JPS6018976A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6018976A
JPS6018976A JP58127279A JP12727983A JPS6018976A JP S6018976 A JPS6018976 A JP S6018976A JP 58127279 A JP58127279 A JP 58127279A JP 12727983 A JP12727983 A JP 12727983A JP S6018976 A JPS6018976 A JP S6018976A
Authority
JP
Japan
Prior art keywords
light
film
wiring
shielding
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58127279A
Other languages
Japanese (ja)
Inventor
Hideaki Motojima
元嶋 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58127279A priority Critical patent/JPS6018976A/en
Publication of JPS6018976A publication Critical patent/JPS6018976A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors

Abstract

PURPOSE:To effectively reduce the noise generating from surroundings and to obtain the semiconductor device which can be manufactured easily by a method wherein a shielding poly Si film on which a prescribed potential will be given is provided in such a manner that it covers the P-N junction part having light-receiving function. CONSTITUTION:A light-receiving region 22 and the SiO2 film, which is used as the transistor region for amplification of photoelectric current, are stacked on an Si substrate 21, and a poly Si wiring 24 which comes in ohmic contact with the prescribed region of the substrate 21 having a window is formed. An SiO2 film 25 is superposed, an aperture is provided, and the pattern of P-added poly Si 26 is formed as a shielding film. Said film 26 is connected to the poly Si wiring 24 connected to the terminal 13G of the minimum reference potential source on the output side (light-receiving side) element through the intermediary of an aperture 25h. Then, Al 27 is coated, a patterning is performed, and a junction pad, a wiring to be connected to the wiring 24, and a mask for shielding and the like are formed, and a light-receiving element is completed. An LED 11 and a main light-receiving element 12 are arranged facing each other on a pair of lead frames, and they are double-sealed using light-transmitting resin 141 and non-light-transmitting resin 142. According to this constitution, the use of a noise absorbing capacitor C is unnecessary, and special manufacturing equipment is also unnecessitated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は光結合アイソレータ等の 1半導体装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device such as an optical coupling isolator.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光結合アイソレータ等の光結合素子は、入力電気信号を
発光素子により光信号に変換し、この光信号を出力側の
受光素子が電気信号に変換するもので、入力電気信号と
出力電気信号とは電気的に絶縁することを目的としたデ
パイヌである。第1図の断面図にはこの光結合アイソレ
ータの代表的な構造を示し、第2図にその等価回路の一
例をパッケージの平面図に重ねて示す。
Optical coupling elements such as optical coupling isolators convert an input electrical signal into an optical signal using a light emitting element, and this optical signal is converted into an electrical signal by a light receiving element on the output side.What is the difference between an input electrical signal and an output electrical signal? It is a depaine intended for electrical insulation. The sectional view of FIG. 1 shows a typical structure of this optical coupling isolator, and FIG. 2 shows an example of its equivalent circuit superimposed on the plan view of the package.

図において、発光素子11および喪光素子12はリード
13の素子基台部上にそれぞれ相対向するように配置さ
れ光透過性絶縁樹脂141および光不透過性絶縁樹脂1
42により樹脂モールドされた構造をしている。
In the figure, a light-emitting element 11 and a light-emitting element 12 are arranged on the element base of a lead 13 so as to face each other, and a light-transmitting insulating resin 141 and a light-opaque insulating resin 1
It has a resin molded structure with 42.

ところで、第1図から類椎できるように光結合アイソレ
ータは絶縁物を挾んで電極が設けられたコンデンサの形
をしておシ、入力端子および出力端子間に同相のノイズ
が回り込んで、データ信号の正確な色違が妨害されるこ
とがしばしばあった。
By the way, as can be seen from Figure 1, the optical coupling isolator is in the form of a capacitor with electrodes sandwiched between the insulators, and in-phase noise gets around between the input and output terminals, causing data loss. Accurate color differences in the signals were often interfered with.

