JPS6018970A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6018970A
JPS6018970A JP12672683A JP12672683A JPS6018970A JP S6018970 A JPS6018970 A JP S6018970A JP 12672683 A JP12672683 A JP 12672683A JP 12672683 A JP12672683 A JP 12672683A JP S6018970 A JPS6018970 A JP S6018970A
Authority
JP
Japan
Prior art keywords
film
layer
impurity
gaas
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12672683A
Other languages
Japanese (ja)
Inventor
Hideaki Kozu
神津 英明
Tomohiro Ito
伊東 朋弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12672683A priority Critical patent/JPS6018970A/en
Publication of JPS6018970A publication Critical patent/JPS6018970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To obtain the semiconductor device having uniform characteristics and the minimum parasitic resistance by a method wherein the edge of an N<+> active layer is brought close to a gate electrode in the extreme limits and, at the same time, their positional relations are determined in a self-matching manner. CONSTITUTION:SiO2 12 containing Sn is coated on a high resistance GaAs 11, and an Si ion implantation layer 13 is formed through the film 12. An aperture is provided on the SiO2 film 12, a heat treatment is performed, and an N-layer 14 and an N<+> layer 15 are formed. The above is formed thicker than the impurity diffusion length in GaAs by covering Si3N4 thereon, and an Si3N4 film 6 is left on the side face of the SiO2 film 12 by performing an anisotropic etching. At this time, the N<+> layer 15 and the N-layer 14 are partially covered by the film 16. Then, an Al gate electrode 17 is provided, and an ohmic source electrode 18 and a drain electrode 19 are attached to the N<+> layer 15. According to this constitution, as the N<+> active layer 15 and the gate electrode 17 can be brought closer in the utmost limits by controlling the thickness of the second film 16, the parasitic resistance can be reduced to the extreme limits. Also, as the position of the gate electrode and the N<+> active layer can be effectively determined by self- matching, no irregularity in parasitic resistance is generated.

Description

【発明の詳細な説明】 本発明はダイオード、電界効果トランジスタもしくはこ
れらを集積化した半導体集積回路等の半導体装置の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device such as a diode, a field effect transistor, or a semiconductor integrated circuit in which these are integrated.

近年、シリコン(Si)の電子移動度の3〜5倍の@を
もつガリクム砒素(GaAs)’e用いて超高速集積回
路の開発が進められているうこの集積回路(以下IC’
と記す)は、一般に、半絶縁性GaAs基板上にn形溝
電層を形成し、被導電層上にダイオード、電界効果トラ
ンジスタ等の構成素子を造り集積化することによV製作
されるが、咳ICの高性能化を計るためには、該構成素
子の寄生抵抗を低減する必要があろう寄生抵抗の低減を
計った典型的な電界効果トランジスタの構造を第1図に
示す。第1図において、半絶縁性もしくは高抵抗GaA
B1に形成されたnWGaAs層2に接してn +1!
!!GaAs層3が形成され、nuGaAs層上にゲー
ト電極5、n+載GaAs層上にソース電極4およびド
レイン電極6が設けられており、ソース電極およびドレ
イン電極とn+摩GaAs層とはオーム性接触をなし、
ソース電極から注入された電子はn賊G a A 8層
と7ヨツトキ接合をなすゲート電極下のn型GaAs層
すなわちチャネルを通ってドレイン′厄極に達する。従
って、第1図に示す電界効果トランジスタの寄生抵抗を
一層低減するためには、n+型G a A s層3の端
?電界効果トランジスタのゲート逆方向耐圧が実用上問
題にならない迄にゲート電極に近づける必要がある。第
1図に示す電界効果トランジスタはn型G a A s
上にゲート電極を位置会せするため、これを歩留りよく
製作するためにはn″−1GaAs層の端とゲート電極
との距離を十分に離す必要があると共に、その寄生抵抗
の値は位置合ぜの精度に依存するためその特性にバラツ
キを生じ、このためこの電界効果トランジスタを含むI
Cはその性能を十分に向上しえない欠点があった。
In recent years, the development of ultra-high-speed integrated circuits using gallium arsenide (GaAs), which has an electron mobility 3 to 5 times that of silicon (Si), has been progressing.
) is generally manufactured by forming an n-type trench conductive layer on a semi-insulating GaAs substrate, and building and integrating components such as diodes and field effect transistors on the conductive layer. In order to improve the performance of a cough IC, it is necessary to reduce the parasitic resistance of the constituent elements. FIG. 1 shows the structure of a typical field effect transistor designed to reduce parasitic resistance. In Figure 1, semi-insulating or high-resistance GaA
n +1! in contact with the nWGaAs layer 2 formed on B1!
! ! A GaAs layer 3 is formed, a gate electrode 5 is provided on the nuGaAs layer, a source electrode 4 and a drain electrode 6 are provided on the n+ GaAs layer, and the source and drain electrodes and the n+ GaAs layer are in ohmic contact. none,
Electrons injected from the source electrode pass through the n-type GaAs layer under the gate electrode, which forms a 7-way junction with the n-type GaA 8 layer, that is, the channel, and reach the drain. Therefore, in order to further reduce the parasitic resistance of the field effect transistor shown in FIG. It is necessary to place the gate electrode close to the gate electrode so that the gate reverse breakdown voltage of the field effect transistor does not become a practical problem. The field effect transistor shown in FIG. 1 is an n-type GaAs
In order to manufacture this with a high yield, it is necessary to provide a sufficient distance between the edge of the n''-1 GaAs layer and the gate electrode, and the value of the parasitic resistance must be adjusted to match the position of the gate electrode. Because it depends on the precision of the field effect transistor, its characteristics vary.
C had the drawback that its performance could not be sufficiently improved.

