JPS60187333A - Process and apparatus for reducing material to be heated by heating in reducing atmosphere - Google Patents
Process and apparatus for reducing material to be heated by heating in reducing atmosphereInfo
- Publication number
- JPS60187333A JPS60187333A JP4324184A JP4324184A JPS60187333A JP S60187333 A JPS60187333 A JP S60187333A JP 4324184 A JP4324184 A JP 4324184A JP 4324184 A JP4324184 A JP 4324184A JP S60187333 A JPS60187333 A JP S60187333A
- Authority
- JP
- Japan
- Prior art keywords
- heated
- reducing
- curtain
- furnace
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000010438 heat treatment Methods 0.000 title claims abstract description 18
- 239000000463 material Substances 0.000 title claims abstract description 17
- 239000007789 gas Substances 0.000 claims abstract description 64
- 238000002485 combustion reaction Methods 0.000 claims abstract description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001301 oxygen Substances 0.000 claims abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- 230000008676 import Effects 0.000 claims 1
- 101150054854 POU1F1 gene Proteins 0.000 abstract description 17
- 101700004678 SLIT3 Proteins 0.000 abstract description 10
- 102100027339 Slit homolog 3 protein Human genes 0.000 abstract description 10
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 6
- 238000003723 Smelting Methods 0.000 abstract description 4
- 239000002737 fuel gas Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000008246 gaseous mixture Substances 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 3
- 229910002090 carbon oxide Inorganic materials 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/001—Feed or outlet devices as such, e.g. feeding tubes
- B01J4/002—Nozzle-type elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J6/00—Heat treatments such as Calcining; Fusing ; Pyrolysis
- B01J6/005—Fusing
- B01J6/007—Fusing in crucibles
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0073—Selection or treatment of the reducing gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/19—Details relating to the geometry of the reactor
- B01J2219/192—Details relating to the geometry of the reactor polygonal
- B01J2219/1923—Details relating to the geometry of the reactor polygonal square or square-derived
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は酸化物系原料の還元を行なう還元雰囲気下での
被熱物の加熱還元方法及びその加熱還元装置に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for thermally reducing a material to be heated in a reducing atmosphere for reducing an oxide-based raw material, and an apparatus for thermally reducing the same.
従来、酸化物系原料の還元は、目的物質の種類に応じて
、それぞれ開発した独自の方法及び装置により実施され
てきた。Conventionally, reduction of oxide-based raw materials has been carried out using unique methods and equipment developed depending on the type of target substance.
しかしながら、消費するエネルギーと物質、副生ずる排
出物並びに生産設備のコストを見ると、従来の方法が必
ずしも最適の域に達しているとはいい難く、むしろその
多くは、余りにも個別的な対応のため、かえって操作条
件を複雑にし、またはエネルギーの多消費を強いるとい
う問題があった。However, when looking at the energy and materials consumed, the emissions produced by-products, and the costs of production equipment, it is difficult to say that conventional methods are necessarily optimal; in fact, many of them rely on too individual measures. Therefore, there was a problem in that the operating conditions were complicated or the energy consumption was increased.
そこで、本発明は前記従来の問題点を解消し、原料酸化
物の還元による金属の製錬や炭化物系素材の製造等に適
した、簡単でかつ汎用性のある還元雰囲気下での加熱還
元方法及び加熱還元装置を提供するものであり、具体的
には、多量のスラグの排出や一酸化炭素の発生を伴わず
、また多量の電力を消費することのない金属製錬、非酸
化物系素材製造、金属の熱処理等に適した還元雰囲気下
での被熱物の加熱還元方法及び加熱還元装置の提供を目
的としだものである。Therefore, the present invention solves the above-mentioned conventional problems and provides a simple and versatile thermal reduction method in a reducing atmosphere, which is suitable for metal smelting and production of carbide materials by reducing raw material oxides. and thermal reduction equipment, specifically, metal smelting and non-oxide materials that do not emit large amounts of slag, generate carbon monoxide, or consume large amounts of electricity. The purpose of this invention is to provide a method and apparatus for thermal reduction of a heated object in a reducing atmosphere suitable for manufacturing, heat treatment of metals, etc.
上記の目的を達成するため、本発明では、一つの炉内で
燃料ガスが有する還元ガスと燃焼エネルギーとを順次に
、かつ充分に活用する新規で汎用性のある還元雰囲気下
での加熱還元方法を見出したものである。In order to achieve the above object, the present invention provides a novel and versatile thermal reduction method under a reducing atmosphere that sequentially and fully utilizes the reducing gas and combustion energy of the fuel gas in one furnace. This is what we discovered.