このため、従来は第2図に示すように光結合アイソレー
タの入出力端子間にノイズ吸収用のバイパスコンデンサ
Cを外付けすることによりノイズを低減させることがな
されていたが上記バイパスコンデンサを外付けする対策
は使用上煩雑である。
For this reason, noise was conventionally reduced by externally connecting a bypass capacitor C for noise absorption between the input and output terminals of the optically coupled isolator, as shown in Figure 2. These measures are complicated to use.

このような対策の他に、受光素子12の上面に出力側の
例えば接地電源に電気的接続したSnO或いはIn2O
3等いわゆるITO膜と呼はれる十分に透明であり、且
つ導電性の高いシールド膜を被着し、受光素子12の周
囲から回り込むノイズを上記接地電源に落とすようにす
る場合もある。
In addition to such countermeasures, a SnO or In2O film electrically connected to the output side, for example, a ground power source, is placed on the upper surface of the light receiving element 12.
In some cases, a sufficiently transparent and highly conductive shielding film called a so-called ITO film is deposited so that noise coming from around the light-receiving element 12 is dropped to the ground power source.

しかしながら、とのITO膜を用いる方法は、SnO+
 InO2が通常の半導体プロセスにおいてはシリコン
等への汚染源となる物質であり、その汚染を防止するた
め、SnO2膜或いはI nOs膜形成工程を他の工程
とは分離するように、専用の製造装置および専用の製造
ヌペースを用意する必要があって生産性の悪いものであ
った。
However, the method using an ITO film with SnO+
InO2 is a substance that is a source of contamination to silicon, etc. in normal semiconductor processes, and in order to prevent this contamination, dedicated manufacturing equipment and equipment are used to separate the SnO2 film or InOs film formation process from other processes. It was necessary to prepare a dedicated manufacturing unit, which resulted in poor productivity.

〔発明の目的〕[Purpose of the invention]

この発明は上記のような点に鑑みなされたもので、使用
上の煩雑さを招くことなく、周囲からのノイズを効果的
に除去でき、製造も容易に行うことのできる半=q、 
(4ip; jl−+を提供することを目的とする。
This invention was made in view of the above points, and it is possible to effectively remove noise from the surroundings without causing any complications in use, and is easy to manufacture.
(4ip; aims to provide jl-+.

〔発明の概要〕[Summary of the invention]

すなわちこの発明に係る半導体装置では、所定の受光機
能を有するPN接合部を有する半導体部を形成し、更に
この半導体部が所定の機能を果たすように半導体部上に
上部膜として例えばシリコン酸化膜等の第1絶縁膜、ポ
リシリコン配線層および第2絶縁膜を形成し、この上部
膜土に所定電位に設定されたシールド用ポリシリコン膜
を被着する。そして、さらにこのような半導体上に?ン
デイングパッド部等を含む金屑配線層を形成したもので
ある。尚、ここで上記シールド用ポリシリコンルAKは
、例えば半導体部に形成された接地側位源等の基準電位
源領域から、例えば上記i5 リシリコン配線層或いは
金属配線部を介して所定電位を与えるようにしてもよい
し、コンタクトホールを介し直接基準電位源領域と接続
してもよく、寸だ、装置に所定電位源と接続する外部端
子を設け、この外部端子から所定電位を与えるようにし
てもよい。
That is, in the semiconductor device according to the present invention, a semiconductor portion having a PN junction having a predetermined light receiving function is formed, and an upper film such as a silicon oxide film is formed on the semiconductor portion so that the semiconductor portion performs a predetermined function. A first insulating film, a polysilicon interconnection layer, and a second insulating film are formed, and a shielding polysilicon film set to a predetermined potential is deposited on the upper layer. And even on such a semiconductor? A metal scrap wiring layer including a bonding pad portion and the like is formed. Here, the shielding polysilicon layer AK is configured to apply a predetermined potential from a reference potential source region such as a ground source formed in the semiconductor section, for example, through the i5 silicon wiring layer or the metal wiring section. It may be directly connected to the reference potential source area through a contact hole, or it may be possible to provide the device with an external terminal connected to a predetermined potential source and apply a predetermined potential from this external terminal. good.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照してこの発明の一実施例につき説明する
。第3図において、半導体基板21に不純物を選択拡散
し、受光領域22および図示しない充電流増幅用トラン
ジヌタの各領域を形成する。次いで、この半導体基板2
ノ土にシリコン酸化膜等の第1の絶縁膜23を形成し基
板2ノとの接続部に開口部を形成した後、半導体部分が
所定の回路機能を果たすように上記基板2ノ土に第1の
ポリシリコン膜を被着しパターニングして、半導体基板
21の所定の領域とオーミック接触したポリシリコン配
線層24を形成する。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 3, impurities are selectively diffused into a semiconductor substrate 21 to form a light receiving region 22 and each region of a charging current amplifying transistor (not shown). Next, this semiconductor substrate 2
After forming a first insulating film 23 such as a silicon oxide film on the substrate 2 and forming an opening at the connection portion with the substrate 2, a first insulating film 23 such as a silicon oxide film is formed on the substrate 2 so that the semiconductor portion performs a predetermined circuit function. A polysilicon film 24 is deposited and patterned to form a polysilicon wiring layer 24 in ohmic contact with a predetermined region of the semiconductor substrate 21.

