JPS60189420A - Manufacture of oriented article of ultra-high-molocular polyethylene - Google Patents

Manufacture of oriented article of ultra-high-molocular polyethylene

Info

Publication number
JPS60189420A
JPS60189420A JP59043871A JP4387184A JPS60189420A JP S60189420 A JPS60189420 A JP S60189420A JP 59043871 A JP59043871 A JP 59043871A JP 4387184 A JP4387184 A JP 4387184A JP S60189420 A JPS60189420 A JP S60189420A
Authority
JP
Japan
Prior art keywords
ultra
molecular weight
stretching
polyethylene
paraffin wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59043871A
Other languages
Japanese (ja)
Other versions
JPH0379173B2 (en
Inventor
Masanori Motooka
本岡 正則
Hitoshi Mantoku
万徳 均
Takao Ono
隆夫 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP59043871A priority Critical patent/JPS60189420A/en
Publication of JPS60189420A publication Critical patent/JPS60189420A/en
Publication of JPH0379173B2 publication Critical patent/JPH0379173B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To manufacture an oriented article of ultra-high-molecular polyethylene whose tensile strength and an elastic modulus are both high, by a method wherein specific paraffin wax is added to the ultra-high-molecular polyethylene, which is oriented through fusing and extruding. CONSTITUTION:Paraffin wax whose fusing point is 40-120 deg.C and molecular weight is less than 2,000 is blended with ultra-high-molecular polyethylene (extreme viscosity is more than 5dl/g) at a ratio of 25:75, which is melted and kneaded within a screw extruder at the temperature of 180 deg.C of resin. Then the above molten article is extruded through the die for cooling and solidification. An obtained unoriented article is oriented at a ratio of orientation exceeding at least three times. As an obtained oriented article of the ultra-high-molecular polyethylene possesses high tensile strength, which is not obtainable through a conventional polyethylene oriented article, and a high elastic modulus, the oriented article can be used for various kinds of reinforcement materials for which lightweight properties are required.

Description

【発明の詳細な説明】 本発明は、超高分子量ポリエチレンの溶融押出延伸方法
に関する。更に詳しくは超高分子量ポリエチレンと特定
のパラフィン系ワックスとからなる組成物を溶融押出延
伸することにより、引張強度、弾性率が共に大きい超高
分子量ポリエチレン延伸物を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for melt extrusion drawing of ultra-high molecular weight polyethylene. More specifically, the present invention relates to a method for producing a stretched ultra-high molecular weight polyethylene having high tensile strength and elastic modulus by melt-extruding and stretching a composition comprising ultra-high molecular weight polyethylene and a specific paraffin wax.

超高分子量ポリエチレンは汎用のポリエチレンに比べ耐
衝撃性、耐摩耗性、耐薬品性、引張強度等に優れており
、エンジニアリングプラスチックとしてその用途が拡が
りつつある。しかしながら汎用のポリエチレンに比較し
て溶融粘度が極めて高く流動i1力<悪いため〜押出成
形や141出成形によ□ って成形することは非常に難しく、その殆どは圧縮成形
によって成形されており、一部ロツド等が極めて低速で
押出成形されているのが現状であった。
Ultra-high molecular weight polyethylene has superior impact resistance, abrasion resistance, chemical resistance, tensile strength, etc. compared to general-purpose polyethylene, and its use as an engineering plastic is expanding. However, compared to general-purpose polyethylene, it has an extremely high melt viscosity and poor fluidity, making it extremely difficult to mold by extrusion or 141 extrusion molding, and most of it is molded by compression molding. Currently, some rods and the like are extruded at extremely low speeds.

一方、高密度ポリエチレンのモノフィラメントを高倍率
で延伸する方法として、ポリエチレンの融点より高い高
沸点の添加剤をポリエチレンの重量に対し20〜150
%の範囲内で共存せしめ、得られた高濃度分散体から第
1次繊維状物を形成させ、次いでこの紡出糸中にその5
〜25%相当量の添加剤を残存せしめたまま元の長さの
3〜15倍に熱延伸する方法(特公昭3’l−9765
号)あるいは分子量が400,000以上の線状ポリエ
チレンの溶液を紡糸して、少なくとも20GPaになる
ような温度で延伸する方法が提案されている。しかしな
がらこれらの方法は、具体的にはO−ジクロルベンゼン
、キシレンあるいはデカリン等の溶媒に分散あるいは溶
解させて特定の方法で紡糸する方法であり、スクリュー
押出機により連続的に押出紡糸する方法にこのような液
状の溶媒を分子量が高い超高分子量ポリエチレンの延伸
性改良剤として用いようとしても、溶媒と粉末との粘度
差が大き過ぎて溶媒と粉末との混合が全く出来ず、また
溶媒が粉末とスクリューとの間の滑剤として働き、粉末
とスクリューとが共回りを起こして殆ど押出しが出来な
い。また、たとえ押出せたとしても均一に混合されてい
ないので延伸が全く不可能であり、スクリュー押出機を
用いて連続的に溶融押出紡糸することは出来ないのが現
状であった。またそれらの溶媒は低沸点で引火性が大き
いので、電熱で加熱するスクリュー押出機には危険で使
用に際しては格別注意を払う必要もある。
On the other hand, as a method for drawing high-density polyethylene monofilaments at a high magnification, additives with a high boiling point higher than the melting point of polyethylene are added at 20 to 150% by weight based on the weight of polyethylene.
%, a primary fibrous material is formed from the obtained high concentration dispersion, and then the 5
A method of hot stretching to 3 to 15 times the original length while leaving an amount equivalent to ~25% of the additive (Japanese Patent Publication No. 3'1-9765
Alternatively, a method has been proposed in which a solution of linear polyethylene having a molecular weight of 400,000 or more is spun and stretched at a temperature of at least 20 GPa. However, these methods specifically involve dispersing or dissolving in a solvent such as O-dichlorobenzene, xylene, or decalin and spinning using a specific method. Even if such a liquid solvent is used as a stretchability improver for ultra-high molecular weight polyethylene with a high molecular weight, the difference in viscosity between the solvent and the powder is too large, making it impossible to mix the solvent and the powder at all. It acts as a lubricant between the powder and the screw, causing the powder and screw to rotate together, making extrusion almost impossible. Further, even if it could be extruded, it would be completely impossible to draw it because it was not mixed uniformly, and it was currently impossible to perform continuous melt extrusion spinning using a screw extruder. Furthermore, since these solvents have low boiling points and are highly flammable, they are dangerous to use in screw extruders heated by electric heat, and special care must be taken when using them.

他方、超高分子量ポリエチレンの成形性を改善するため
に分子量が5 、000〜20,000の低分子量ポリ
エチレンを超高分子量ポリエチレン100重量部に対し
て10〜60重量部を添加した組成物(特開昭57−1
77036号公報)が提案されているが、これらの組成
物では添加された低分子量ポリエチレンの分子量が大き
すぎて溶融押出紡糸されたモノフィラメントを20倍以
上の高倍率には延伸出来ず、高弾性率、高引張強度のモ
ノフィラメントを得ることはできない。
On the other hand, in order to improve the moldability of ultra-high molecular weight polyethylene, 10 to 60 parts by weight of low-molecular-weight polyethylene with a molecular weight of 5,000 to 20,000 is added to 100 parts by weight of ultra-high molecular weight polyethylene. Kaisho 57-1
77036), but in these compositions, the molecular weight of the added low molecular weight polyethylene is too large, making it impossible to draw the melt-extrusion-spun monofilament to a high magnification of 20 times or more, resulting in a high elastic modulus. , it is not possible to obtain monofilaments with high tensile strength.