即ち、炉内において、層状に流れる還元性ガスのカーテ
ンで被熱物を遮蔽し、このカーテンを通してカーテンの
外側で発生した熱を被熱物に伝達させることを特徴とし
たものであり、好ましくは、予熱した還元性ガスを水平
のカーテン状ガス流れとして炉内に送入し、被熱物の上
面を覆うようにこのカーテン状ガス流れを通過させた後
、これを炉内上方部に導ひいて燃焼させ、それによって
発生する熱エネルギーを主として輻射熱の形でカーテン
状ガス流れを貫いて被熱物に伝達させる加熱還元方法で
ある。That is, in the furnace, the object to be heated is shielded by a curtain of reducing gas flowing in a layered manner, and the heat generated outside the curtain is transmitted to the object to be heated through the curtain. , the preheated reducing gas is introduced into the furnace as a horizontal curtain-like gas flow, and after passing this curtain-like gas flow so as to cover the top surface of the object to be heated, it is guided into the upper part of the furnace. This is a heating reduction method in which the thermal energy generated by the combustion is transmitted mainly in the form of radiant heat through a curtain-shaped gas flow to the heated object.
従って、これを実施するだめの加熱還元装置は、基本的
には、炉内空間が還元性ガスのカーテン流れによって区
画される還元雰囲気室と燃焼室とに区画され、このカー
テン流れを形成する還元性ガス送入用のスリット、カー
テン流れを燃焼室に導く案内機構、燃焼室用の酸素また
は空気及び必要に応じて補助燃料のための供給口、燃焼
排ガスの排出口及び被熱物を還元雰囲気室へ供給し、熱
処理後そこから取り出すだめの搬入、搬出機構を装備す
ることにより構成される。Therefore, in the thermal reduction equipment that implements this, the furnace space is basically divided into a reducing atmosphere chamber and a combustion chamber, which are partitioned by a curtain flow of reducing gas. A slit for the introduction of reactive gases, a guide mechanism for guiding the curtain flow into the combustion chamber, a supply port for oxygen or air for the combustion chamber and auxiliary fuel if necessary, an outlet for the combustion exhaust gas, and a reducing atmosphere for the heated object. It is constructed by being equipped with a loading and unloading mechanism for supplying the tank to the chamber and taking it out from there after heat treatment.
更に、本発明において使用される還元性ガスは、−酸化
炭素、水素、炭化水素、またはこれらの混合ガスのいづ
れかでよく、また、上記被熱物としては、含酸素物質、
または含酸素物質と含炭素物質との混合物であっても良
い。Further, the reducing gas used in the present invention may be -carbon oxide, hydrogen, hydrocarbon, or a mixed gas thereof, and the heat target may include an oxygen-containing substance,
Alternatively, it may be a mixture of an oxygen-containing substance and a carbon-containing substance.
以下図面を参照して本発明の詳細な説明すると、第1図
は本発明による還元雰囲気の加熱に用いた実験炉のバー
ナポー1・部分の側断面図であり、第2図は第1図の実
験炉の上部平断面図である。Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a side sectional view of the burner port 1 portion of the experimental furnace used for heating the reducing atmosphere according to the present invention, and FIG. 2 is the same as that of FIG. FIG. 2 is a top cross-sectional view of the experimental reactor.
第1図で左側壁に設けたノズル11から供給された還元
性ガスは、ガス溜り2を通ってスリット3から水平カー
テン流れとして噴出し、被熱物を入れるピット1の上を
走って対向壁のダクト乙に入り、上方へと通り抜ける。In Fig. 1, the reducing gas supplied from the nozzle 11 provided on the left side wall passes through the gas reservoir 2 and is ejected from the slit 3 as a horizontal curtain flow, runs over the pit 1 containing the object to be heated, and runs over the opposite wall. Enter the duct A and pass upward.
一方、右側壁に設けたバーナボート4から酸素または、
酸素と燃料ガスの先混合燃焼ガスを供給して炉内5で還
元ガスを燃焼させ、発生した輻射熱でピット1の被熱物
を加熱する。On the other hand, oxygen or
A pre-mixed combustion gas of oxygen and fuel gas is supplied to burn the reducing gas in the furnace 5, and the object to be heated in the pit 1 is heated with the generated radiant heat.