次に、・この基板2ノ上に例えばシリコン酸化膜からな
る第2の絶縁膜25を被着しコンタクトホールを開口す
る。
Next, a second insulating film 25 made of, for example, a silicon oxide film is deposited on the substrate 2, and a contact hole is opened.

その後、この半導体基板21土にりんPをドー70した
膜厚が例えば3000 X、シート抵抗がf’llえば
20 rVDの第2のポリシリコン膜26を形成し、適
宜ポンディングパッド形成予定領賊上の第2のポリシリ
コン膜26をパターニングにより除去する。
Thereafter, a second polysilicon film 26 is formed by doping phosphorus P on the semiconductor substrate 21 and has a film thickness of, for example, 3000× and a sheet resistance of 20 rVD. The upper second polysilicon film 26 is removed by patterning.

ここで、この第2のポリシリコン膜26は、シールド用
のポリシリコン膜となるもので、第2(ンIの等価回路
で示せは出力111!素子(受光側素子)の最低基準電
位源(通常V」接地電位源)の端子7.9GK接続する
ポリシリコン配イψ層24とコンタクトホール25hを
介して接続させる。
Here, this second polysilicon film 26 is a polysilicon film for shielding, and as shown in the equivalent circuit of the second polysilicon film 26, the lowest reference potential source ( It is connected via a contact hole 25h to the polysilicon wiring ψ layer 24 connected to the terminal 7.9GK of the terminal 7.9 (normally V' ground potential source).

次いで、この基板11土にアルミニウム等の金属膜27
を被着しパターニングすることによす、ホンディングパ
ッド部および下層の、I?リシリコン配線層24に接続
する金属配線部および遮光用のマスク等を形成して基本
的な受光素子を完成する。尚、上記第1および第2の絶
縁膜やポリシリコン配線層等は、半導体基板(半導休部
)21が所定の機能を有するように形成すればよいもの
で、適宜その檜成を変更してよい。
Next, a metal film 27 such as aluminum is formed on the substrate 11.
The I? of the honding pad part and the lower layer is deposited and patterned. A basic light-receiving element is completed by forming a metal wiring portion connected to the silicon wiring layer 24, a light-shielding mask, and the like. Note that the first and second insulating films, polysilicon wiring layers, etc. may be formed so that the semiconductor substrate (semiconductor idle portion) 21 has a predetermined function, and their compositions may be changed as appropriate. good.

次いで、1対のリードフレームの一力KIJD等の発光
素子を、他方に上記のようにして力く成した受光素子を
それぞれマウントし、これらの素子が一定間隔離間した
状態で相対向するように固定し、光透過性絶縁樹脂で一
次封止して光路を形成し、さらにその周囲を光不透過性
fゼ1.縁樹脂で二次封止し、適宜仕上けを行って製品
が完成する。尚、勿論外囲器は、このような4−’J脂
モールド型のもの以外に例えばキャンシール城のもの等
を用いてよい。
Next, a light-emitting element such as KIJD is mounted on a pair of lead frames, and a light-receiving element formed as described above is mounted on the other, so that these elements face each other with a certain distance between them. A light path is formed by first sealing with a light-transparent insulating resin, and the surrounding area is further surrounded by a light-impermeable resin. The product is completed by secondary sealing with edge resin and finishing as appropriate. It should be noted that, of course, other than the 4-'J resin mold type envelope, for example, one manufactured by Canseal Castle may be used as the envelope.

〔発明の効果〕〔Effect of the invention〕

次に上記のようにして形成した光アイソレータと、従来
のものとのシールド効果について述べる。
Next, the shielding effect of the optical isolator formed as described above and the conventional one will be described.

シールド効果評価試験回路を示す第4μIにおいて、3
0は光結合アイソレータで、シールド膜31を有さない
ものの、受光佃の素子の接地端子Gに接続された膜厚3
00人、シート抵抗50Ω/口のS no 2膜からな
るシールド膜3ノを備えたもの■、本発明による膜厚3
000X、シート抵抗20Ω/口のポリシリコン層から
なるシールド膜3ノを(、Mえたもの■の3種について
次の評価状、験を行った。
In the 4th μI showing the shielding effect evaluation test circuit, 3
0 is an optical coupling isolator which does not have a shield film 31 but has a film thickness of 3 connected to the ground terminal G of the light receiving element.
00 people, sheet resistance 50 Ω/mouth equipped with a shield film 3 consisting of S no 2 films ■, film thickness 3 according to the present invention
The following evaluations and tests were conducted on three types of shield films made of polysilicon layers with a sheet resistance of 0.000X and a sheet resistance of 20 Ω/hole.

まず、出力側のフォトダイオードのカソードとなる電源
端子Vccに正電源を接続し第5図の波形図に示すよう
にLED 32側の入力アノードAおよびカソードに間
に入力電流IINを流し、フォトトランジスタ33をオ
ン状態に設定する。
First, a positive power supply is connected to the power supply terminal Vcc, which becomes the cathode of the photodiode on the output side, and an input current IIN is passed between the input anode A and the cathode on the LED 32 side as shown in the waveform diagram in FIG. 33 is set to the on state.

このとき、フォトトランジスタ33のコレクタ端子vO
から接地端子Gへは出力電流l0UTが流れコレクタ端
電圧Voは下がった状態となる。
At this time, the collector terminal vO of the phototransistor 33
An output current 10UT flows from the terminal G to the ground terminal G, and the collector terminal voltage Vo becomes lowered.

この状態を保ちながら、カソードにと接地端子0間にあ
る電圧勾配(電圧/時間)を有する電圧vNを印加する
。ここで、この電圧vNの電圧勾配を大きくしてゆくと
7オトトランノヌタ33が第5図のaで示すように誤動
作する。この誤動作は、出力のフォトトランジスタ33
をオフ状態に設定した場合でも同様に生じ、光結合アイ
ソレータのシールド状態が悪い程、低いへ正勾配でも生
じる。
While maintaining this state, a voltage vN having a certain voltage gradient (voltage/time) is applied between the cathode and the ground terminal 0. Here, if the voltage gradient of this voltage vN is increased, the 7-channel auto-transmitter 33 malfunctions as shown by a in FIG. 5. This malfunction is caused by the output phototransistor 33
The same phenomenon occurs even when the optical coupling isolator is set to the off state, and the worse the shielding condition of the optical coupling isolator, the lower the positive slope.

表1には上記3種の光結合アイソレークが誤動作を開始
する電圧勾配(v///js)を示す。
Table 1 shows the voltage gradients (v///js) at which the above three types of optical coupling isolake start malfunctioning.

また、表2には波長940nm、および波長700nm
の光に対する膜厚300XのS nO2P+Qおよび膜
厚3000Xのポリシリコン膜それぞれの透過率を示す
。尚、通常光結合アイソレータの発光素子としては発光
波長が94Or+mのGaAsLED 、高速応答の要
求されるものでは発光波長が700nmのGaAsP 
LEDが使用されている。
Table 2 also shows wavelengths of 940 nm and 700 nm.
The transmittance of the SnO2P+Q film with a film thickness of 300X and the polysilicon film with a film thickness of 3000X with respect to light is shown. Note that the light emitting element of the optically coupled isolator is usually a GaAsLED with an emission wavelength of 94Or+m, and for those requiring high-speed response, a GaAsP with an emission wavelength of 700nm is used.
LEDs are used.

<f42> 表1および表2から明らかなように、本発明によるポリ
シリコン膜からなるシールド膜を出力側の半導体チップ
に設けたものは、シールド膜のないものおよびSn02
 flu Kよるシールド膜を有する従来のものに比べ
、同相ノイズに対する高いシールド効果を有している。
<f42> As is clear from Tables 1 and 2, the semiconductor chip with a shield film made of a polysilicon film according to the present invention provided on the output side is different from the one without a shield film and the Sn02
It has a higher shielding effect against common mode noise than the conventional one having a shielding film made of flu K.

加えて、ポリシリコン膜はS nO2膜に比べ通常のデ
ータ信号伝達用のLEDの光に対して高い透過率を有し
1、シールド用のポリシリコン膜による受光感度の低下
を招く恐れもない。
In addition, the polysilicon film has a higher transmittance than the SnO2 film for the light of an LED for normal data signal transmission1, and there is no fear that the light-receiving sensitivity will be lowered by the shielding polysilicon film.

また、ポリシリコンは、一般の半導体装置の配線一層と
して使用されでいるように、半導体ゾロセヌで多用され
ているもので、特にポリシリコン膜形成のために専用の
装置およびヌベーヌを用意する必要もない。従って、本
発明によるシールド用ポリシリコン膜を有する半導体素
子の形成は非常に容易々ものである。
In addition, polysilicon is widely used in semiconductors, just as it is used as a wiring layer in general semiconductor devices, so there is no need to prepare special equipment or nuvene specifically for forming polysilicon films. . Therefore, it is very easy to form a semiconductor element having a shielding polysilicon film according to the present invention.

尚、上記実施例では装置が光結合アイソレータである場
合につき述べたが、本発明は光結合素子に限らず、周囲
からのノイズの回り込みの問題となる受光機能を有する
装置であれは、例えばフォトトランジスタ等の他の装置
6にも適用できる。また所定電位に設定された外部瑞子
からシールド用ポリシリコン膜へ電位を与えるようにし
てもよい。
In the above embodiments, the case where the device is an optical coupling isolator has been described, but the present invention is not limited to optical coupling elements, but can be applied to any device having a light receiving function that causes a problem of noise from surroundings coming around, for example, photocoupling. It can also be applied to other devices 6 such as transistors. Alternatively, a potential may be applied to the shielding polysilicon film from an external screw set to a predetermined potential.

以上のようにこの発明によれば、周囲からのノイズを効
果的に低減され製造も容易に行うことのできる高い生産
性を有する半導体F−n’i゛を提供することができる
As described above, according to the present invention, it is possible to provide a semiconductor F-n'i' that effectively reduces noise from the surroundings, can be manufactured easily, and has high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光結合アイソレータのむ・V造を示す断面図、
第2図はその等価回路図、第3図はこの発明の〜実施例
に係る半導体装置の摺成を示す断面図、第4図はシール
ド効果計測試験回路を分波形を示す図である。 21・・・半導体基板、22・・・受光領域、23・・
・第1の絶縁BL24・・・ポリシリコン配線層、25
・・?R2の絶1陣膜、26・・・冑)2のポリシリコ
ン脱、27・・・金属H々。 出願人代理人 弁理士 鈴 江 武 彦第3図 第4図 、231 − VN − 第5図
Figure 1 is a cross-sectional view showing the V-structure of the optical coupling isolator.
FIG. 2 is an equivalent circuit diagram thereof, FIG. 3 is a sectional view showing the fabrication of a semiconductor device according to embodiments of the present invention, and FIG. 4 is a diagram showing divided waveforms of a shielding effect measurement test circuit. 21... Semiconductor substrate, 22... Light receiving area, 23...
・First insulation BL24...polysilicon wiring layer, 25
...? R2's absolute first film, 26... helmet) 2's polysilicon removal, 27... metal H etc. Applicant's representative Patent attorney Takehiko Suzue Figure 3 Figure 4, 231 - VN - Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)所定の受光機能を有するPN接合部を備えた半導
体部と、この半導体部の上記PN接合部を覆って設けら
れ所定の電位を与えられるシールド用ポリシリコン膜と
を具備することを特徴とする半導体装置。
(1) A semiconductor section including a PN junction having a predetermined light receiving function, and a shielding polysilicon film provided to cover the PN junction of the semiconductor section and applied with a predetermined potential. semiconductor device.
(2)上記所定の電位は上記半導体部の基準電位源領域
から与えられていることを特徴とする特許請求の範囲第
1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the predetermined potential is applied from a reference potential source region of the semiconductor section.
(3)上記シールド用ポリシリコン膜は上記半導体部表
面とは上部膜を介し分離されていることを特徴とする特
許請求の範囲第1項または第2項記載の半導体装置。
(3) The semiconductor device according to claim 1 or 2, wherein the shielding polysilicon film is separated from the surface of the semiconductor portion via an upper film.
JP58127279A 1983-07-13 1983-07-13 Semiconductor device Pending JPS6018976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127279A JPS6018976A (en) 1983-07-13 1983-07-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127279A JPS6018976A (en) 1983-07-13 1983-07-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6018976A true JPS6018976A (en) 1985-01-31

Family

ID=14956043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127279A Pending JPS6018976A (en) 1983-07-13 1983-07-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6018976A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146568A2 (en) * 2000-04-12 2001-10-17 Infineon Technologies North America Corp. Electrically-conductive grid shield for semiconductors
JP2015056651A (en) * 2013-09-13 2015-03-23 株式会社東芝 Light receiving element and optically coupled insulating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146568A2 (en) * 2000-04-12 2001-10-17 Infineon Technologies North America Corp. Electrically-conductive grid shield for semiconductors
EP1146568A3 (en) * 2000-04-12 2003-10-08 Infineon Technologies North America Corp. Electrically-conductive grid shield for semiconductors
JP2015056651A (en) * 2013-09-13 2015-03-23 株式会社東芝 Light receiving element and optically coupled insulating device

Similar Documents

Publication Publication Date Title
EP0632508B1 (en) Photodetector with a multilayer filter and method of producing the same
US4796084A (en) Semiconductor device having high resistance to electrostatic and electromagnetic induction using a complementary shield pattern
US3436548A (en) Combination p-n junction light emitter and photocell having electrostatic shielding
US20100044821A1 (en) Semiconductor device and manufacturing method thereof
JPH0676926B2 (en) Color filter device
JPS6018976A (en) Semiconductor device
JPH0818091A (en) Semiconductor photoelectric transducer with plurality of photodiodes
JP5754910B2 (en) Semiconductor device
DE10239643B3 (en) Complementary metal oxide semiconductor/bipolar complementary metal oxide semiconductor - integrated circuit for camera chip has single individual layer as last layer of passivation system sealing off integrated circuit
JP3497977B2 (en) Light receiving element and optical coupling device using the same
JP2002324910A (en) Optical semiconductor device
JPS6269672A (en) Photosensitive semiconductor integrated circuit
JPH0369173A (en) Photocoupler
JPS6177375A (en) Color sensor
JPH02294070A (en) Photodetector built-in integrated circuit device
KR0136730B1 (en) Jp/ semiconductor device
JP2529248Y2 (en) Color sensor
JPH0394478A (en) Semiconductor device
JPH0216778A (en) Optical coupling type semiconductor relay device
JPS63304675A (en) Semiconductor element device
JP2002217448A (en) Semiconductor light illuminance sensor
JPS59125673A (en) Photocoupling semiconductor device
JPH04250664A (en) Light sensor and production method
KR830001454B1 (en) Solid-state Imaging Device for Color
JPH0485885A (en) Photocoupler