本発明の目的は、上記欠点を除去し% n+a能動層の
端をゲート電極に究極なまでに近づけると共に、その位
置関係を自己整合的に決め、もって最小の寄生抵抗をも
つ性能のよい、特性の均一な半導体装置の製造方法を提
供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks, bring the edge of the %n+a active layer as close as possible to the gate electrode, and determine the positional relationship in a self-aligned manner, thereby achieving good performance and characteristics with minimum parasitic resistance. An object of the present invention is to provide a method for manufacturing a uniform semiconductor device.

本発明の第1の発明の半導体装置の製造方法は、高抵抗
半導体上に該半導体中において一導電摩となる不純物を
含む第1の膜を被着する工程と、該第1の膜を通して第
1の膜に含まれる不純物と同じ導電型になる不純物をイ
オン注入する工程と、第1の膜の一部を除去する工程と
、熱処理する工程と、第2の膜を被着する工程と、異方
性ドライエツチングにより第2の膜を除去して半導体表
面を露出させる工程と、該露出された半導体表面をおお
って一電極を設ける工程と、前記第1の膜の一部を除去
して少くとももう一つの電極を設ける工程とを含んで構
成される、 本発明の第2の発明の半導体装置の製造方法は、高抵抗
半導体上に該半導体中において一導電観となる不純物を
含む術1の膜を被着する工程と、該第1の膜の一部を除
去する工程と、第1の膜をマスクにして前記−導電型と
なる不純物と同−導尾戯になる不純物をイオン注入する
工程と、熱処理する工程と、第2の膜を被着する工程と
、異方性ドライエツチングにより第2の膜を除去して半
導体狭面f:露出させる工程と、該露出された半導体表
面を覆って一電極を設ける工程と、前記第1の膜の一部
を除去して少くとももう一つの電極を設ける工程とを含
んで構成される。
A method for manufacturing a semiconductor device according to a first aspect of the present invention includes the steps of: depositing a first film containing an impurity that becomes a conductive layer in the semiconductor on a high-resistance semiconductor; A process of ion-implanting an impurity having the same conductivity type as the impurity contained in the first film, a process of removing a part of the first film, a process of heat treatment, a process of depositing a second film, a step of removing the second film by anisotropic dry etching to expose the semiconductor surface; a step of providing an electrode covering the exposed semiconductor surface; and a step of removing a part of the first film. A method for manufacturing a semiconductor device according to a second aspect of the present invention, which includes the step of providing at least another electrode, is a method of including an impurity on a high-resistance semiconductor that has one conductivity in the semiconductor. A step of depositing a first film, a step of removing a part of the first film, and using the first film as a mask, ionize the impurity having the same conductivity type as the impurity having the same conductivity type. a step of implanting, a step of heat treatment, a step of depositing a second film, a step of removing the second film by anisotropic dry etching to expose the semiconductor narrow surface f: and the exposed semiconductor. The method includes a step of providing one electrode covering the surface, and a step of removing a portion of the first film to provide at least another electrode.

次に、本発明の実施例について図面を用いて詳細に説明
する。
Next, embodiments of the present invention will be described in detail using the drawings.

第2図(al〜(e)は本発明の第1の発明の一実施例
を説明するための工程順に示した断面図であるっ第2図
(a)に示すように、高抵抗GaAs11上にGaAs
中においてn型不純物となるスズ(8n)をよむ例えば
二酸化シリコン(SiOz)膜を第1の膜12として被
着した後、例えばGaAs中において主にn型不純物と
なジうるSiイオンを前記5i(Jz膜を通してイオン
注入法により注入し、S1イオン注入層13を形成する
2(a) to 2(e) are cross-sectional views showing the process order for explaining one embodiment of the first invention of the present invention. As shown in FIG. 2(a), high resistance GaAs 11 is GaAs
After depositing, for example, a silicon dioxide (SiOz) film as the first film 12 containing tin (8n), which becomes an n-type impurity in GaAs, Si ions, which can mainly become an n-type impurity in GaAs, are deposited as the first film 12. (Ion implantation is performed through the Jz film to form the S1 ion implantation layer 13.

次に第2図(b)に示すように、前記SiO2膜の一部
、すなわち後にゲート電極が設けられる領威の少くとも
一部の領域上の第1の膜12を除去した後、GaASが
分解しない雰囲気、例えば砒素雰囲気中で800℃15
分間熱処理し、Siイオン注入層13中のシリコンを活
性化させてnfl能動層14を形成すると共に、第1の
膜中の不純物SnをGaAs中に拡散せしめてn+型能
動層15を形成する。
Next, as shown in FIG. 2(b), after removing a part of the SiO2 film, that is, the first film 12 on at least a part of the region where the gate electrode will be provided later, the GaAS is removed. 800℃15 in an atmosphere that does not decompose, such as an arsenic atmosphere
A heat treatment is performed for a minute to activate the silicon in the Si ion-implanted layer 13 to form an NFL active layer 14, and to diffuse the impurity Sn in the first film into GaAs to form an N+ type active layer 15.

次に第2図(C)に示すように、露出したG a A 
s面を覆うように、例えばシリコン窒化膜(SisN4
)あるいViBnを注まない5r(Jz膜なる第2の膜
16を被着する。
Next, as shown in FIG. 2(C), the exposed G a A
For example, a silicon nitride film (SisN4
) or deposit a second film 16 of 5r (Jz film) without pouring ViBn.

なお第2図(1))から第2図fclで示した第1の膜
12の一部を除去する工程から第2の膜を被着する工程
は、第1の膜の一部を除去し、つづいて第2の膜16を
被着してから熱処理をしても、前記と同様にn型能動層
14およびn+型能動層15が得られる。この場合の熱
処理においてはGaAs表面は第1の膜もしくは第2の
膜で覆われるため、必ずしも砒素雰囲気中で熱処理する
必要はな−。
Note that from the step of removing a part of the first film 12 to the step of depositing the second film shown in FIG. 2 (1) to fcl in FIG. Even if the second film 16 is subsequently deposited and then subjected to heat treatment, the n-type active layer 14 and the n + -type active layer 15 are obtained in the same manner as described above. In the heat treatment in this case, the GaAs surface is covered with the first film or the second film, so it is not necessarily necessary to perform the heat treatment in an arsenic atmosphere.

次に、第2図(d)に示すように、異方性ドライエツチ
ングにより第2の嘆16を除去しn型能動層の一部を露
出させる。この場会第1の膜12をも全て除去してはな
らない。異方性ドライエツチングを用いると第1の膜1
2の側面の第2の膜16は残り、第2の膜16の一部は
n+型能動層15とnjl能動層14の一部を覆うよう
にすることができる。すなわち、前述の熱処理において
、Mlの膜の不純物は、第1の膜に垂直な方向にGaA
s中を拡散すると共に、G a A s中に入った不純
物は第1の膜に平行な方向すなわちGaAs面に平行な
横方向にもGaAs中を拡散するっCの垂直方向。
Next, as shown in FIG. 2(d), the second layer 16 is removed by anisotropic dry etching to expose a portion of the n-type active layer. At this time, the first film 12 must not be completely removed. Using anisotropic dry etching, the first film 1
The second film 16 on the side surface of FIG. That is, in the heat treatment described above, the impurities in the Ml film are mixed with GaA in the direction perpendicular to the first film.
In addition to diffusing in GaAs, the impurity that has entered GaAs also diffuses in GaAs in a direction parallel to the first film, that is, in a lateral direction parallel to the GaAs plane.

横方向の拡散距離は熱処理の温度1時間によジー義的に
決まるっ従って、横方向の拡散距離を予めめておき、こ
の拡散距離よりも厚く第2の膜を被着することによハ前
述のように異方性エツチングにより第2の膜を除去し、
GaAs面を露出させた時残された第2の膜16kn+
型能動層とn型能動層とを覆うようにすることができる
う次に、第2図(e)に示すように、少くとも露出され
たn型能動層を覆って、例えばアルミニクムケ用いて、
n/l能動層をショットキ接合をなすようにゲート電極
17を形成し、第1の膜の一部を除去しn 型能動層全
露出させた後、n 型能動層15とオーム性接触をなす
ソース電極18、ドレイン電極19を形成することによ
りショットキ接台ゲート形電界効未トランジスタを製作
することができる5本方法においては第2の膜の膜厚を
制御することにより% n 型能動層15とゲート電極
17とを接触することなく極限にまで近づけることがで
きるため寄生抵抗を極限にまで低減するCとができると
共に、実効的にゲー)!極とn+梨能動層の位置は自己
整合的に決められるため寄生抵抗のバラツキはない。
The lateral diffusion distance is essentially determined by the heat treatment temperature for 1 hour. Therefore, by setting the lateral diffusion distance in advance and depositing the second film thicker than this diffusion distance, the diffusion distance can be increased. removing the second film by anisotropic etching as described above;
Second film 16kn+ left when GaAs surface is exposed
Next, as shown in FIG. 2(e), at least the exposed n-type active layer is covered with, for example, an aluminum layer.
A gate electrode 17 is formed in the n/l active layer to form a Schottky junction, and after removing a part of the first film to expose the entire n-type active layer, it is brought into ohmic contact with the n-type active layer 15. In these five methods, a Schottky contact gate type field effect transistor can be fabricated by forming a source electrode 18 and a drain electrode 19. By controlling the thickness of the second film, the n-type active layer 15 can be fabricated by controlling the thickness of the second film. Since it is possible to bring the gate electrode 17 as close as possible without contacting the gate electrode 17, parasitic resistance can be reduced to the maximum (C), and it is possible to effectively reduce the parasitic resistance (C)! Since the positions of the pole and the n+ active layer are determined in a self-aligned manner, there is no variation in parasitic resistance.

なお、第1の膜中の不純物の分布は均一に分布している
必要はなく層状に局在していても、すなわち多層構造に
なっていても熱処理の温度と時間を変えることにより、
nu能動層の深さを制御することができるため、例えば
第3図fa)、 (b)、 (C)に示すような構成の
膜を第1の膜と考えても本発明の効果は変らないことは
明らかである。第3図(a)、 (b)、 (C)にお
いて、22は不純物を含む膜であり、23は咳不純物を
含まない膜であハ 21は高抵抗GaAsであり1不純
物を含む膜22と不純物を含まない膜23の組成が同一
である必要は必ずしもない。
Note that the distribution of impurities in the first film does not have to be uniform, and even if they are localized in layers, that is, even if the impurities have a multilayer structure, by changing the temperature and time of the heat treatment,
Since the depth of the nu active layer can be controlled, the effects of the present invention do not change even if the films with the configurations shown in FIG. 3 fa), (b), and (C) are considered as the first film. It is clear that there is no such thing. In FIGS. 3(a), (b), and (C), 22 is a film containing impurities, 23 is a film not containing cough impurities, 21 is high resistance GaAs, and 1 is a film 22 containing impurities. The impurity-free films 23 do not necessarily have to have the same composition.

第3図(a)は不純物を含む膜22が高抵抗G a A
 aに接している場合、第3図(b)は不純物を含まな
い膜23が高抵抗GaAsに接し、不純物を含む1摸2
2が不純物を含まない膜23を覆っている場合、第3図
(C)は不純物を含まない膜が高抵抗GaAsに接し、
不純物を含む膜が不純物を含まない膜ではさまれている
場合である。
In FIG. 3(a), the film 22 containing impurities has a high resistance G a A
3(b), the film 23 not containing impurities is in contact with high resistance GaAs, and the film 23 containing impurities is in contact with GaAs 1 and 2.
2 covers the impurity-free film 23, FIG. 3C shows that the impurity-free film is in contact with the high-resistance GaAs,
This is the case when a film containing impurities is sandwiched between films containing no impurities.

第4図(a)〜(e)は本発明の第2の発明の一実施例
を説明するための工程順に示した断面図である。
FIGS. 4(a) to 4(e) are sectional views shown in order of steps for explaining an embodiment of the second invention of the present invention.

第4図(a)に示すように、高抵抗GaAs 11上に
、G a A s中において、例えばSnf含む3iυ
2膜を第1の膜12として被着した後、ゲート電極を形
成する領域の第1の膜を除去し高抵抗QaAsllの一
部を露出させる。
As shown in FIG. 4(a), for example, 3iυ containing Snf in GaAs is deposited on high-resistance GaAs 11.
After depositing the second film as the first film 12, the first film in the region where the gate electrode is to be formed is removed to expose a part of the high resistance QaAsll.

次に第4図(b)に示すように、第1の膜12をマスク
にして第1の膜の開口部全通して、高抵抗GaAs1l
中にシリコンをイオン注入し、シリコンイオン注入層1
3を形成する。
Next, as shown in FIG. 4(b), using the first film 12 as a mask, a high-resistance GaAs film is passed through the entire opening of the first film.
Silicon ions are implanted into the silicon ion-implanted layer 1.
form 3.

次に、第4図(C)に示すように、第2の膜16を被着
し、熱処理することにより、シリコンイオン注入層13
をn型能動層14に変えると同時に、第1の膜12より
、例えばSn金拡散させn+を能動層15を形成する。
Next, as shown in FIG. 4(C), a second film 16 is deposited and heat treated to form a silicon ion implanted layer 13.
At the same time, for example, Sn and gold are diffused from the first film 12 to form an n+ active layer 15.

なお、ここでは、第1の膜の開孔部を通して高抵抗Ga
As1l中にシリコンをイオン注入した後、砒素雰囲気
中で熱処理し、その後第2の膜を被着してもよい。
Note that here, high-resistance Ga is introduced through the opening of the first film.
After ion-implanting silicon into As11, heat treatment may be performed in an arsenic atmosphere, and then the second film may be deposited.

次に第4図(d)に示すように、異方性ドライエツチン
グにより第2の膜の大部分を除去し%n型能動層14を
露出させる。この時、第2の膜16が一部残ろう 次に、第4図(e)に示すように、露出されたn型能動
層14を覆ってゲート電極17を形成し、次に、第1の
膜12の一部を除去してソース電極18とドレイン電極
19を形成することにより電界効果トランジスタを製作
することができる。
Next, as shown in FIG. 4(d), most of the second film is removed by anisotropic dry etching to expose the n-type active layer 14. At this time, a part of the second film 16 remains.Next, as shown in FIG. 4(e), a gate electrode 17 is formed covering the exposed n-type active layer 14, and then the first A field effect transistor can be manufactured by removing a portion of the film 12 and forming a source electrode 18 and a drain electrode 19.

本実施例においても第2図ta)〜(e)に示した実施
例と同様な効果が得られるつ なお、本発明の実施例に用いたGaAsのかわりに他の
半導体を、また、不純物としてSn + Sjのかわり
にイオク、セレン等を用いても本発明の主旨を損うもの
でないことは明らかである。
In this example, the same effects as in the example shown in FIGS. It is clear that the gist of the present invention is not impaired even if iodine, selenium, etc. are used in place of Sn + Sj.

以上説明したとおり1本発明によれば、n 型能動層の
端をゲート電極に究極なまでに近づけると共に、その位
置関係を自己軽分的に決め、もって最小の寄生抵抗をも
つ、性能の優れた、特性の均一な半導体装置を製造する
ことができるっ
As explained above, according to the present invention, the end of the n-type active layer can be brought extremely close to the gate electrode, and the positional relationship can be determined independently, thereby achieving excellent performance with minimum parasitic resistance. In addition, it is possible to manufacture semiconductor devices with uniform characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の一例の断面図、第2図(a
)〜(e)は本発明の第1の発明の一実施例全説明する
ため工程1臓に示した断面図、第3図(a)、 fbl
l(C)は本発明の一工程で形成する第1の嗅の他の構
成を示す断面図、第4図(a)〜(e)は本発明の第2
の発明の一実施例を説明するため工程順に示した断面図
である。 1・・・・・・半絶縁性もしくは高抵抗GaAs、 2
・・・・・・n型GaAs層、3・・・・・・n 型G
aAs層、4・・・・・・ソース電極、5・・・・・・
ゲート電極、6・・・・・・ドレイン電極、11・・・
・・・高抵抗GaAsJ 12・・・・・・第1の膜、
13・・・・・・シリコンイオン注入層、14・・・・
・・nを能動層、15・・・・・・n 型能動層、16
・・・・・・第2の膜。 17・・・・・・ゲート電極、18・・・・・・ソース
電極、19・・・・・・ドレイン電極、21・・・・・
・高抵抗GaAs、22・・・・・・不純物を含む膜、
23・・・・・・不純物を含まない膜。
Figure 1 is a cross-sectional view of an example of a conventional semiconductor device, and Figure 2 (a
) to (e) are cross-sectional views shown in step 1 for fully explaining one embodiment of the first invention of the present invention, and FIG. 3(a), fbl
1(C) is a cross-sectional view showing another structure of the first olfaction formed in one step of the present invention, and FIGS.
FIG. 3 is a cross-sectional view shown in order of steps to explain an embodiment of the invention. 1... Semi-insulating or high resistance GaAs, 2
......n-type GaAs layer, 3...n-type G
aAs layer, 4...source electrode, 5...
Gate electrode, 6...Drain electrode, 11...
...High resistance GaAsJ 12...First film,
13... Silicon ion implantation layer, 14...
...n is active layer, 15...n type active layer, 16
...Second membrane. 17...Gate electrode, 18...Source electrode, 19...Drain electrode, 21...
・High resistance GaAs, 22... film containing impurities,
23...Membrane containing no impurities.

Claims (4)

【特許請求の範囲】[Claims] (1)高抵抗半導体上に該半導体中において一導電をと
なる不純物を含む第1の膜を被着する工程と、該第1の
膜を通して第1の膜に含まれる不純物と同じ導電型にな
る不純物をイオン注入する工程と、第1の膜の一部を除
去する工程と、熱処理する工程と、第2の膜を被着する
工程と、異方性ドライエツチングにより第2の膜を除去
して半導体表面を露出させる工程と、該露出された半導
体表面をおおって1電極を設ける工程と、前記第1の膜
の一部を除去して少くとももう一つの電極を設ける工程
とを含むことを特徴とする半導体装置の製造方法っ
(1) A step of depositing a first film containing an impurity that has one conductivity in the semiconductor on a high-resistance semiconductor, and passing through the first film the impurity that has the same conductivity type as the first film. a step of ion-implanting an impurity, a step of removing a part of the first film, a heat treatment step, a step of depositing a second film, and removing the second film by anisotropic dry etching. exposing the semiconductor surface; providing one electrode covering the exposed semiconductor surface; and removing a portion of the first film to provide at least another electrode. A method for manufacturing a semiconductor device characterized by
(2)高抵抗半導体上に該半導体中において一導篭醪と
なる不純物を含む第1の膜を被着する工程と、該第1の
膜の一部を除去する工程と、第1の膜をマスクにして前
記−導電型となる不純物と同−導電型になる不純物をイ
オン注入する工程と、熱処理する工程と、第2の膜を被
着する工程と、異方性ドライエツチングにより第2の膜
を除去して半導体表面を露出させる工程と、該露出され
た半導体表面を覆って一電極を設ける工程と、前記第1
の膜の一部を除去して少くとももう一つの電極を設ける
工程とを含むことを特徴とする半導体装置の製造方法。
(2) A step of depositing a first film containing an impurity that becomes a conductive layer in the semiconductor on a high-resistance semiconductor, a step of removing a part of the first film, and a step of removing a part of the first film. A step of ion-implanting an impurity having the same conductivity type as the impurity having the same conductivity type as the above-mentioned impurity having a conductivity type, a step of heat treatment, a step of depositing a second film, and a step of depositing a second film by anisotropic dry etching. a step of removing the film to expose the semiconductor surface; a step of providing one electrode covering the exposed semiconductor surface; and a step of providing one electrode over the exposed semiconductor surface;
a step of removing a portion of the film to provide at least another electrode.
(3)第1の膜の一部を除去する工程から第2の膜を被
着する工程が、第1の膜の一部を除去する工程と、第2
の膜を被着する工程と、熱処理する工程である特許請求
の範囲第(1)項又は第(2)項記載の半導体装置の製
造方法。
(3) The step of removing part of the first film and the step of depositing the second film are the steps of removing part of the first film and the step of depositing the second film.
A method for manufacturing a semiconductor device according to claim 1 or claim 2, which comprises a step of depositing a film and a step of heat treatment.
(4)−導電型となる不純物を含む第1の膜が膜の一部
に不純物を含むものである=fF+特許請求の範囲第(
1)項又は第(2)項記載の半導体装置の製造方法。
(4) - The first film containing an impurity that becomes a conductive type contains an impurity in a part of the film=fF+Claim No. (
A method for manufacturing a semiconductor device according to item 1) or item (2).
JP12672683A 1983-07-12 1983-07-12 Manufacture of semiconductor device Pending JPS6018970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12672683A JPS6018970A (en) 1983-07-12 1983-07-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12672683A JPS6018970A (en) 1983-07-12 1983-07-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6018970A true JPS6018970A (en) 1985-01-31

Family

ID=14942348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12672683A Pending JPS6018970A (en) 1983-07-12 1983-07-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6018970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136078A (en) * 1985-12-10 1987-06-19 Fujitsu Ltd Manufacture of compound semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136078A (en) * 1985-12-10 1987-06-19 Fujitsu Ltd Manufacture of compound semiconductor device

Similar Documents

Publication Publication Date Title
US4346512A (en) Integrated circuit manufacturing method
CA1063731A (en) Method for making transistor structures having impurity regions separated by a short lateral distance
JPH0123954B2 (en)
CA1136290A (en) Method of making fet
JPS6311787B2 (en)
US4277882A (en) Method of producing a metal-semiconductor field-effect transistor
US4413402A (en) Method of manufacturing a buried contact in semiconductor device
US4445270A (en) Low resistance contact for high density integrated circuit
JP3206419B2 (en) Method for manufacturing semiconductor device
JPH0481866B2 (en)
JPS6018970A (en) Manufacture of semiconductor device
US4196507A (en) Method of fabricating MNOS transistors having implanted channels
JPS62285468A (en) Manufacture of ldd field-effect transistor
JP3097095B2 (en) Method for manufacturing semiconductor device
JPH08316477A (en) Manufacture of semiconductor element
JP3037053B2 (en) Method for manufacturing vertical MOS semiconductor device
JP3848782B2 (en) Manufacturing method of semiconductor device
JPS6057980A (en) Manufacture of semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JPS6086871A (en) Manufacture of field effect transistor
JPS60777A (en) Manufacture of semiconductor device
JPS61247068A (en) Manufacture of field effect transistor
JPH0410547A (en) Manufacture of semiconductor device
JPH0428246A (en) Semiconductor device and manufacture thereof
JPH01191478A (en) Manufacture of semiconductor device