ここで、炉材にはジルコニア耐火物を用い、ガス溜り2
及びスリット6の部材、ピット1及び対向壁を除外した
炉内の幅と高さは共に15CIILである。Here, zirconia refractories are used as the furnace material, and the gas reservoir 2
The width and height of the inside of the furnace excluding the members of the slit 6, the pit 1, and the opposing wall are both 15 CIIL.
スリット3は、高さ0.2crfL、幅4CTLで、実
測によると、噴出するガス流れがダクト6までカ−テン
流れを形成するのに必要な流速は最低約2.5 g/s
ecである。The slit 3 has a height of 0.2 crfL and a width of 4 CTL, and according to actual measurements, the flow rate required for the ejected gas flow to form a curtain flow up to the duct 6 is at least about 2.5 g/s.
It is ec.
第2図は、炉の断面図で、炉内5の燃焼ガスは炉の中央
部の隔壁7に設けた通路8を通り、天井の煙道9から排
出するが、のぞき穴10を通して、炉内5の燃焼状態を
観察し、元高温度計による測温を行なう。FIG. 2 is a cross-sectional view of the furnace. Combustion gas in the furnace 5 passes through a passage 8 provided in a partition wall 7 in the center of the furnace and is exhausted from a flue 9 in the ceiling. 5. Observe the combustion state and measure the temperature using a high-temperature thermometer.
上記、第1図及び第2図の実験炉は本発明による加熱還
元方法を適用する加熱還元装置と同様な構成及び機能を
有するものであり、従って、スリット乙の形状と位置と
を適宜に設定して、そこから噴流するガスを水平のほか
、扇形、傾斜捷たは垂直なカーテン流れにしても差し支
えない。The experimental furnace shown in FIGS. 1 and 2 above has the same configuration and function as the thermal reduction apparatus to which the thermal reduction method according to the present invention is applied, and therefore, the shape and position of the slit A are set appropriately. Then, the gas jetted from there may be formed not only horizontally, but also in a fan-shaped, sloping, or vertical curtain flow.
ただし、このカーテン流れがどの程度の距離まで伸長す
るかは、主としてスリット3からのガス噴出流れの線速
度に依存する。However, how far this curtain flow extends depends mainly on the linear velocity of the gas jet flow from the slit 3.
また、カーテン流れによって還元雰囲気下に置かれる被
熱物の温度上昇は、カーテンガス量に依存する燃焼熱の
ほかスリット3からの噴出ガスの温度によっても遅速を
生ずる。Further, the temperature rise of the heated object placed in a reducing atmosphere due to the curtain flow is slowed down by the temperature of the gas ejected from the slit 3 as well as the combustion heat which depends on the amount of curtain gas.
そのだめ、好ましくは、予熱された還元性ガスを使用し
、これがCOO20ある場合には、石炭またはコークス
等の不完全燃焼によって発生した高温状態のCOO20
直接使用することが望ましい。Therefore, it is preferable to use a preheated reducing gas, and if the reducing gas is COO20, it is COO20 in a high temperature state generated by incomplete combustion of coal or coke, etc.
Direct use is preferable.
また、カーテン流れの燃焼だけでは、被熱物の処理に必
要な熱量を賄い難い場合には、カーテン流れを乱さない
ように、別途補助燃料を炉内5に供給し燃焼させる。In addition, if it is difficult to cover the amount of heat necessary for processing the object to be heated by just burning the curtain flow, auxiliary fuel is separately supplied into the furnace 5 and burned so as not to disturb the curtain flow.
即ち、本発明の加熱還元方法は、各種の還元加熱処理に
適用でき、還元雰囲気下で被熱物を1500°C以上の
高温まで容易に加熱できるので、例えば第1図及び第2
図のピット1を黒鉛製とし、そこに粒状酸化鉄を供給す
れば、COガスカーテン下、1500°C以上の加熱で
黒鉛の酸化による消耗をもたらすことなく、純鉄の融液
が生成できる。That is, the thermal reduction method of the present invention can be applied to various types of reducing heat treatments, and the object to be heated can be easily heated to a high temperature of 1500°C or higher in a reducing atmosphere.
If the pit 1 in the figure is made of graphite and granular iron oxide is supplied therein, a pure iron melt can be produced by heating at 1500°C or higher under a CO gas curtain without causing consumption of graphite due to oxidation.
現行の製鉄プロセスでは、鉄鉱石とコークスとを高炉に
投入するため、多量のスラグと多量の高炉ガス(CO)
とを発生するが、本発明の方法では、これらの副生物を
生じることがなく、酸化鉄はCO還元によって金属鉄に
なり、未消費のC0分は炉内5で燃焼し、炭酸ガスとな
って排出するだけである。In the current steelmaking process, iron ore and coke are charged into a blast furnace, which produces a large amount of slag and a large amount of blast furnace gas (CO).
However, in the method of the present invention, these by-products are not produced, iron oxide becomes metallic iron by CO reduction, and unconsumed CO is burned in the furnace 5 and becomes carbon dioxide gas. Just drain it.
この例から理解されるように、各種金属の製錬に本発明
の利用が期待できる。As understood from this example, the present invention can be expected to be used in the smelting of various metals.
また、炭化ケイ素は、従来抵抗電気炉により製造されて
いるが、シリカと炭素との化学量論的混合物を本方法に
より充分高温で処理するなら、炭化ケイ素を製造するこ
とも可能となる。Further, although silicon carbide has conventionally been produced using a resistance electric furnace, it is also possible to produce silicon carbide if a stoichiometric mixture of silica and carbon is treated at a sufficiently high temperature by this method.
次に、第1図及び第2図と同一の加熱還元装置のガスカ
ーテン流れの効果を示す実験例1においては、ピット1
を黒鉛製にし、スリット3から一酸化炭素を5 m/s
ecの流速(ガス消費量1.5m8Ar )で噴出して
カスカーテン流れを形成している。Next, in Experimental Example 1 showing the effect of gas curtain flow in the same thermal reduction device as in Figs. 1 and 2, pit 1
is made of graphite, and carbon monoxide is ejected from slit 3 at a rate of 5 m/s.
The gas is ejected at a flow rate of EC (gas consumption: 1.5 m8 Ar) to form a cascade flow.
一方、バーナポート4から酸素を送って炉内5で燃焼さ
せると、カーテン流れはピット1の上面を水平に走り、
ダクト6を抜けて炉内5で燃焼する状況がよく観察でき
る。On the other hand, when oxygen is sent from the burner port 4 and burned in the furnace 5, the curtain flow runs horizontally on the top surface of the pit 1,
The situation in which it passes through the duct 6 and burns inside the furnace 5 can be clearly observed.
昇温を加速fる;#[+、都市ガス(10’Kcaj?
/rfL8)を先混合式バーナに供給し、次第にその量
と必要な酸素量とを増大したところ、炉内温度が163
0°Cに達した時点(この時の都市ガる消費量Q、 8
7718/’h r )でピット1内温度(熱電対によ
る)は1340°Cであり、一方、スリット6出口にお
けるカーテンガスの温度は550°Cであった。Accelerate temperature rise; #[+, city gas (10'Kcaj?
/rfL8) was supplied to the pre-mix burner, and the amount and the required amount of oxygen were gradually increased, and the temperature inside the furnace reached 163.
When the temperature reaches 0°C (urban gas consumption at this time Q, 8
7718/'hr), the temperature inside the pit 1 (measured by thermocouple) was 1340°C, while the temperature of the curtain gas at the exit of the slit 6 was 550°C.
従って、低温のガスカーテンで覆われていても、ピット
1内は炉内5からの輻射熱を受けてかなり高温まで加熱
できることが分る。Therefore, it can be seen that even when covered with a low-temperature gas curtain, the inside of the pit 1 can be heated to a considerably high temperature by receiving radiant heat from the inside of the furnace 5.
なお、燃焼を停止し、アルゴンガスをCOO20代りに
スリット3から送入して、不活性ガス下で冷却したとこ
ろ、黒鉛製のピット1は酸化による消耗を見ず、原形を
保持した。Incidentally, when the combustion was stopped and argon gas was introduced through the slit 3 instead of COO20 to cool it under an inert gas, the graphite pit 1 did not show any wear due to oxidation and maintained its original shape.
まだ、−酸化炭素の代りに、水素ガス、またはメタンガ
スを用いて同称の実験を行ったところ、はぼ同じ結果が
得られることが確認された。However, when the same experiment was conducted using hydrogen gas or methane gas instead of -carbon oxide, it was confirmed that almost the same results were obtained.
次に、カーテンガスの予熱効果及び酸化鉄の還元を説明
するため上記実施例1と同じ装置により一酸化炭素の予
熱を除くとほぼ同一条件下で燃焼実験を行った実験例2
について説明する。Next, in order to explain the preheating effect of curtain gas and the reduction of iron oxide, a combustion experiment was conducted using the same equipment as in Example 1 under almost the same conditions except for the preheating of carbon monoxide.
I will explain about it.
予熱には、炉外に設置したカンタル線加熱(2KW容量
)の管状予熱器を用いた。For preheating, a Kanthal wire heating (2KW capacity) tubular preheater installed outside the furnace was used.
スリット3出口でのカーテンガスの温度が上昇するにつ
れ、炉内5温度とピット1内温度との差が縮まることが
確認された。It was confirmed that as the temperature of the curtain gas at the exit of the slit 3 increased, the difference between the temperature inside the furnace 5 and the temperature inside the pit 1 decreased.
この効果は、スリット3の温度が約900°Cを越える
と顕著になり、炉内5温度1700°C、スリット3の
温W 1150°Cの時点で、ピット1内温度は161
0°Cを示した。This effect becomes noticeable when the temperature of slit 3 exceeds approximately 900°C, and when the temperature inside the furnace 5 is 1700°C and the temperature W of slit 3 is 1150°C, the temperature inside pit 1 is 161°C.
It showed 0°C.
このようにカーテンガスの予熱は極めて有効であること
が確認され、この条件下で予め黒鉛製のピット1内に粒
状酸化鉄を入れておいだところ、実験の終了後、ピット
1は何等消耗せず、かつ還元されて生成した純鉄が融塊
として定量的に回収された。Preheating the curtain gas was thus confirmed to be extremely effective, and when granular iron oxide was placed in the graphite pit 1 in advance under these conditions, the pit 1 was not consumed at all after the experiment was completed. The pure iron produced by reduction was quantitatively recovered as a molten lump.
なお、前記第1図及び第2図に示す本発明の一実施例に
おける実験炉は、その炉内5の空間を層状に流れる還元
性ガスのカーテン流れによって被熱物を還元雰囲気下に
置く還元雰囲気室であるピット1と燃焼室とに区画する
と共に、このカーテン流れを形成するためノズル11か
ら導入された還元性ガスをガス溜り2から炉内5に送入
するスリット6、そのカーテン流れを燃焼室に導く案内
機構であるダクト6、燃焼室へ酸素または空気などの燃
料ガス捷だは補助燃料を導入するだめの供給口であるバ
ーナポート4、燃焼排ガスの排出口である通路8及び煙
道7、更には図示されていない被熱物をピット1内に供
給し、熱処理後そこから取り出すだめの搬入、搬出機構
を装備しているが、本発明の加熱還元装置としては上記
実施例の実験炉に拘束されるものではなく、種々の形状
及び配置を有する装置が可能である。The experimental furnace according to the embodiment of the present invention shown in FIGS. 1 and 2 is a reducing method in which the object to be heated is placed in a reducing atmosphere by a curtain flow of reducing gas flowing in layers in the space inside the furnace 5. A slit 6 divides the reducing gas into a pit 1, which is an atmosphere chamber, and a combustion chamber, and sends the reducing gas introduced from the nozzle 11 from the gas reservoir 2 into the furnace 5 to form this curtain flow. A duct 6 which is a guide mechanism leading to the combustion chamber, a burner port 4 which is a supply port for introducing fuel gas such as oxygen or air or auxiliary fuel into the combustion chamber, a passage 8 which is an exhaust port for combustion exhaust gas, and smoke. The pipe 7 is further equipped with a loading and unloading mechanism for supplying the heated material (not shown) into the pit 1 and taking it out from there after heat treatment. It is not limited to experimental reactors, and devices with various shapes and configurations are possible.
従って、本発明の還元雰囲気下での被熱物の加熱還元方
法及びその加熱還元装置を採用すれば、従来の方法のご
とくスラグ等の副生物を生ずることがなく、かつ消費電
力も少ないという効果がある。Therefore, if the method for thermally reducing a heated object under a reducing atmosphere and the thermally reducing device thereof according to the present invention are adopted, by-products such as slag are not generated as in conventional methods, and power consumption is also reduced. There is.
まだ、本発明で使用される還元性ガスは、−酸化炭素、
水素、炭化水素またはこれらの混合ガスで良く、炉内で
これらは完全燃焼し、炭酸ガスや水蒸気になって排出す
るので、従来の高炉性製鉄プロセスにおけるように多量
の一酸化炭素を排出することなく、またこれに伴う一酸
化炭素の回収、利用のだめの設備が省略できるという利
点がある。Still, the reducing gas used in the present invention is - carbon oxide,
Hydrogen, hydrocarbons, or a mixture of these gases can be used, and these gases are completely combusted in the furnace and emitted as carbon dioxide gas or water vapor, so large amounts of carbon monoxide are not emitted as in the conventional blast furnace steelmaking process. Moreover, there is an advantage that the accompanying equipment for collecting and utilizing carbon monoxide can be omitted.
一方、被熱物としては還元雰囲気下での熱処理の目的に
応じて金属系、酸化物系、酸素酸塩系等、幅広い種類の
なかから選ばれた原料物質でよく、その形態も定形と非
定形、固体と液体、原料物質単味と混合物、例えば金属
酸化物と炭素粉末との混合物のいづれかを問わないので
、汎用性のある還元雰囲気下での被熱物の加熱還元方法
及びその装置を提供することができる。On the other hand, the material to be heated may be a raw material selected from a wide variety of materials, such as metals, oxides, and oxy-acid salts, depending on the purpose of heat treatment in a reducing atmosphere, and its form may be fixed or irregular. Regardless of whether it is a fixed shape, a solid or a liquid, a raw material or a mixture, such as a mixture of a metal oxide and carbon powder, we provide a versatile method and apparatus for heating and reducing the object under a reducing atmosphere. can be provided.
第1図は本発明の実施例における加熱還元装置のバーナ
ポート部分の側断面図、第2図は第1図の装置の上部平
断面図である。
1・・・ピット、2・・・ガス溜り、3・・・スリット
、4・・・バーナポート、5・・・炉内、6・・・ダク
ト、8第1図
5FIG. 1 is a side cross-sectional view of a burner port portion of a thermal reduction apparatus according to an embodiment of the present invention, and FIG. 2 is a top plan cross-sectional view of the apparatus shown in FIG. 1. 1... Pit, 2... Gas reservoir, 3... Slit, 4... Burner port, 5... Furnace interior, 6... Duct, 8 Figure 1 5
Claims (1)
ンで被熱物を遮蔽し、このカーテンを通してカーテンの
外側で発生した熱を被熱物に伝達させることを特徴とす
る還元雰囲気下での被熱物の加熱還元方法。 2、 炉内において、被熱物を遮蔽する層状に流れる還
元性ガスのカーテンを予熱した水平のガス流れとしてそ
の被熱物の上面を覆うようにその炉内に送入通過させた
後、このカーテン状ガス流れを炉内上方部に導びいて燃
焼させ、それによって発生する熱エネルギーを主として
輻射熱の形で上記カーテン状ガス流れを貫いて被熱物に
伝達されることを特徴とする還元雰囲気下での被熱物の
加熱還元方法。 3、 炉内において、層状に流れる還元性ガスが一酸化
炭素、水素、炭化水素及びこれらの混合物の中のいづれ
かである特許請求の範囲第1項及び第2項記載の還元雰
囲気下での被熱物の加熱還元方法。 4、 炉内において、層状に流れる還元性ガスで遮蔽さ
れる被熱物が、含酸素物質、または含酸素物質と含炭素
物質との混合物である特許請求の範囲第1項、第2項ま
たは第3項記載の還元雰囲気下での被熱物の加熱還元方
法。 5、 一つの炉内空間を層状に流れる還元性ガスのカー
テン流れによって還元雰囲気室と燃焼室とに区画された
炉内に、このカーテン流れを形成する還元性ガス送入用
のスリット、カーテン流れを燃焼室に導く案内機構、燃
焼室用の酸素または空気及び必要に応じて補助燃料のだ
めの供給口、燃焼排ガスの排出口及び被熱物を還元雰囲
気室へ供給し、熱処理後そこから取り出すための搬入、
搬出機構を装備したことを特徴とする還元雰囲気下での
被熱物の加熱還元装置。[Claims] 1. In the furnace, the object to be heated is shielded by a curtain of reducing gas flowing in layers, and the heat generated outside the curtain is transmitted to the object to be heated through this curtain. A method for heating and reducing a heated object under a reducing atmosphere. 2. In the furnace, a curtain of reducing gas flowing in a layer that shields the object to be heated is passed through the furnace as a preheated horizontal gas stream so as to cover the top surface of the object to be heated, and then this A reducing atmosphere characterized in that a curtain-shaped gas flow is guided to the upper part of the furnace and combusted, and the thermal energy generated thereby is transmitted mainly in the form of radiant heat to the object to be heated through the curtain-shaped gas flow. A heating reduction method for heated objects. 3. In the furnace, the reducing gas flowing in a layered manner is exposed to a reducing atmosphere according to claims 1 and 2, in which the reducing gas is carbon monoxide, hydrogen, hydrocarbon, or a mixture thereof. Method for heating and reducing hot materials. 4. In the furnace, the object to be heated that is shielded by the reducing gas flowing in a layered manner is an oxygen-containing substance or a mixture of an oxygen-containing substance and a carbon-containing substance, or A method for heating and reducing a material to be heated in a reducing atmosphere according to item 3. 5. A slit for introducing reducing gas to form a curtain flow in the furnace, which is divided into a reducing atmosphere chamber and a combustion chamber by a curtain flow of reducing gas flowing in a layered manner in one furnace space, and a curtain flow. A guide mechanism for guiding the gas into the combustion chamber, a supply port for oxygen or air for the combustion chamber and, if necessary, an auxiliary fuel reservoir, a combustion exhaust gas discharge port, and for supplying the heated material to the reducing atmosphere chamber and removing it from there after heat treatment. import,
A heating reduction device for a heated object in a reducing atmosphere, characterized by being equipped with an ejection mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4324184A JPS60187333A (en) | 1984-03-07 | 1984-03-07 | Process and apparatus for reducing material to be heated by heating in reducing atmosphere |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4324184A JPS60187333A (en) | 1984-03-07 | 1984-03-07 | Process and apparatus for reducing material to be heated by heating in reducing atmosphere |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60187333A true JPS60187333A (en) | 1985-09-24 |
JPS6320170B2 JPS6320170B2 (en) | 1988-04-26 |
Family
ID=12658400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4324184A Granted JPS60187333A (en) | 1984-03-07 | 1984-03-07 | Process and apparatus for reducing material to be heated by heating in reducing atmosphere |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60187333A (en) |
-
1984
- 1984-03-07 JP JP4324184A patent/JPS60187333A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6320170B2 (en) | 1988-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1232229A (en) | Method, and an arrangement, for producing synthetic gases | |
FI77897C (en) | SAETT FOER FRAMSTAELLNING AV METALLER OCH / ELLER GENERERING AV SLAGG. | |
JPS62500010A (en) | Flame generation method and device | |
JP2011174171A (en) | Method for operating blast furnace | |
US4259081A (en) | Process of calcining limestone in a rotary kiln | |
UA77053C2 (en) | Method for pyrometallurgical treatment of metals, metal melts and/or slags and injection device | |
HU188685B (en) | Process for production of combustible gas in iron-bath reactor containing carbon monoxid and hydrogen | |
JPS61185591A (en) | Manufacture of gas | |
US1924856A (en) | Continuous gas manufacture | |
WO2020203629A1 (en) | Method and apparatus for producing quick lime using coke dry quenching facility | |
JP3909088B2 (en) | Metal reduction and melting methods | |
RU2346057C2 (en) | Advanced method of melting for receiving of iron | |
US4644557A (en) | Process for the production of calcium carbide and a shaft furnace for carrying out the process | |
JPS60187333A (en) | Process and apparatus for reducing material to be heated by heating in reducing atmosphere | |
CA1050265A (en) | Apparatus for injection of hot reducing gas into a shaft | |
JP5617666B2 (en) | Method of melting cold iron source by combined arc melting furnace and combined arc melting furnace | |
CA1108864A (en) | Direct-reduction process carried out in a rotary kiln | |
RU2006114771A (en) | METHOD AND DEVICE FOR PRODUCING A MELTED IRON | |
US3615353A (en) | Apparatus and process of smelting scrap | |
CA1129644A (en) | Direct heating of heat treat furnace chamber | |
JP4736541B2 (en) | Method for producing reduced metal | |
JPS6040488B2 (en) | Method for improving heat utilization efficiency when producing steel from solid ferrous raw materials | |
WO2020203630A1 (en) | Method and apparatus for producing quick lime using coke dry quenching facility and heat exchanger | |
GB902674A (en) | System for baking carbonaceous products or the like | |
CA1204702A (en) | Dc furnace and a process for generation of reduction gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |