made a withdrawal so that it would become in.

即ち、ドラフト比を50とした。延伸は、第2ゴデツト
ロールで予め延伸比3.0倍に延伸した後、引き続き2
段目の延伸を第3ゴデツトロールで所定の延伸比巡行っ
た。各延伸比における引張弾性率、引張強度および破断
点伸度を表6に示す。ドラフト比を上げることにより、
表4の延伸物に較べ引4 表 6 ]− [〕 実験例7 超高分子量ポリエチレン(〔η) =8.20d!/g
)とパラフィンワックス(融点−69℃、分子量= 4
60)との25 i 75ブレンド物を実験例1と同一
条件下で溶融紡糸延伸を行った。但し、オリフィス径が
4n+mでダイ温度を170℃に設定したグイより溶融
物を押し出し、エアーギャップ=5cIn℃の氷水中に
て固化させた。この際、溶融相押出速度は6 、0 c
m / m i nであり、巻き取り速3.0cm/m
inになる様に引き落としを行った。
That is, the draft ratio was set to 50. Stretching is carried out by pre-stretching to a stretching ratio of 3.0 times using a second Godet roll, and then
The stretching of each stage was repeated at a predetermined stretching ratio using a third godet roll. Table 6 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. By increasing the draft ratio,
Compared to the stretched product in Table 4, Table 6] - [] Experimental Example 7 Ultra-high molecular weight polyethylene ([η) = 8.20d! /g
) and paraffin wax (melting point -69℃, molecular weight = 4
A 25 i 75 blend with 60) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the melt was extruded through a gouie with an orifice diameter of 4n+m and a die temperature set at 170°C, and solidified in ice water with an air gap of 5cIn°C. At this time, the melt phase extrusion speed was 6.0 c
m/min, winding speed 3.0cm/m
I made a withdrawal so that it would become in.

、ドラフト比を0.5とした。延伸は、第2ゴ5 プツトロールで予め延伸比3.0倍に延伸した後、引き
続き2段目の延伸を第3ゴデツトロールで所定の延伸比
迄行った。各延伸比における引張弾性率、引張強度およ
び破断点伸度を表7に示す。
, the draft ratio was set to 0.5. For stretching, the film was first stretched to a stretching ratio of 3.0 times using a second godet roll, and then a second stage of stretching was performed using a third godet roll to a predetermined stretching ratio. Table 7 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio.

表 7 実験例8 超高分子量ポリエチレン(〔η) =8.20dl/g
)とパラフィンワックス(融点−69℃、分子量−46
0)との25 : 75ブレンド物を実験例1と同一条
件下で溶融紡糸延伸を行った。但し、オリフィス径が4
m+nでグイ温度を170℃に設定したダリC イより溶融物を押し出し、エアーギャップ:20cmで
室温の空気中にて固化させた。この際、溶融樹脂の押出
速度は(3,Qcm / minであり、巻き取り速度
が3.Qcm/minになる様に引き落としを行った。
Table 7 Experimental example 8 Ultra high molecular weight polyethylene ([η) = 8.20 dl/g
) and paraffin wax (melting point -69℃, molecular weight -46
A 25:75 blend of 0) was melt-spun and drawn under the same conditions as in Experimental Example 1. However, if the orifice diameter is 4
The melt was extruded through a Dali C with m+n temperature set at 170° C., and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was (3.Qcm/min), and the withdrawal was performed so that the winding speed was 3.Qcm/min.

即ち、ドラフト比を0.5とした。延伸は、第2ゴデツ
トロールで予め延伸比3.0倍に延伸した後、引き続き
2段目の延伸を第3ゴデツトロールで所定の延伸比迄行
った。各延伸比における引張弾性率、引張強度および破
断点伸度を表8に示す。
That is, the draft ratio was set to 0.5. For stretching, the film was first stretched to a stretching ratio of 3.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 8 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio.

表 8 実験例9 超高分子量ポリエチレン([η] =8.20dl/g
)とパラフィンワックス(融点−69℃、分子量−46
0)との50 : 50ブレンド物を次の条件下でT−
グイフィルム成形した後延伸を行った。超高分子量ポリ
エチレンの粉末とパラフィンワックスの粉砕品とを混合
後、20mmφ、L/D=20のスクリュー押出機を用
い樹脂温度220℃で、溶融混線ペレタイズした。次い
で、該ベレットを180℃のコートハンガー型グイ (
リップ長”−300mm、リップ厚−0,5mm)を付
けた20mmφ、L/D=20のスクリュー押出機によ
りフィルム成形した。20℃の冷水を用いて冷却したロ
ールを用いフィルム幅およびフィルム厚が300111
mおよび0.51になる様に調節した。引き続き二対の
スナップロールを用いてn−デカンを熱媒とした延伸槽
(槽内温度130℃、槽の長さ一80cm)で延伸を行
った。
Table 8 Experimental Example 9 Ultra-high molecular weight polyethylene ([η] = 8.20 dl/g
) and paraffin wax (melting point -69℃, molecular weight -46
A 50:50 blend of T-0) with T-
After forming the Gui film, it was stretched. After mixing the ultra-high molecular weight polyethylene powder and the pulverized paraffin wax, the mixture was melt-mixed and pelletized using a screw extruder with a diameter of 20 mm and L/D=20 at a resin temperature of 220°C. Next, the pellet was heated to 180°C in a coat hanger type mold (
The film was formed using a 20 mmφ, L/D=20 screw extruder with a lip length of 300 mm and a lip thickness of 0.5 mm.The film width and thickness were adjusted using a roll cooled with 20°C cold water. 300111
m and adjusted to 0.51. Subsequently, the film was stretched using two pairs of snap rolls in a stretching tank (tank temperature: 130° C., tank length: 180 cm) using n-decane as a heating medium.

延伸に際しては、第1スナツプロールの回転速度を0.
5m/minとして、第2スナツプロールで予め延伸比
8.0倍迄延伸した後、引き続き第3ス8 2 ’/ ナツプロールの回転速度を適宜変更することにより延伸
比の異なる延伸テープを得た。但し、延伸比は第1スナ
ツプロールと第3スナツプロールの回転比より計算して
めた。各延伸比における延伸テープの引張弾性率、引張
強度および破断点伸9 表 9 30 比較例1 超高分子量ポリエチレン(〔η) =8.20dl/g
)とパラフィンワックス(融点−69℃、分子量= 4
60)との25 : 75ブレンド物を実験例1と同一
条件下で溶融紡糸延伸を行った。但し、オリフィス径が
4mmでグイ温度を100℃に設定したグイより押し出
し、エアーギャップ:5c+nT:0℃の氷水中にて固
化させた。この際、溶融樹脂の押出速度6.0CIII
/lll1nであり、巻き取り速度が6.0CJn /
 11 i nになる様にストランドの巻き取りを行っ
た。しかしながら、ストランドを連続的に巻き取ること
ができなかった。又、得られたストランドは脆く、連続
的なストランドが得られたとしても延伸に耐え得るもの
ではなかった。
During stretching, the rotational speed of the first snap roll was set to 0.
5 m/min to a stretching ratio of 8.0 times with the second Snap roll, and then by appropriately changing the rotation speed of the third Snap roll, stretched tapes with different stretching ratios were obtained. However, the stretching ratio was calculated from the rotation ratio of the first and third snack rolls. Tensile modulus, tensile strength, and elongation at break of stretched tape at each stretching ratio 9 Table 9 30 Comparative Example 1 Ultra-high molecular weight polyethylene ([η) = 8.20 dl/g
) and paraffin wax (melting point -69℃, molecular weight = 4
A 25:75 blend with 60) was subjected to melt-spinning and drawing under the same conditions as in Experimental Example 1. However, it was extruded through a gouie with an orifice diameter of 4 mm and a gouie temperature set at 100°C, and solidified in ice water with an air gap of 5c+nT: 0°C. At this time, the extrusion speed of the molten resin was 6.0CIII
/lll1n, and the winding speed is 6.0CJn /
The strand was wound to a length of 11 inches. However, it was not possible to wind the strands continuously. Moreover, the obtained strands were brittle and could not withstand stretching even if continuous strands were obtained.

比較例2 超高分子量ポリエチレン(〔η) =8.20c11/
g)とパラフィンワックス(融点−69℃、分子量−4
60)との25 : 75ブレンド物を実験例1と同一
条件下で溶融紡糸延伸を行った。但し、オリ1 フイス径が4mmでグイ温度を100℃に設定したグイ
より押し出し、エアーギャップ: 20cmで室温の空
気中にて固化させた。この際、溶融樹脂の押出速度6.
0cm/minであり、巻き取り速度が6.0cm/m
inになる様にストランドの巻き取りを行った。しかし
ながら、ストランドを連続的に巻き取ることができなか
った。又、得られたストランドは脆く、連続的なストラ
ンドが得られたとしても延伸に耐え得るものではなかっ
た。
Comparative Example 2 Ultra-high molecular weight polyethylene ([η) = 8.20c11/
g) and paraffin wax (melting point -69°C, molecular weight -4
A 25:75 blend with 60) was subjected to melt-spinning and drawing under the same conditions as in Experimental Example 1. However, it was extruded through a gouie with a diameter of 4 mm and a gou temperature set at 100° C., and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion rate of the molten resin is 6.
0cm/min, and the winding speed is 6.0cm/m.
The strand was wound so that it became in. However, it was not possible to wind the strands continuously. Moreover, the obtained strands were brittle and could not withstand stretching even if continuous strands were obtained.

比較例3 超高分子量ポリエチレン((η) −8,20dl/g
)とn−ヘキサデカンとの50 : 50ブレンド物を
実験例1と同一条件下で溶融混線を行った。
Comparative example 3 Ultra high molecular weight polyethylene ((η) -8,20 dl/g
) and n-hexadecane were melt mixed under the same conditions as in Experimental Example 1.

但し、オリフィス径が2mmのグイより溶融物を押し出
した。しかしながら、混合物がスクリュー押出機内で共
回りをするため、均一な溶融ストランドが得られず、均
一な延伸繊維を得ることができなかった。
However, the melt was extruded through a gouie with an orifice diameter of 2 mm. However, since the mixture co-rotates within the screw extruder, uniform molten strands could not be obtained, and uniform drawn fibers could not be obtained.

本実験例におてい得られた延伸繊維には、2 ASTM D 3417によるDSC測定からはパラフ
ィンワックスの残留はいずれも認められなかった。
In the drawn fibers obtained in this experimental example, no residual paraffin wax was found in the DSC measurement according to ASTM D 3417.

本実験例において、ドラフトの影響を調べるため図1お
よび図2に未延伸物調製時の冷却条件の違いによる引張
弾性率および引張強度を延伸比に対してプロットした。
In this experimental example, in order to examine the influence of draft, the tensile modulus and tensile strength according to different cooling conditions during the preparation of unstretched products are plotted against the stretching ratio in FIGS. 1 and 2.

さらに、引張強度を引張弾性率に対して図3にプロット
した。図から明らかな様に、未延伸物調製時の冷却条件
による影響は特に認められない。
Furthermore, the tensile strength was plotted against the tensile modulus in FIG. As is clear from the figure, no particular influence was observed by the cooling conditions during the preparation of the unstretched product.

引張弾性率および引張強度は、ドラフトの影響を受け延
伸比に対する依存性が顕著に違うことを示している。溶
融時に引き落としをかけると、引き落としをかけない場
合に比べて高弾性率で且つ高強度な延伸物が得られるこ
とが図3から明らかである。即ち、冷却固化前にドラフ
トをかけることにより高弾性率、高強度繊維が得られる
こと3
The tensile modulus and tensile strength are influenced by draft and show a markedly different dependence on the draw ratio. It is clear from FIG. 3 that when a drawdown is applied during melting, a drawn product having a higher elastic modulus and higher strength can be obtained than when a drawdown is not applied. That is, high elastic modulus and high strength fibers can be obtained by applying a draft before cooling and solidifying3.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は引張弾性率と延伸比との関係、図2は引張強度と
延伸比との関係および図3は引張強度と引張弾性率との
関係を表わす。 出願人 三井石油化学工業株式会社 代理人 山 口 和 4 (しcTO)疹拐疑最1ρ (しdO)λ唾最ID
FIG. 1 shows the relationship between tensile modulus and stretching ratio, FIG. 2 shows the relationship between tensile strength and stretching ratio, and FIG. 3 shows the relationship between tensile strength and tensile modulus. Applicant Mitsui Petrochemical Industries Co., Ltd. Agent Kazu4 Yamaguchi (shicTO) suspected of kidnapping (shidO) lambda

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも極限粘度が5dl/g以上の超高分子
量ポリエチレン(A)、15ないし80ffiHI5と
融点が40ないし120℃で且つ分子量が2000以下
のパラフィン系ワックス(B)85ないし20重量部と
の混合物を190ないし280℃の温度でスクリュー押
出機で溶融混練し、前記混合物の融点以上210℃未満
のグイより未延伸物を押出し、次いで少なくとも3倍を
越える延伸比で延伸することを特徴とする超高分子量ポ
リエチレン延伸物の製造法。
(1) Ultra-high molecular weight polyethylene (A) having an intrinsic viscosity of at least 5 dl/g or more, 15 to 80 ffiHI5 and 85 to 20 parts by weight of paraffin wax (B) having a melting point of 40 to 120°C and a molecular weight of 2000 or less. The mixture is melt-kneaded in a screw extruder at a temperature of 190 to 280°C, the unstretched material is extruded through a goo having a temperature higher than the melting point of the mixture and lower than 210°C, and then stretched at a stretching ratio of at least 3 times. A method for producing a stretched ultra-high molecular weight polyethylene product.
JP4558684A 1984-03-12 1984-03-12 Manufacture of superhigh molecular weight polyethylene stretched product Granted JPS60190330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4558684A JPS60190330A (en) 1984-03-12 1984-03-12 Manufacture of superhigh molecular weight polyethylene stretched product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4558684A JPS60190330A (en) 1984-03-12 1984-03-12 Manufacture of superhigh molecular weight polyethylene stretched product

Publications (2)

Publication Number Publication Date
JPS60190330A true JPS60190330A (en) 1985-09-27
JPH0379174B2 JPH0379174B2 (en) 1991-12-18

Family

ID=12723447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4558684A Granted JPS60190330A (en) 1984-03-12 1984-03-12 Manufacture of superhigh molecular weight polyethylene stretched product

Country Status (1)

Country Link
JP (1) JPS60190330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392745A (en) * 1986-10-06 1988-04-23 グンゼ株式会社 Polyethylene sewing yarn
JP2013216990A (en) * 2012-04-06 2013-10-24 Toray Monofilament Co Ltd High strength polyethylene monofilament and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177035A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight polyethylene composition
JPS57177037A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight polyethylene composition
JPS57177036A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight polyethylene composition
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS5881612A (en) * 1981-10-17 1983-05-17 スタミカ−ボン・ビ−・ベ− Production of polyethylene filament with high tensile strength
JPS60189420A (en) * 1984-03-09 1985-09-26 Mitsui Petrochem Ind Ltd Manufacture of oriented article of ultra-high-molocular polyethylene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177035A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight polyethylene composition
JPS57177037A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight polyethylene composition
JPS57177036A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight polyethylene composition
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS5881612A (en) * 1981-10-17 1983-05-17 スタミカ−ボン・ビ−・ベ− Production of polyethylene filament with high tensile strength
JPS60189420A (en) * 1984-03-09 1985-09-26 Mitsui Petrochem Ind Ltd Manufacture of oriented article of ultra-high-molocular polyethylene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392745A (en) * 1986-10-06 1988-04-23 グンゼ株式会社 Polyethylene sewing yarn
JP2013216990A (en) * 2012-04-06 2013-10-24 Toray Monofilament Co Ltd High strength polyethylene monofilament and method for producing the same

Also Published As

Publication number Publication date
JPH0379174B2 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
EP0115192B1 (en) Process for producing stretched filaments of ultrahigh-molecular-weight polyethylene
EP0168923B1 (en) Process for producing stretched article of ultrahigh-molecular weight polyethylene
JPH0240763B2 (en)
JPS59130313A (en) Manufacture of drawn ultra-high-molecular-weight polyethylene
JPH0838513A (en) New composition for dental floss
JPS60189420A (en) Manufacture of oriented article of ultra-high-molocular polyethylene
JPH0246053B2 (en) CHOKOBUNSHIRYOHORIECHIRENYOEKINOSEIZOHOHO
JPS60240432A (en) Manufacture of elongated polyethylene of superhigh molecular weight
JPS60190330A (en) Manufacture of superhigh molecular weight polyethylene stretched product
JPS59168116A (en) Production of drawn polyethylene
JPH0417132B2 (en)
JPS60210425A (en) Manufacture of stretched polyethylene product
JPS60232927A (en) Manufacture of orientated polyethylene
JPH07238416A (en) Production of high-strength polyethylene fiber
JPH0729372B2 (en) Stretched tape made of ultra high molecular weight polyethylene
CA1216118A (en) Process for producing stretched articles of ultrahigh- molecular-weight polyethylene
JP2992323B2 (en) Molecularly oriented molded body of high-molecular weight polyethylene
JP2967935B2 (en) Method for producing polyethylene molded article and stretch molded article
JPH05140816A (en) Production of drawn high-molecular weight polyolefin
JPH03279413A (en) Molecularly oriented molded body of high-molecular weight polyethylene
JPS60244524A (en) Preparation of stretched polyethylene article
CN114990719A (en) Fiber yarn for artificial lawn and preparation method thereof
JPH03260111A (en) Preparation of ultrahigh molecular weight polypropylene drawn product
JPH0277452A (en) Molecule oriented molded article of ultra-high-molecular-weight polyolefin base resin
JPH0482909A (en) Production of high-molecular weight polyolefin fiber