かかる観点から本発明者らは、スクリュー押出機による
高弾性率、高引張強度を有する超高分子量ポリエチレン
の延伸物の連続押出成形方法の開発を目的とし種々検討
した結果、超高分子量ポリエチレンに特定のパラフィン
系ワックスを配合した組成物を用いることにより本発明
の目的を達することができ、先に特願昭57−2274
47号および特願昭58−59976号を出願した。そ
の後更に検討した結果、スクリュー押出機の温度190
℃未満にしても、スクリュー押出機内での滞留時間を増
やすことにより、即ち溶融樹脂の押出速度を下げること
により、超高分子量ポリエチレンとパラフィン系ワック
スとをスクリュー押出機で安定に連続押出成形できるこ
とが分かり、本発明を完成するに至った。
From this point of view, the present inventors conducted various studies aimed at developing a continuous extrusion molding method for drawn products of ultra-high molecular weight polyethylene having high elastic modulus and high tensile strength using a screw extruder, and as a result, they identified ultra-high molecular weight polyethylene. The object of the present invention can be achieved by using a composition containing paraffin wax, which was previously disclosed in Japanese Patent Application No. 57-2274
47 and Japanese Patent Application No. 58-59976. As a result of further investigation, the temperature of the screw extruder was 190.
It has been found that ultra-high molecular weight polyethylene and paraffin wax can be stably and continuously extruded using a screw extruder even if the temperature is below ℃ by increasing the residence time in the screw extruder, that is, by lowering the extrusion speed of the molten resin. Understood, we have completed the present invention.

すなわち本発明は、少なくとも極限粘度〔η〕が5d1
/g以上の超高分子量ポリエチレン(A):15ないし
80重量部と融点が40ないし120℃で且つ分子量が
2.000以下のパラフィン系ワックス(B185ない
し20重量部との混合物をその混合物の融点以上ないし
190℃未満の温度でスクリュー押出機で溶融混練し、
ダイより未延伸物を押出し、次いで少な(とも3倍を越
える延伸比で延伸することを特徴とする引張強度、弾性
率が共に大きい超高分子量ポリエチレンの延伸物の製造
方法を提案するものである。
That is, in the present invention, the intrinsic viscosity [η] is at least 5d1
/g or more ultra-high molecular weight polyethylene (A): 15 to 80 parts by weight and a paraffinic wax having a melting point of 40 to 120°C and a molecular weight of 2.000 or less (B185 to 20 parts by weight). Melt-kneading in a screw extruder at a temperature of from above to below 190°C,
This paper proposes a method for producing a stretched product of ultra-high molecular weight polyethylene with high tensile strength and elastic modulus, which is characterized by extruding an unstretched product through a die and then stretching it at a small (more than 3 times) stretching ratio. .

本発明の方法に用いる超高分子量ポリエチレン(A)と
は、デカリン溶媒135℃における極限粘度〔η〕が5
dl/g以上、好ましくはフないし30a/gの範囲の
ものである。
The ultra-high molecular weight polyethylene (A) used in the method of the present invention has an intrinsic viscosity [η] of 5 at 135°C in decalin solvent.
dl/g or more, preferably in the range of F to 30 a/g.

〔η〕が5dl/g未満のものは、延伸しても引張強度
に優れた延伸物が得られない。又〔η〕の上限はとくに
限定はされないが、30dl/gを越えるものは後述の
パラフィン系ワックス(B)、を添加しても溶融粘度が
高く後述の温度範囲でのスクリュー押出機による溶融紡
糸性に劣る。
If [η] is less than 5 dl/g, a stretched product with excellent tensile strength cannot be obtained even if stretched. The upper limit of [η] is not particularly limited, but if it exceeds 30 dl/g, the melt viscosity is high even if paraffin wax (B) described below is added, and melt spinning using a screw extruder in the temperature range described below is difficult. inferior to sex.

本発明の方法に用いるパラフィン系ワックス 。Paraffin wax used in the method of the present invention.

(B)とは、融点が40ないし120℃、好ましくは4
5ないし110℃で且つ分子量が2,000以下、好ま
しくは1 、000以下、特に好ましくは800以下の
パラフィン系ワックスである。融点が40℃未満のもの
あるいは液状パラフィンを用いると超高分子量ポリエチ
レン(A)とスクリューとが共回りを起こして均一な溶
融紡糸が出来ない。一方融点が120℃を越え、且つ分
子量が2,000を越えるものは、冷却固化する前にド
ラフトをかけると延伸切れを起こし、高弾性率、高引張
強度の延伸物が得られず、更に後述の如く延伸物から過
剰のパラフィン系ワックスを抽出することも出来ない。
(B) has a melting point of 40 to 120°C, preferably 40°C.
It is a paraffin wax having a temperature of 5 to 110°C and a molecular weight of 2,000 or less, preferably 1,000 or less, particularly preferably 800 or less. If a material with a melting point of less than 40° C. or liquid paraffin is used, the ultra-high molecular weight polyethylene (A) and the screw will rotate together, making uniform melt spinning impossible. On the other hand, if the melting point exceeds 120°C and the molecular weight exceeds 2,000, drafting before cooling and solidification will cause stretching breakage, making it impossible to obtain a stretched product with high elastic modulus and high tensile strength. It is also impossible to extract excess paraffin wax from the drawn product.

また分子量が800以下のものを用いる場合は冷却固化
する前にドラフトをかけることにより3倍を越える延伸
比でも充分高弾性率の延伸物が得られるが、分子量が8
00〜2,000のパラフィン系ワックスを用いる場合
は冷却固化する前にドラフトをかけて5倍、好ましくは
10倍以上の延伸比で延伸することが好ましい。
In addition, when using a material with a molecular weight of 800 or less, a drawn product with a sufficiently high elastic modulus can be obtained even at a drawing ratio of more than 3 times by applying a draft before cooling and solidifying.
When using a paraffin wax of 0.00 to 2,000, it is preferable to apply a draft and stretch at a stretching ratio of 5 times, preferably 10 times or more, before cooling and solidifying.

本発明における融点は、A S TM D 3417に
より示差走査型熱量計(D S C)により測定した値
である。また分子量はGPC法(ゲル・パーミェーショ
ン・クロマトグラフィー)により次の条件で測定して得
た重量平均分子量(爪)である。
The melting point in the present invention is a value measured using a differential scanning calorimeter (D SC) according to ASTM D 3417. The molecular weight is the weight average molecular weight (nail) measured by GPC method (gel permeation chromatography) under the following conditions.

装 置 :ウォーターズ社製 150C型カラム :東
洋曹達社製 TSK GMH−6(6mmφX600m
m ) 溶 媒 :オルソジクロルベンゼン(ODCB)温度;
135℃ 流量: 1.0m7! /min 注入濃度:30mg/ 20ml1.0DCB (注入
量400μI2) 尚、東洋曹達社製およびプレッシャー・ケミカル?!、
標準ポリエチレンを用いてユニバーサル法によりカラム
溶出体積は較正した。
Equipment: 150C type column manufactured by Waters Co., Ltd. TSK GMH-6 manufactured by Toyo Soda Co., Ltd. (6 mmφ x 600 m
m) Solvent: orthodichlorobenzene (ODCB) temperature;
135℃ Flow rate: 1.0m7! /min Injection concentration: 30mg/20ml1.0DCB (Injection amount 400μI2) In addition, Toyo Soda Co., Ltd. and Pressure Chemical? ! ,
Column elution volumes were calibrated by the universal method using standard polyethylene.

本発明の方法に用いるパラフィン系ワックス(B)は前
記範囲の融点及び分子量を有するものであれば、とくに
炭素と水素のみからなる化合物には限定されず、少量の
酸素、その他の元゛素を含んでいてもよい。
The paraffin wax (B) used in the method of the present invention is not particularly limited to a compound consisting only of carbon and hydrogen, as long as it has a melting point and molecular weight within the above range, and may contain a small amount of oxygen or other elements. May contain.

前記パラフィン系ワックス(B)としては、飽和脂肪族
炭化水素化合物を主体とするもので、具体的にはトコサ
ン、1・・リコサン、テトラコサン、トリアコンタン等
の炭素数22以上のn−アルカンあるいはこれらを主成
分とした低級n−アルカンとの混合物、石油から分離精
製された所謂パラフィンワックス、エチレンあるいはエ
チレンと他のα−オレフィンとを共重合して得られる低
分子量重合体である中・低圧法ポリエチレンワックス、
高圧法ポリエチレンワックス、エチレン共重合ワックス
あるいは中・低圧法ポリエチレン、高圧法ポリエチレン
等のポリエチレンを熱減成等により分子量を低下させた
ワックス及びそれらのフックスの酸化物あるいはマレイ
ン酸変性物等の酸化フックス、マレイン酸変性ワックス
等が挙げられる。
The paraffinic wax (B) is mainly composed of saturated aliphatic hydrocarbon compounds, specifically n-alkanes having 22 or more carbon atoms such as tocosane, 1... lycosane, tetracosane, triacontane, or these. mixture with lower n-alkanes mainly composed of , so-called paraffin wax separated and purified from petroleum, and low molecular weight polymers obtained by copolymerizing ethylene or ethylene and other α-olefins. polyethylene wax,
High-pressure polyethylene wax, ethylene copolymer wax, medium/low-pressure polyethylene, high-pressure polyethylene, and other polyethylene waxes whose molecular weight has been lowered by thermal degradation, and oxidized Fuchs such as oxides of these Fuchs or maleic acid-modified products. , maleic acid-modified wax, and the like.

本発明に用いる前記パラフィン系ワックス(B)の融点
及び分子量範囲に入る他の炭化水素化合物として例えば
ナフタリン、ジメチルナフタリン等の芳香族炭化水素化
合物があるが、これらのものはパラフィン系ワックスと
異なり超高分子量ポリエチレン(A)との相溶性が劣り
、本発明の方法に用いると超高分子量ポリエチレン(A
)への芳香族炭化水素の分散むらが生じ、均一延伸ある
いは高延伸倍率の達成が困難である。
Other hydrocarbon compounds that fall within the melting point and molecular weight range of the paraffinic wax (B) used in the present invention include aromatic hydrocarbon compounds such as naphthalene and dimethylnaphthalene, but unlike paraffinic waxes, these It has poor compatibility with high molecular weight polyethylene (A), and when used in the method of the present invention, it has poor compatibility with ultra high molecular weight polyethylene (A).
), and it is difficult to achieve uniform stretching or a high stretching ratio.

超高分子量ポリエチレン(A)とパラフィン系ワックス
(B)等との相溶性を調べる方法としては、具体的には
高倍率走査型電子顕微鏡による未延伸糸の断面の観察法
が例示出来る。すなわち、超高分子量ポリエチレン(A
)とパラフィン系ワックス(B)等との等量ブレンド物
を溶融混線後溶融紡糸する。次いで得られた未延伸原糸
をその長平方向に直交するようにミクロトーム等の鋭利
な刃で切断する。当該断面と同様の処理により切り出し
た断面をざらにヘキサンあるいはへブタン等の無極性溶
剤に少なくとも1時間以上室温で浸漬して、バラフ、イ
ン系ワックス(B)等を抽出除去した抽出処理断面を少
なくともa、ooo倍以上の倍率で走査型電子顕微鏡に
て比較観察する。本発明のパラフィン系ワックス(B)
は超高分子量ポリエチレン(A)に対して相溶性が良好
であるため、0.1 μ以上の陥没は殆ど観察されず、
パラフィンワックス(B)の代わりにナフタリンを用い
た場合は分散不良を起こし、0.1.μ以上の陥没が無
数に観察される。
A specific example of a method for examining the compatibility between ultra-high molecular weight polyethylene (A) and paraffin wax (B) is a method of observing the cross section of an undrawn yarn using a high-magnification scanning electron microscope. That is, ultra-high molecular weight polyethylene (A
) and paraffin wax (B), etc., are melt-blended and then melt-spun. Next, the obtained undrawn yarn is cut with a sharp blade such as a microtome so as to be perpendicular to the longitudinal direction of the yarn. A cross section cut out by the same process as the cross section is roughly immersed in a nonpolar solvent such as hexane or hebutane at room temperature for at least 1 hour to extract and remove baraf, in-based wax (B), etc. Comparative observation is made using a scanning electron microscope at a magnification of at least a, ooo times or more. Paraffin wax (B) of the present invention
Because it has good compatibility with ultra-high molecular weight polyethylene (A), depressions of 0.1 μ or more are rarely observed,
When naphthalene is used instead of paraffin wax (B), poor dispersion occurs, and 0.1. Countless depressions larger than μ are observed.

本発明の方法は前記超高分子量ポリエチレン(A)+1
5ないし80重量部、好ましくは30ないし50重量部
と前記パラフィン系ワックス(B) :85ないし20
重量部、好ましくは70ないし50重量部との混合物を
その混合物の融点以上ないし190℃未満、好ましくは
その混合物の融点+10℃ないし190℃未満の温度で
スクリュー押出機で溶融混練し、その混合物の融点以上
の温度のグイより未延0 伸物を押出し、次いで少なくとも3倍、好ましくは5倍
以上の延伸比で延伸する方法である。
The method of the present invention comprises the ultra-high molecular weight polyethylene (A)+1
5 to 80 parts by weight, preferably 30 to 50 parts by weight, and the paraffin wax (B): 85 to 20 parts by weight.
parts by weight, preferably 70 to 50 parts by weight, is melt-kneaded in a screw extruder at a temperature from the melting point of the mixture to less than 190°C, preferably from the melting point of the mixture +10°C to less than 190°C. This is a method in which an unstretched product is extruded through a goo at a temperature above its melting point, and then stretched at a stretching ratio of at least 3 times, preferably 5 times or more.

超高分子量ポリエチレン(A)の量が15重量部未満で
はスクリュー押出機での溶融混練が困難であり、また押
出されたものの延伸性が劣り、プツ切れを起こし高倍率
延伸あるいはドラフトをかけることができない。一方8
0重量部を越えると、溶融粘度が高くなり溶融押出しが
困難であり、また押出された未延伸物(ストランド)の
肌荒れが激しく延伸切れを起こし易い。
If the amount of ultra-high molecular weight polyethylene (A) is less than 15 parts by weight, it will be difficult to melt and knead it in a screw extruder, and the extruded product will have poor drawability, causing breakage and making it difficult to draw at high magnification or draft. Can not. On the other hand 8
If the amount exceeds 0 parts by weight, the melt viscosity becomes high, making melt extrusion difficult, and the extruded unstretched product (strand) has a rough surface and is likely to break during stretching.

スクリュー押出機の温度が混合物の融点未満の温度では
、超高分子量ポリエチレン(A)とパラフィン系ワック
ス(B)との分散が悪く、延伸に耐える均一なストラン
ドをダイ・オリフィスより押出すことができない。尚超
高分子量ポリエチレン(A)とパラフィン系ワックス(
B)との混合はヘンシェルミキサー、■−ブレンダー等
による混合、あるいは混合後更に単軸あるいは多軸押出
機で溶融混練して造粒する方法により行い得る。
If the temperature of the screw extruder is lower than the melting point of the mixture, the ultra-high molecular weight polyethylene (A) and paraffin wax (B) will not be well dispersed, and a uniform strand that can withstand stretching cannot be extruded from the die orifice. . In addition, ultra-high molecular weight polyethylene (A) and paraffin wax (
The mixture with B) can be carried out by mixing using a Henschel mixer, (1)-blender, etc., or by melt-kneading and granulating with a single-screw or multi-screw extruder after mixing.

未延伸物をダイから押出した際に、該溶融物が1 冷却固化する前に少なくとも1.好ましくは2を越える
ドラフトをかけることにより、ドラフトをかけないもの
の延伸物に比べて高弾性率で高引張強度の延伸物が得ら
れる。
When the unstretched material is extruded from the die, the molten material undergoes at least 1. Preferably, by applying a draft of more than 2, a drawn product having a higher modulus of elasticity and higher tensile strength can be obtained than a drawn product that is not subjected to drafting.

本発明におけるドラフトとは、スクリュー押出機より押
出された溶融物の溶融時における延伸を意味し、溶融物
の引き落としのことである。即ち、溶融樹脂のダイ・オ
リフィス内での押出速度υ。と冷却固化した繊維の巻き
取り速度υとの比をドラフト比として次式で定義した。
The term "draft" in the present invention refers to the drawing of the melt extruded from the screw extruder during melting, and refers to the drawing down of the melt. That is, the extrusion speed υ of the molten resin within the die orifice. The ratio of the winding speed υ of the cooled and solidified fiber to the draft ratio was defined as the following equation.

ドラフト比−υ/υO 又、前記冷却は空冷、水冷いずれの方法でも良い。Draft ratio - υ/υO Further, the cooling may be performed by either air cooling or water cooling.

延伸時の温度は通常60℃ないし混合物の融点→−20
℃未満の範囲内であり、60℃未満では高倍率の延伸が
達成されない場合があり、一方混合物の融点+20℃を
越えると超高分子量ポリエチレン(A)が軟化し、延伸
はされるものの、高弾性率の延伸物が得られ、ない虞れ
がある。
The temperature during stretching is usually 60℃ or the melting point of the mixture → -20℃
If the temperature is below 60°C, high-stretching may not be achieved, whereas if the temperature exceeds the melting point of the mixture + 20°C, the ultra-high molecular weight polyethylene (A) will soften, and although it may be stretched, high-stretching may not be achieved. There is a possibility that a stretched product with a modulus of elasticity may be obtained.

上記延伸時の熱媒は空気、水蒸気、溶媒のいず2 れを用いても高弾性率の延伸物が得られるが、熱媒とし
て前記パラフィン系ワックス(B)を溶出あるいは滲出
除去することが出来る溶媒で沸点が混合物の融点以上の
もの、具体的には例えばデカリン、デカン、灯油を用い
ると延伸時に過剰のパラフィン系ワックス(B)を抽出
あるいは滲出したワックスの除去ができ、延伸時の延伸
むらの低減ならびに高延伸倍率の達成が可能となるので
好ましい。また超高分子量ポリエチレン(A)の延伸物
から過剰のパラフィン系ワックス(B)を除去する手段
としては前記方法に限らず、未延伸物をヘキサン、ヘプ
タン等の溶剤で処理後延伸する方法、延伸物をヘキサン
、ヘプタン等の溶剤で処理する方法によってもパラフィ
ン系ワックス(B)を抽出除去出来しかも高弾性率、高
強度の延伸物が得られる。
A stretched product with a high elastic modulus can be obtained by using air, water vapor, or a solvent as a heating medium during the above-mentioned stretching process. By using a solvent with a boiling point higher than the melting point of the mixture, specifically, for example, decalin, decane, or kerosene, it is possible to extract excess paraffin wax (B) or remove exuded wax during stretching, and the stretching during stretching This is preferable because it makes it possible to reduce unevenness and achieve a high stretching ratio. In addition, methods for removing excess paraffin wax (B) from a stretched product of ultra-high molecular weight polyethylene (A) are not limited to the above-mentioned method, but include a method in which an unstretched product is treated with a solvent such as hexane or heptane, and then stretched. The paraffin wax (B) can also be extracted and removed by treating the product with a solvent such as hexane or heptane, and a stretched product with high elastic modulus and high strength can be obtained.

上記溶媒あるいは溶剤でパラフィン系ワックス(B)を
抽出する際に、延伸物におけるパラフィン系ワックス(
B)の残量を10重量%以下にすること微細孔繊維が得
られ、重量換算によって真新3 面積をめる方法から得た弾性率、強度ともに抽出前の延
伸物の値を下用ることがなく好ましい。
When extracting the paraffin wax (B) with the above solvent or solvent, the paraffin wax (B) in the stretched product
By reducing the remaining amount of B) to 10% by weight or less, microporous fibers are obtained, and the fibers are brand new by weight conversion.For both the elastic modulus and strength obtained from the method of calculating the area, use the values of the stretched product before extraction. It is preferable without any problems.

前記溶媒中での延伸比が3倍未満では高引張強度、高弾
性率化の程度が少なく、また延伸物に延伸むらが随伴す
るため、外観を損う例が多い。尚延伸は、ドラフトをか
ける場合は最終延伸比が3倍以上好ましくは5倍以上に
なればよく、1段延伸でも2段以上の多段延伸でもよい
。また、ドフラフトをかけない場合には、最終延伸比が
10倍以上にすると高強度、高弾性率化が計れる。
When the stretching ratio in the solvent is less than 3 times, the degree of high tensile strength and high elastic modulus is small, and the stretched product is accompanied by uneven stretching, which often impairs the appearance. In the case of drafting, the final stretching ratio may be at least 3 times, preferably at least 5 times, and may be one-stage stretching or multi-stage stretching of two or more stages. Further, when no drafting is applied, high strength and high elastic modulus can be achieved by increasing the final stretching ratio to 10 times or more.

また延伸の際の最終延伸速度はとくに限定はされないが
、生産性から3m/min以上、好ましくは5m/mi
n以上がよい。
Further, the final stretching speed during stretching is not particularly limited, but from the viewpoint of productivity it is 3 m/min or more, preferably 5 m/min.
It is better to have n or more.

本発明に用いる超高分子量ポリエチレン(A>には、耐
熱安定剤、耐候安定剤、顔料、染料、無機充填剤等通常
ポリオレフィンに添加することが出来る添加剤を本発明
の目的を損わない範囲で添加しておいてもよい。
The ultra-high molecular weight polyethylene (A>) used in the present invention contains additives that can be normally added to polyolefin, such as heat stabilizers, weather stabilizers, pigments, dyes, and inorganic fillers, within a range that does not impair the purpose of the present invention. It may be added in advance.

本発明の方法により得られる超高分子量ポリエチレンの
延伸物は、従来の通常のポリエチレンの4 延伸物では得られない高引張強度を有し、且つ高弾性率
であるので、モノフィラメント、テープ等の従来の延伸
糸の分野に加えて高弾性率、高強度繊維の分野への利用
が可能となり、軽量性が要求される各種補強材に使用で
きる。さらには、超高延伸による結晶配列の高度な整列
ならびに過剰のパラフィン系ワックス(B)を抽出する
ことにより副次的に生成する微孔を利用した選択膜、エ
レクトレット等の機能材料への適性にも優れている。
The drawn product of ultra-high molecular weight polyethylene obtained by the method of the present invention has high tensile strength and high elastic modulus that cannot be obtained with conventional drawn products of ordinary polyethylene. In addition to the field of drawn yarn, it can be used in the field of high modulus and high strength fibers, and can be used in various reinforcing materials that require lightness. Furthermore, it is suitable for functional materials such as selective membranes and electrets that utilize the highly aligned crystal arrangement achieved by ultra-high stretching and the micropores that are generated as a by-product by extracting excess paraffin wax (B). is also excellent.

次に実施例を挙げて本発明を更に具体的に説明するが、
本発明の要旨を越えない限りそれらの実施例に制約され
るものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these embodiments unless it goes beyond the gist of the invention.

実験例1 超高分子量ポリエチレン(〔η〕−8゜20di/g)
とパラフィンワックス(融点−69℃、分子量−460
)との25775ブレンド物を次の条件下で溶融紡糸延
伸を行った。超高分子量ポリエチレンの粉末とパラフィ
ンワックスの粉砕品とを混合後、20mmφ、L/D=
20のスクリュー押出機を用5 い樹脂温度180℃で溶融混練を行った。次いで該溶融
物をオリフィス径が4mmでダイ温度を210℃に設定
したダイより押し出し、エアーギャップ=5 cmで0
℃の氷水にて固化させた。この際、溶融樹脂の押出速度
は6.Ocm/minであり、巻き取り速度が0.3m
/minになる様に引き落としを行った。
Experimental example 1 Ultra-high molecular weight polyethylene ([η]-8゜20di/g)
and paraffin wax (melting point -69℃, molecular weight -460
) was melt-spun and drawn under the following conditions. After mixing ultra-high molecular weight polyethylene powder and crushed paraffin wax, 20 mmφ, L/D=
Melt kneading was carried out using a 20 mm screw extruder at a resin temperature of 180°C. Next, the melt was extruded through a die with an orifice diameter of 4 mm and a die temperature of 210°C, and an air gap of 5 cm was set at 0°C.
It was solidified in ice water at ℃. At this time, the extrusion speed of the molten resin was 6. Ocm/min, winding speed is 0.3m
I made a withdrawal so that the amount would be /min.

すなわちドラフト比を5とした。引き続き二対のゴデツ
トロールを用いてn−デカンを熱媒とした延伸槽(槽内
温度−130℃、槽の長さ=40cm)で延伸を行った
That is, the draft ratio was set to 5. Subsequently, the film was stretched using two pairs of godet rolls in a stretching bath using n-decane as a heating medium (temperature inside the bath was -130° C., length of the bath was 40 cm).

延伸に際しては、第1ゴデツトロールの回転速度を0.
5m/min として、第2ゴデツトロールおよび第3
ゴデツトロールの回転速度を適宜変更することによって
延伸比の異なる繊維を得た。延伸は、第2ゴデツトロー
ルで予め延伸比4.0倍に延伸した後、引き続き2段目
の延伸を第3ゴデツトロールで所定の延伸比巡行った。
During stretching, the rotational speed of the first godet roll is set to 0.
5m/min, the second godet troll and the third
By appropriately changing the rotational speed of the godet roll, fibers with different drawing ratios were obtained. For stretching, the film was first stretched to a stretching ratio of 4.0 times using a second godet roll, and then a second stage of stretching was performed at a predetermined stretching ratio using a third godet roll.

但し、延伸比はゴデツトロールの回転比より計算してめ
た。各延伸比における引張弾性率、引張強度および破断
点伸度を表1に示す。尚、引張弾性率、引張強度およ6 び破断点伸度はインストロン万能試験機1123型(イ
ンストロン社製)を用いて室温(23℃)にて測定した
。この時、クランプ間の試料長は100mmで引張速度
100mm /分とした。但し、引張弾性率は2%歪に
おける応力を用いて計算した。計算に必要な繊維断面積
は、ポリエチレンの密度を0.96g/cdとして繊維
の重量と長さを測定してめた。
However, the stretching ratio was calculated from the rotation ratio of the godet roll. Table 1 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. The tensile modulus, tensile strength, and elongation at break were measured at room temperature (23°C) using an Instron universal testing machine model 1123 (manufactured by Instron). At this time, the sample length between the clamps was 100 mm, and the tensile speed was 100 mm/min. However, the tensile modulus was calculated using stress at 2% strain. The fiber cross-sectional area required for calculation was determined by measuring the weight and length of the fiber, assuming the density of polyethylene as 0.96 g/cd.

表 1 実験例2 超高分子量ポリエチレン(〔η) −8,20dl/g
)とパラフィンワックス(融点−69℃、分7 重量= 460)との25 : 75ブレンド物を実験
例1と同一条件下で溶融紡糸延伸を行った。但し、オリ
フィス径が4mmのダイより溶融物を押し出し、エアー
ギャップ:5cmで0℃の氷水にて固化させた。
Table 1 Experimental example 2 Ultra high molecular weight polyethylene ([η) -8,20 dl/g
) and paraffin wax (melting point -69°C, weight = 460) was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 4 mm and solidified in ice water at 0° C. with an air gap of 5 cm.

この際、溶融樹脂の押出速度は6.0cm/minであ
り、巻き取り速度が0.6m/minになる様に引き落
としを行った。即ち、ドラフト比を10とした。延伸は
、第2ゴデツトロールで予め延伸比3.0倍に延伸した
後、引き続き2段目の延伸を第3ゴデツトロールで所定
の延伸比巡行った。各延伸比における引張弾性率、引張
強度および破断点伸度を表2に示す。ドラフト比を上げ
ることにより、引張8 表 2 実験例3 超高分子量ポリエチレン(〔η) =8.20dl/g
)とパラフィンワックス(融点−69℃、分子量= 4
60)との25 : 75ブレンド物を実験例1と同一
条件下で溶融紡糸延伸を行った。但し、オリフィス径が
4nunのダイより溶融物を押し出し、エアーギャップ
:5cmで0℃の氷水にて固化させた。
At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the withdrawal was performed so that the winding speed was 0.6 m/min. That is, the draft ratio was set to 10. For stretching, the film was first stretched to a stretching ratio of 3.0 times using a second godet roll, and then a second stage of stretching was performed at a predetermined stretching ratio using a third godet roll. Table 2 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. By increasing the draft ratio, the tensile strength of 8 Table 2 Experimental Example 3 Ultra-high molecular weight polyethylene ([η) = 8.20 dl/g
) and paraffin wax (melting point -69℃, molecular weight = 4
A 25:75 blend with 60) was subjected to melt-spinning and drawing under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 4 nm and solidified in ice water at 0° C. with an air gap of 5 cm.

この際、溶融樹脂の押出速度は6.0cm/minであ
り、巻き取り速度が3.0m/1Ilinになる様に引
き落としを行った。即ち、ドラフト比を50とした。延
伸は、第2ゴデツトロールで予め延伸比3.0倍に9 延伸した後、引き続き2段目の延伸を第3ゴデツトロー
ルで所定の延伸比巡行った。各延伸比における引張弾性
率、引張強度および破断点伸度を表3に示す。ドラフト
比を上げることにより、引張強度の高い延伸物が得られ
ることが分る。
At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the withdrawal was performed so that the winding speed was 3.0 m/1 line. That is, the draft ratio was set to 50. For stretching, the film was first stretched by 9 times with a second godet roll at a stretching ratio of 3.0 times, and then a second stage of stretching was performed at a predetermined stretching ratio with a third godet roll. Table 3 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. It can be seen that by increasing the draft ratio, a drawn product with high tensile strength can be obtained.

表 3 実験例4 超高分子量ポリエチレン(〔η) −8,20dl/g
)とパラフィンワックス(融点=69℃、分子量−46
0)との25 : 75ブレンド物を実験例1と同一条
件下で溶融紡糸延伸を行った。但し、オリ0 フイス径が4mmのダイより溶融物を押し出し、エアー
ギャップ: 20cmで室温の空気中にて固化させた。
Table 3 Experimental example 4 Ultra high molecular weight polyethylene ([η) -8,20 dl/g
) and paraffin wax (melting point = 69°C, molecular weight -46
A 25:75 blend of 0) was melt-spun and drawn under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with a diameter of 4 mm and solidified in air at room temperature with an air gap of 20 cm.

この際、溶融樹脂の押出速度は6.0cm/minであ
り、巻き取り速度が0.3111/minになる様に引
き落としを行った。即ち、ドラフト比を5とした。
At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the withdrawal was performed so that the winding speed was 0.3111/min. That is, the draft ratio was set to 5.

延伸は、第2ゴデツトロールで予め延伸比4.0倍に延
伸した後、引き続き2段目の延伸を第3ゴデツトロール
で所定の延伸比巡行った。各延伸比における引張弾性率
、引張強度および破断点伸度を表4に示す。ドラフト比
を上げることにより、引1 2 実験例5 超高分子量ポリエチレン(〔η) −8,20dl/g
)とパラフィンワックス(融点=69℃、分子量−46
0)との25 : 75ブレンド物を実験例1と同一条
件下で溶融紡糸延伸を行った。但し、オリフィス径が4
IIIIIlのグイより溶融物を挿し出し、エアーギャ
ップ: 20cmで室温の空気中に゛て固化させた。こ
の際、溶融樹脂の押出速度は6.0cm/minであり
、巻き取り速度が0.6m/n+inになる様゛に引き
落としを行った。即ち、ドラフト比を10とした。
For stretching, the film was first stretched to a stretching ratio of 4.0 times using a second godet roll, and then a second stage of stretching was performed at a predetermined stretching ratio using a third godet roll. Table 4 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. By increasing the draft ratio,
) and paraffin wax (melting point = 69°C, molecular weight -46
A 25:75 blend of 0) was melt-spun and drawn under the same conditions as in Experimental Example 1. However, if the orifice diameter is 4
The molten material was inserted through the tube of III and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the withdrawal was performed so that the winding speed was 0.6 m/n+in. That is, the draft ratio was set to 10.

延伸は、第2ゴデツトロールで予め延伸比3.0倍に延
伸した後、引き続き2段目の延伸を第3ゴデツトロール
で所定の延伸比進行った。各延伸比における引張弾性率
、引張強度および破断点伸度を表5に示す。ドラフト比
を上げることにより、引3 表 5 実験例6 超高分子量ポリエチレン((η) −8,20dl/g
)とパラフィンワックス(融点=69℃、分子量= 4
60)との25 : 75ブレンド物を実験例1と同一
条件下で溶融紡糸延伸を行った。但し、オリフィス径が
4mmのグイより溶融物を押し出し、エアーギャップ:
20cmで室温の空気中にて固化させた。この際、溶融
樹脂の押出速度は6.0cm/minであり、巻き取り
速度が3.(In/minになる様に引き落としを行っ
た。即ち、ドラフト比を50とした。
For stretching, the film was first stretched to a stretching ratio of 3.0 times using a second godet roll, and then a second stage of stretching was performed at a predetermined stretching ratio using a third godet roll. Table 5 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. Table 5 Experimental Example 6 Ultra-high molecular weight polyethylene ((η) -8,20dl/g
) and paraffin wax (melting point = 69℃, molecular weight = 4
A 25:75 blend with 60) was subjected to melt-spinning and drawing under the same conditions as in Experimental Example 1. However, the molten material is extruded through a goo with an orifice diameter of 4 mm, and the air gap:
It was solidified at 20 cm in air at room temperature. At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the winding speed was 3.0 cm/min. (The draft ratio was set to 50.)

延伸は、第2ゴデツトロールで予め延伸比3.0倍A に延伸した後、引き続き2段目の延伸を第3ゴデツトロ
ールで所定の延伸比進行った。各延伸比における引張弾
性率、引張強度および破断点伸度を表6に示す。ドラフ
ト比を上げることにより、引張強度の高い延伸物が得ら
れることが分る。
For stretching, the film was first drawn to a drawing ratio of 3.0 times A with a second godet roll, and then a second stage of drawing was performed at a predetermined drawing ratio with a third godet roll. Table 6 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio. It can be seen that by increasing the draft ratio, a drawn product with high tensile strength can be obtained.

表 6 実験例7 超高分子量ポリエチレン((η) =8.20dl/g
)とパラフィンワックス(融点=69℃、分子量−46
0)との25 ! 75ブレンド物を実験例1と同一条
件下で溶融紡糸延伸を行った。但し、オリ5 フイス径が4mmのグイより溶融物を押し出し、エアー
ギャップ:50でO’Cの氷水にて固化させた。
Table 6 Experimental Example 7 Ultra-high molecular weight polyethylene ((η) = 8.20 dl/g
) and paraffin wax (melting point = 69°C, molecular weight -46
0) and 25! The 75 blend was melt-spun and drawn under the same conditions as in Experimental Example 1. However, the melt was extruded through a gouey with a diameter of 4 mm and solidified in ice water at O'C with an air gap of 50.

この際、溶融樹脂の押出速度は6.0cm/minであ
り、巻き取り速度が3.0cm/minになる様に引き
落としを行った。即ち、ドラフト比を0.5とした。 
、延伸は、第2ゴデツトロールで予め延伸比3.0倍に
延伸した後、引き続、き2段目の延伸をi3ゴデツトロ
ールで所定の延伸比進行った。各延伸比G二おける引張
弾性率、引張強度および破断点伸度を表7に示す。
At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the withdrawal was performed so that the winding speed was 3.0 cm/min. That is, the draft ratio was set to 0.5.
For stretching, the film was first stretched to a stretching ratio of 3.0 times using a second godet roll, and then a second stage of stretching was carried out using an i3 godet roll at a predetermined stretching ratio. Table 7 shows the tensile modulus, tensile strength, and elongation at break at each stretching ratio G2.

表 7 6 実験例8 超高分子量ポリエチレン(〔η) −8,20dl/g
)とパラフィンワックス(融点−69℃、分子量−46
0)との25 : 75ブレンド物を実験例1と同一条
件下で溶融紡糸延伸を行った。但し、オリフィス径が4
mmのダイより溶融物を押し出し、エアーギャップ:2
0cmで室温の空気中にて固化させた。この際、溶融樹
脂の押出速度は6.0cm/minであり、巻き取り速
度が3.0cm/minになる様に引き落としを行った
。即ち、ドラフト比を0.5とした。延伸は、第2ゴデ
ツトロールで予め延伸比3.0倍に延伸した後、引き続
き2段目の延伸を第3ゴデツトロールで所定の延伸比進
行った。各延伸比における引張弾性率、引張強度および
破断点7 表 8 実験例9 超高分子量ポリエチレン((η) −8,20di/g
)とパラフィンワックス(融点−69℃、分子量−46
0)との50 : 50ブレンド物を次の条件下でT−
ダイフィルム成形した後延伸を行った。超高分子量ポリ
エチレンの粉末とパラフィンワックスの粉砕品とを混合
後、20mmφ、L/D=20のスクリュー押出機を用
い樹脂温度180℃で、溶融混線ベレタインズした。次
いで、該ペレットを220℃のコートハンガー型ダイ(
リップ長−300+nm。
Table 7 6 Experimental example 8 Ultra high molecular weight polyethylene ([η) -8.20 dl/g
) and paraffin wax (melting point -69℃, molecular weight -46
A 25:75 blend of 0) was melt-spun and drawn under the same conditions as in Experimental Example 1. However, if the orifice diameter is 4
Extrude the melt through a mm die, air gap: 2
It was solidified in air at room temperature at 0 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the withdrawal was performed so that the winding speed was 3.0 cm/min. That is, the draft ratio was set to 0.5. For stretching, the film was first stretched to a stretching ratio of 3.0 times using a second godet roll, and then a second stage of stretching was performed at a predetermined stretching ratio using a third godet roll. Tensile modulus, tensile strength and breaking point 7 at each stretching ratio Table 8 Experimental example 9 Ultra high molecular weight polyethylene ((η) -8,20di/g
) and paraffin wax (melting point -69℃, molecular weight -46
A 50:50 blend of T-0) with T-
After die film molding, stretching was performed. After mixing the ultra-high molecular weight polyethylene powder and the pulverized paraffin wax, they were melted and mixed in a screw extruder with a diameter of 20 mm and L/D=20 at a resin temperature of 180° C. to beretinate. Next, the pellets were passed through a coat hanger type die at 220°C (
Lip length -300+nm.

す゛ンプ厚−0,5mm)を付けた20mmφ、■、/
D=208 のスクリュー押出機によりフィルム成形した。20℃の
冷水を用いて冷却したロールを用いフィルム幅およびフ
ィルム厚が300mmおよび0.5n+n+になる様に
調節した。引き続き二対のスナップロールを用いてn−
デカンを熱媒とした延伸槽(槽内温度130℃、槽の長
さ一80cm)で延伸を行った。
20mmφ with sump thickness -0.5mm), ■, /
A film was formed using a D=208 screw extruder. Using a roll cooled with cold water at 20° C., the film width and thickness were adjusted to 300 mm and 0.5n+n+. Next, use two pairs of snap rolls to roll n-
Stretching was performed in a stretching bath using decane as a heating medium (tank temperature: 130° C., bath length: 80 cm).

延伸に際しては、第1スナツプロールの回転速度を0.
5m/1ninとして、第2スナツプロールで予め延伸
比8.0倍迄延伸した後、引き続き第3スナツプロール
の回転速度を適宜変更することにより延伸比の異なる延
伸テープを得た。但し、延伸比は第1スナツプロールと
第3スナツプロールの回転比より計算してめた。各延伸
比における延伸テープの引張弾性率、引張強度および破
断点伸9 3・0 比較例1 超高分子量ポリエチレン(〔η) =8.20dl/g
)とパラフィンワックス(融点−69°C8分子量−4
60)との25 : 75ブレンド物を実験例1と同一
条件下で溶融紡糸延伸を行った。但し、スクリュー押出
機内の樹脂温度が100℃になる様に設定した。しかし
ながら、混合物がスクリュー押出機内で共回りをするた
め、ダイ温度を200℃に設定しても均一な溶融ストラ
ンドを得ることができなかった。
During stretching, the rotational speed of the first snap roll was set to 0.
5 m/1 nin, the tapes were previously stretched to a stretching ratio of 8.0 times using the second snap roll, and then the rotational speed of the third snap roll was appropriately changed to obtain stretched tapes having different stretching ratios. However, the stretching ratio was calculated from the rotation ratio of the first and third snack rolls. Tensile modulus, tensile strength, and elongation at break of stretched tape at each stretching ratio 9 3.0 Comparative Example 1 Ultra-high molecular weight polyethylene ([η) = 8.20 dl/g
) and paraffin wax (melting point -69°C8 molecular weight -4
A 25:75 blend with 60) was subjected to melt-spinning and drawing under the same conditions as in Experimental Example 1. However, the resin temperature inside the screw extruder was set to 100°C. However, because the mixture co-rotated in the screw extruder, it was not possible to obtain a uniform molten strand even when the die temperature was set at 200°C.

比較例2 超高分子量ポリエチレン(〔η) =8.20dl/g
)とn−ヘキサデカンとの50 : 50ブレンド物を
実験例1と同一条件下で溶融混練を行った。
Comparative Example 2 Ultra-high molecular weight polyethylene ([η) = 8.20 dl/g
) and n-hexadecane were melt-kneaded under the same conditions as in Experimental Example 1.

但し、オリフィス径が2mmのダイより溶融物を押し出
した。しかしながら、混合物がスクリュー押出機内で共
回りをするため、均一な溶融ストランドが得られず、均
一な延伸繊維を得ることができなかった。
However, the melt was extruded through a die with an orifice diameter of 2 mm. However, since the mixture co-rotates within the screw extruder, uniform molten strands could not be obtained, and uniform drawn fibers could not be obtained.

1 本実験例におてい得られた延伸繊維にば、ASTM D
 3417によるDSC測定からはパラフィンワックス
の残留はいずれも認められなかった。
1 The drawn fibers obtained in this experimental example were ASTM D
DSC measurement using No. 3417 revealed that no paraffin wax remained.

本実験例において、ドラフトの影響を調べるため図1お
よび図2に未延伸物調製時の冷却条件の違いによる引張
弾性率および引張強度を延伸比に対してプロットした。
In this experimental example, in order to examine the influence of draft, the tensile modulus and tensile strength according to different cooling conditions during the preparation of unstretched products are plotted against the stretching ratio in FIGS. 1 and 2.

さらに、引張強度を引張弾性率に対して図3にプロット
した。図から明らかな様に、未延伸物調製時、冷却条件
による影響は特に認められない。
Furthermore, the tensile strength was plotted against the tensile modulus in FIG. As is clear from the figure, no particular influence by the cooling conditions was observed during the preparation of the unstretched material.

引張弾性率および引張強度は、ドラフトの影響を受け延
伸比に対する依存性が顕著に違うことを示している。溶
融時に引き落としをかけると、引き落としをかけない場
合に比べて高弾性率で且つ高強度な延伸物が得られるこ
とが図3から明らかである。即ち、冷却固化前にドラフ
トをかけることにより高弾性率、高強度繊維が得られる
こと2
The tensile modulus and tensile strength are influenced by draft and show a markedly different dependence on the draw ratio. It is clear from FIG. 3 that when a drawdown is applied during melting, a drawn product having a higher elastic modulus and higher strength can be obtained than when a drawdown is not applied. That is, high elastic modulus and high strength fibers can be obtained by applying a draft before cooling and solidifying.2

【図面の簡単な説明】[Brief explanation of drawings]

図1は引張弾性率と延伸比との関係、図2は引張強度と
延伸比との関係および図3は引張強度と引張弾性率との
関係を表わす。 出願人 三井石油化学工業株式会社 代理人 山 口 和 3 (ηd’o)ま″@飾飾1β
FIG. 1 shows the relationship between tensile modulus and stretching ratio, FIG. 2 shows the relationship between tensile strength and stretching ratio, and FIG. 3 shows the relationship between tensile strength and tensile modulus. Applicant Mitsui Petrochemical Industries Co., Ltd. Agent Kazu3 Yamaguchi (ηd'o)ma″@Decoration 1β

Claims (1)

【特許請求の範囲】[Claims] (11少なくとも極限粘度が5dl/g以上の超高分子
量ポリエチレン(A)15ないし80重量部と融点が4
0ないし120℃で且つ分子量が2000以下のパラフ
ィン系ワックス(B)85ないし20重量部との混合物
をその混合物の融点以上ないし190℃未満の温度でス
クリュー押出機で溶融混練し、ダイより未延伸物を押出
し、次いで少なくとも3倍を越える延伸比で延伸するこ
とを特徴とする超高分子量ポリエチレンの延伸物の製造
方法。
(11) 15 to 80 parts by weight of ultra-high molecular weight polyethylene (A) having an intrinsic viscosity of at least 5 dl/g and a melting point of 4
A mixture with 85 to 20 parts by weight of paraffin wax (B) having a molecular weight of 2000 or less is melt-kneaded in a screw extruder at a temperature of 0 to 120°C and a temperature of from the melting point of the mixture to less than 190°C, and then unstretched through a die. 1. A method for producing a stretched product of ultra-high molecular weight polyethylene, which comprises extruding the product and then stretching the product at a stretching ratio of at least 3 times.
JP59043871A 1984-03-09 1984-03-09 Manufacture of oriented article of ultra-high-molocular polyethylene Granted JPS60189420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59043871A JPS60189420A (en) 1984-03-09 1984-03-09 Manufacture of oriented article of ultra-high-molocular polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59043871A JPS60189420A (en) 1984-03-09 1984-03-09 Manufacture of oriented article of ultra-high-molocular polyethylene

Publications (2)

Publication Number Publication Date
JPS60189420A true JPS60189420A (en) 1985-09-26
JPH0379173B2 JPH0379173B2 (en) 1991-12-18

Family

ID=12675758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59043871A Granted JPS60189420A (en) 1984-03-09 1984-03-09 Manufacture of oriented article of ultra-high-molocular polyethylene

Country Status (1)

Country Link
JP (1) JPS60189420A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190330A (en) * 1984-03-12 1985-09-27 Mitsui Petrochem Ind Ltd Manufacture of superhigh molecular weight polyethylene stretched product
JPS6392745A (en) * 1986-10-06 1988-04-23 グンゼ株式会社 Polyethylene sewing yarn
US4824619A (en) * 1986-12-19 1989-04-25 Toyo Boseki Kabushiki Kaisha Process of producing polyethylene drawn filaments and drawn films
WO1993009277A1 (en) * 1991-10-31 1993-05-13 Ube-Nitto Kasei Co., Ltd. Porous fiber and method of making thereof
US5234652A (en) * 1990-12-20 1993-08-10 Woodhams Raymond T Process for the continuous production of high modulus articles from high molecular weight plastics
JP2002253939A (en) * 2001-03-05 2002-09-10 Mitsubishi Rayon Co Ltd Method for manufacturing hollow fiber membrane
WO2004012924A1 (en) * 2002-07-26 2004-02-12 Sasol Wax (South Africa) (Proprietary) Limited Polymeric fibre extrusion
WO2012062053A1 (en) * 2010-11-08 2012-05-18 宁波大成新材料股份有限公司 Preparation method for ultrahigh molecular weight polyethylene fiber
CN112359431A (en) * 2020-11-04 2021-02-12 四川省纺织科学研究院 Three-screw melt-blown fiber spinning extruder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177037A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight polyethylene composition
JPS57177035A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight polyethylene composition
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS5881612A (en) * 1981-10-17 1983-05-17 スタミカ−ボン・ビ−・ベ− Production of polyethylene filament with high tensile strength

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177037A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight polyethylene composition
JPS57177035A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight polyethylene composition
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS5881612A (en) * 1981-10-17 1983-05-17 スタミカ−ボン・ビ−・ベ− Production of polyethylene filament with high tensile strength

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190330A (en) * 1984-03-12 1985-09-27 Mitsui Petrochem Ind Ltd Manufacture of superhigh molecular weight polyethylene stretched product
JPH0379174B2 (en) * 1984-03-12 1991-12-18 Mitsui Petrochemical Ind
JPS6392745A (en) * 1986-10-06 1988-04-23 グンゼ株式会社 Polyethylene sewing yarn
US4824619A (en) * 1986-12-19 1989-04-25 Toyo Boseki Kabushiki Kaisha Process of producing polyethylene drawn filaments and drawn films
US5399308A (en) * 1990-12-20 1995-03-21 Woodhams; Raymond T. Process for the continuous production of high modulus articles from high molecular weight plastics
US5234652A (en) * 1990-12-20 1993-08-10 Woodhams Raymond T Process for the continuous production of high modulus articles from high molecular weight plastics
WO1993009277A1 (en) * 1991-10-31 1993-05-13 Ube-Nitto Kasei Co., Ltd. Porous fiber and method of making thereof
US5480712A (en) * 1991-10-31 1996-01-02 Ube-Nitto Kasei Co., Ltd. Non-hollow adsorbent porous fiber
JP2002253939A (en) * 2001-03-05 2002-09-10 Mitsubishi Rayon Co Ltd Method for manufacturing hollow fiber membrane
JP4522600B2 (en) * 2001-03-05 2010-08-11 三菱レイヨン株式会社 Method for producing hollow fiber membrane
WO2004012924A1 (en) * 2002-07-26 2004-02-12 Sasol Wax (South Africa) (Proprietary) Limited Polymeric fibre extrusion
WO2012062053A1 (en) * 2010-11-08 2012-05-18 宁波大成新材料股份有限公司 Preparation method for ultrahigh molecular weight polyethylene fiber
CN112359431A (en) * 2020-11-04 2021-02-12 四川省纺织科学研究院 Three-screw melt-blown fiber spinning extruder
CN112359431B (en) * 2020-11-04 2022-06-21 四川省纺织科学研究院有限公司 Three-screw melt-blown fiber spinning extruder

Also Published As

Publication number Publication date
JPH0379173B2 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
EP0115192B1 (en) Process for producing stretched filaments of ultrahigh-molecular-weight polyethylene
EP0168923B1 (en) Process for producing stretched article of ultrahigh-molecular weight polyethylene
EP0151343B1 (en) Orientated polyolefins
JPH0240763B2 (en)
JPS59130313A (en) Manufacture of drawn ultra-high-molecular-weight polyethylene
JPH01148807A (en) Polyolefin fiber having improved initial elongation and production thereof
JPS60189420A (en) Manufacture of oriented article of ultra-high-molocular polyethylene
JPH0246053B2 (en) CHOKOBUNSHIRYOHORIECHIRENYOEKINOSEIZOHOHO
JPS60240432A (en) Manufacture of elongated polyethylene of superhigh molecular weight
JPS59168116A (en) Production of drawn polyethylene
JP5565971B2 (en) Polymer alloy comprising polylactic acid resin and polyethylene terephthalate resin and method for producing the same
JPH0417132B2 (en)
JPS60190330A (en) Manufacture of superhigh molecular weight polyethylene stretched product
JPS60210425A (en) Manufacture of stretched polyethylene product
JPS60232927A (en) Manufacture of orientated polyethylene
JPH0729372B2 (en) Stretched tape made of ultra high molecular weight polyethylene
JPH07238416A (en) Production of high-strength polyethylene fiber
CA1216118A (en) Process for producing stretched articles of ultrahigh- molecular-weight polyethylene
JP2992323B2 (en) Molecularly oriented molded body of high-molecular weight polyethylene
JPH05140816A (en) Production of drawn high-molecular weight polyolefin
JPH03279413A (en) Molecularly oriented molded body of high-molecular weight polyethylene
JPH0226915A (en) Production of ultra-high-molecular weight polyolefin fiber
JPS60244524A (en) Preparation of stretched polyethylene article
JPH0482909A (en) Production of high-molecular weight polyolefin fiber
JPH03260111A (en) Preparation of ultrahigh molecular weight polypropylene drawn product

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees