JPS6320170B2 - - Google Patents

Info

Publication number
JPS6320170B2
JPS6320170B2 JP4324184A JP4324184A JPS6320170B2 JP S6320170 B2 JPS6320170 B2 JP S6320170B2 JP 4324184 A JP4324184 A JP 4324184A JP 4324184 A JP4324184 A JP 4324184A JP S6320170 B2 JPS6320170 B2 JP S6320170B2
Authority
JP
Japan
Prior art keywords
heated
curtain
reducing
furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4324184A
Other languages
Japanese (ja)
Other versions
JPS60187333A (en
Inventor
Kinjiro Fujii
Akihiro Motoe
Kyoshi Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4324184A priority Critical patent/JPS60187333A/en
Publication of JPS60187333A publication Critical patent/JPS60187333A/en
Publication of JPS6320170B2 publication Critical patent/JPS6320170B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/005Fusing
    • B01J6/007Fusing in crucibles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/192Details relating to the geometry of the reactor polygonal
    • B01J2219/1923Details relating to the geometry of the reactor polygonal square or square-derived

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物系原料の還元を行なう還元雰囲
気下での被熱物の加熱還元方法及びその加熱還元
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for thermally reducing a material to be heated in a reducing atmosphere for reducing an oxide-based raw material, and an apparatus for thermally reducing the same.

〔従来技術〕[Prior art]

従来、酸化物系原料の還元は、目的物質の種類
に応じて、それぞれ開発した独自の方法及び装置
により実施されてきた。
Conventionally, reduction of oxide-based raw materials has been carried out using unique methods and equipment developed depending on the type of target substance.

しかしながら、消費するエネルギーと物質、副
生する排出物並びに生産設備のコストを見ると、
従来の方法が必ずしも最適の域に達しているとは
いい難く、むしろその多くは、余りにも個別的な
対応のため、かえつて操作条件を複雑にし、また
はエネルギーの多消費を強いるという問題があつ
た。
However, when we look at the energy and materials consumed, the by-product emissions, and the cost of production equipment,
It is difficult to say that conventional methods have necessarily reached the optimal level; in fact, many of them have the problem of complicating operating conditions or consuming a large amount of energy because they are too individualized. Ta.

〔発明の目的〕[Purpose of the invention]

そこで、本発明は前記従来の問題点を解消し、
原料酸化物の還元による金属の製錬や炭化物系素
材の製造等に適した、簡単でかつ汎用性のある還
元雰囲気下での加熱還元方法及び加熱還元装置を
提供するものであり、具体的には、多量のスラグ
の排出や一酸化炭素の発生を伴わず、また多量の
電力を消費することのない金属製錬、非酸化物系
素材製造、金属の熱処理等に適した還元雰囲気下
での被熱物の加熱還元方法及び加熱還元装置の提
供を目的としたものである。
Therefore, the present invention solves the above-mentioned conventional problems,
The present invention provides a simple and versatile thermal reduction method and thermal reduction apparatus in a reducing atmosphere, which are suitable for metal smelting and the production of carbide materials by reducing raw material oxides. is a reducing atmosphere suitable for metal smelting, non-oxide material production, metal heat treatment, etc., which does not generate large amounts of slag, generate carbon monoxide, or consume large amounts of electricity. The object of the present invention is to provide a heating reduction method and a heating reduction apparatus for a heated object.

〔発明の構成〕[Structure of the invention]

上記の目的を達成するため、本発明では、一つ
の炉内で燃料ガスが有する還元ガスと燃焼エネル
ギーとを順次に、かつ充分に活用する新規で汎用
性のある還元雰囲気下での加熱還元方法を見出し
たものである。
In order to achieve the above object, the present invention provides a novel and versatile thermal reduction method under a reducing atmosphere that sequentially and fully utilizes the reducing gas and combustion energy of the fuel gas in one furnace. This is what we discovered.

即ち、炉内において、層状に流れる還元性ガス
のカーテンで被熱物を遮蔽し、このカーテンを通
してカーテンの外側で発生した熱を被熱物に伝達
させることを特徴としたものであり、好ましく
は、予熱した還元性ガスを水平のカーテン状ガス
流れとして炉内に送入し、被熱物の上面を覆うよ
うにこのカーテン状ガス流れを通過させた後、こ
れを炉内上方部に導びいて燃焼させ、それによつ
て発生する熱エネルギーを主として輻射熱の形で
カーテン状ガス流れを貫いて被熱物に伝達させる
加熱還元方法である。
That is, in the furnace, the object to be heated is shielded by a curtain of reducing gas flowing in a layered manner, and the heat generated outside the curtain is transmitted to the object to be heated through the curtain. , the preheated reducing gas is fed into the furnace as a horizontal curtain-like gas flow, and after passing this curtain-like gas flow so as to cover the top surface of the object to be heated, it is guided into the upper part of the furnace. This is a heating reduction method in which the thermal energy generated by the combustion is transmitted mainly in the form of radiant heat through a curtain-shaped gas flow to the object to be heated.

従つて、これを実施するための加熱還元装置
は、基本的には、炉内空間が還元性ガスのカーテ
ン流れによつて区画される還元雰囲気室と燃焼室
とに区画され、このカーテン流れを形成する還元
性ガス送入用のスリツト、カーテン流れを燃焼室
に導く案内機構、燃焼室用の酸素または空気及び
必要に応じて補助燃料のための供給口、燃焼排ガ
スの排出口及び被熱物を還元雰囲気室へ供給し、
熱処理後そこから取り出すための搬入、搬出機構
を装備することにより構成される。
Therefore, a thermal reduction apparatus for implementing this is basically divided into a reducing atmosphere chamber and a combustion chamber in which the space inside the furnace is divided by a curtain flow of reducing gas, and this curtain flow is divided into a combustion chamber. A slit for introducing reducing gas to be formed, a guide mechanism for guiding the curtain flow into the combustion chamber, a supply port for oxygen or air for the combustion chamber and auxiliary fuel if necessary, an outlet for combustion exhaust gas, and a heated object. is supplied to the reducing atmosphere chamber,
It is constructed by being equipped with a carry-in and carry-out mechanism for taking it out after heat treatment.

更に、本発明において使用される還元性ガス
は、一酸化炭素、水素、炭化水素、またはこれら
の混合ガスのいづれかでよく、また、上記被熱物
としては、含酸素物質、または含酸素物質と含炭
素物質との混合物であつても良い。
Further, the reducing gas used in the present invention may be carbon monoxide, hydrogen, hydrocarbon, or a mixture thereof, and the object to be heated may be an oxygen-containing substance or an oxygen-containing substance. It may also be a mixture with a carbon-containing substance.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例を説明する
と、第1図は本発明による還元雰囲気の加熱に用
いた実験炉のバーナポート部分の側断面図であ
り、第2図は第1図の実験炉の上部平断面図であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view of a burner port portion of an experimental furnace used for heating a reducing atmosphere according to the present invention, and FIG. FIG. 2 is a top cross-sectional view of the experimental reactor.

第1図で左側壁に設けたノズル11から供給さ
れた還元性ガスは、ガス溜り2を通つてスリツト
3から水平カーテン流れとして噴出し、被熱物を
入れるピツト1の上を走つて対向壁のダクト6に
入り、上方へと通り抜ける。
In Fig. 1, the reducing gas supplied from the nozzle 11 provided on the left side wall passes through the gas reservoir 2, ejects from the slit 3 as a horizontal curtain flow, runs over the pit 1 containing the object to be heated, and then flows to the opposite wall. It enters duct 6 and passes upward.

一方、右側壁に設けたバーナポート4から酸素
または、酸素と燃料ガスの先混合燃焼ガスを供給
して炉内5で還元ガスを燃焼させ、発生した輻射
熱でピツト1の被熱物を加熱する。
On the other hand, oxygen or a premixed combustion gas of oxygen and fuel gas is supplied from the burner port 4 provided on the right side wall, reducing gas is combusted in the furnace 5, and the object to be heated in the pit 1 is heated with the generated radiant heat. .

ここで、炉材にはジルコニア耐火物を用い、ガ
ス溜り2及びスリツト3の部材、ピツト1及び対
向壁を除外した炉内の幅と高さは共に15cmであ
る。
Here, zirconia refractories are used as the furnace material, and the width and height of the inside of the furnace excluding the members of the gas reservoir 2 and slit 3, the pit 1, and the opposing wall are both 15 cm.

スリツト3は、高さ0.2cm、幅4cmで、実測に
よると、噴出するガス流れがダクト6までカーテ
ン流れを形成するのに必要な流速は最低約
2.5m/secである。
The slit 3 has a height of 0.2 cm and a width of 4 cm, and according to actual measurements, the flow velocity required for the ejected gas flow to form a curtain flow up to the duct 6 is at least approximately
2.5m/sec.

第2図は、炉の断面図で、炉内5の燃焼ガスは
炉の中央部の隔壁7に設けた通路8を通り、天井
の煙道9から排出するが、のぞき穴10を通し
て、炉内5の燃焼状態を観察し、光高温度計によ
る測温を行なう。
FIG. 2 is a cross-sectional view of the furnace. Combustion gas in the furnace 5 passes through a passage 8 provided in a partition wall 7 in the center of the furnace and is exhausted from a flue 9 in the ceiling. 5. Observe the combustion state and measure the temperature using an optical thermometer.

上記、第1図及び第2図の実験炉は本発明によ
る加熱還元方法を適用する加熱還元装置と同様な
構成及び機能を有するものであり、従つて、スリ
ツト3の形状と位置とを適宜に設定して、そこか
ら噴流するガスを水平のほか、扇形、傾斜または
垂直なカーテン流れにしても差し支えない。
The experimental furnaces shown in FIGS. 1 and 2 have the same structure and function as the thermal reduction apparatus to which the thermal reduction method of the present invention is applied, and therefore the shape and position of the slit 3 may be changed as appropriate. The gas jet can be set to flow horizontally, fan-shaped, slanted, or vertically.

ただし、このカーテン流れがどの程度の距離ま
で伸長するかは、主としてスリツト3からのガス
噴出流れの線速度に依存する。
However, how far this curtain flow extends depends mainly on the linear velocity of the gas jet flow from the slit 3.

また、カーテン流れによつて還元雰囲気下に置
かれる被熱物の温度上昇は、カーテンガス量に依
存する燃焼熱のほかスリツト3からの噴出ガスの
温度によつても遅速を生ずる。
Further, the temperature rise of the heated object placed in a reducing atmosphere due to the curtain flow is slowed down by the temperature of the gas ejected from the slit 3 as well as the combustion heat which depends on the amount of curtain gas.

そのため、好ましくは、予熱された還元性ガス
を使用し、これがCoガスである場合には、石炭
またはコークス等の不完全燃焼によつて発生した
高温状態のCoガスを直接使用することが望まし
い。
Therefore, it is preferable to use a preheated reducing gas, and when this is Co gas, it is desirable to directly use Co gas in a high temperature state generated by incomplete combustion of coal or coke.

また、カーテン流れの燃焼だけでは、被熱物の
処理に必要な熱量を賄い難い場合には、カーテン
流れを乱さないように、別途補助燃料を炉内5に
供給し燃焼させる。
In addition, if it is difficult to cover the amount of heat necessary for processing the object to be heated by just burning the curtain flow, auxiliary fuel is separately supplied into the furnace 5 and burned so as not to disturb the curtain flow.

即ち、本発明の加熱還元方法は、各種の還元加
熱処理に適用でき、還元雰囲気下で被熱物を1500
℃以上の高温まで容易に加熱できるので、例えば
第1図及び第2図のピツト1を黒鉛製とし、そこ
に粒状酸化鉄を供給すれば、Coガスカーテン下、
1500℃以上の加熱で黒鉛の酸化による消耗をもた
らすことなく、純鉄の融液が生成できる。
In other words, the thermal reduction method of the present invention can be applied to various types of reducing heat treatments, and the heat-reducing method of the present invention can be applied to various types of reducing heat treatments.
Since it can be easily heated to a high temperature of ℃ or higher, for example, if the pit 1 in Figs. 1 and 2 is made of graphite and granular iron oxide is supplied there, under a Co gas curtain,
Pure iron melt can be produced by heating above 1500℃ without oxidizing graphite and causing consumption.

現行の製鉄プロセスでは、鉄鉱石とコークスと
を高炉に投入するため、多量のスラグと多量の高
炉ガス(Co)とを発生するが、本発明の方法で
は、これらの副生物を生じることがなく、酸化鉄
はCo還元によつて金属鉄になり、未消費のCo分
は炉内5で燃焼し、炭酸ガスとなつて排出するだ
けである。
In the current steelmaking process, iron ore and coke are charged into a blast furnace, which generates a large amount of slag and a large amount of blast furnace gas (Co), but the method of the present invention does not generate these byproducts. Iron oxide becomes metallic iron by Co reduction, and unconsumed Co is burned in the furnace 5 and is only discharged as carbon dioxide gas.

この例から理解されるように、各種金属の製錬
に本発明の利用が期待できる。
As understood from this example, the present invention can be expected to be used in the smelting of various metals.

また、炭化ケイ素は、従来抵抗電気炉により製
造されているが、シリカと炭素との化学量論的混
合物を本方法により充分高温で処理するなら、炭
化ケイ素を製造することも可能となる。
Further, although silicon carbide has conventionally been produced using a resistance electric furnace, it is also possible to produce silicon carbide if a stoichiometric mixture of silica and carbon is treated at a sufficiently high temperature by this method.

次に、第1図及び第2図と同一の加熱還元装置
のガスカーテン流れの効果を示す実験例1におい
ては、ピツト1を黒鉛製にし、スリツト3から一
酸化炭素を5m/secの流速(ガス消費量1.5m3
hr)で噴出してガスカーテン流れを形成してい
る。
Next, in Experimental Example 1 showing the effect of gas curtain flow in the same thermal reduction apparatus as in Figs. Gas consumption 1.5m 3 /
hr) and forms a gas curtain flow.

一方、バーナポート4から酸素を送つて炉内5
で燃焼させると、カーテン流れはピツト1の上面
を水平に走り、ダクト6を抜けて炉内5で燃焼す
る状況がよく観察できる。
On the other hand, oxygen is sent from the burner port 4 to the inside of the furnace 5.
When combustion is performed, the curtain flow runs horizontally on the upper surface of the pit 1, passes through the duct 6, and burns in the furnace 5, which can be clearly observed.

昇温を加速するため、都市ガス(104Kcal/
m3)を先混合式バーナに供給し、次第にその量と
必要な酸素量とを増大したところ、炉内温度が
1630℃に達した時点(この時の都市ガス消費量
0.8m3/hr)でピツト1内温度(熱電対による)
は1340℃であり、一方、スリツト3出口における
カーテンガスの温度は550℃であつた。
City gas (10 4 Kcal/
m 3 ) was supplied to a premix burner, and the amount and the required amount of oxygen were gradually increased, the temperature inside the furnace increased.
When the temperature reaches 1630℃ (city gas consumption at this time)
0.8m 3 /hr) and the temperature inside pit 1 (by thermocouple)
was 1340°C, while the temperature of the curtain gas at the slit 3 outlet was 550°C.

従つて、低温のガスカーテンで覆われていて
も、ピツト1内は炉内5からの輻射熱を受けてか
なり高温まで加熱できることが分る。
Therefore, it can be seen that even when covered with a low-temperature gas curtain, the inside of the pit 1 can be heated to a considerably high temperature by receiving radiant heat from the inside of the furnace 5.

なお、燃焼を停止し、アルゴンガスをCoガス
の代りにスリツト3から送入して、不活性ガス下
で冷却したところ、黒鉛製のピツト1は酸化によ
る消耗を見ず、原形を保持した。
When the combustion was stopped, argon gas was introduced through the slit 3 instead of the Co gas, and the graphite pit 1 was cooled under an inert gas, the graphite pit 1 did not show any wear due to oxidation and maintained its original shape.

また、一酸化炭素の代りに、水素ガス、または
メタンガスを用いて同称の実験を行つたところ、
ほぼ同じ結果が得られることが確認された。
In addition, when we conducted a similar experiment using hydrogen gas or methane gas instead of carbon monoxide, we found that
It was confirmed that almost the same results were obtained.

次に、カーテンガスの予熱効果及び酸化鉄の還
元を説明するため上記実施例1と同じ装置により
一酸化炭素の予熱を除くとほぼ同一条件下で燃焼
実験を行つた実験例2について説明する。
Next, in order to explain the preheating effect of curtain gas and the reduction of iron oxide, Experimental Example 2 will be described in which a combustion experiment was conducted using the same apparatus as in Example 1 and under almost the same conditions except for the preheating of carbon monoxide.

予熱には、炉外に設置したカンタル線加熱
(2KW容量)の管状予熱器を用いた。
For preheating, a Kanthal wire heating (2KW capacity) tubular preheater installed outside the furnace was used.

スリツト3出口でのカーテンガスの温度が上昇
するにつれ、炉内5温度とピツト1内温度との差
が縮まることが確認された。
It was confirmed that as the temperature of the curtain gas at the exit of the slit 3 increased, the difference between the temperature inside the furnace 5 and the temperature inside the pit 1 decreased.

この効果は、スリツト3の温度が約900℃を越
えると顕著になり、炉内5温度1700℃、スリツト
3の温度1150℃の時点で、ピツト1内温度は1610
℃を示した。
This effect becomes noticeable when the temperature of slit 3 exceeds approximately 900℃, and when the temperature inside the furnace 5 is 1700℃ and the temperature of slit 3 is 1150℃, the temperature inside pit 1 is 1610℃.
℃ was shown.

このようにカーテンガスの予熱は極めて有効で
あることが確認され、この条件下で予め黒鉛製の
ピツト1内に粒状酸化鉄を入れておいたところ、
実験の終了後、ピツト1は何等消耗せず、かつ還
元されて生成した純鉄が融塊として定量的に回収
された。
In this way, it was confirmed that preheating the curtain gas is extremely effective, and when granular iron oxide was placed in the graphite pit 1 under these conditions,
After the experiment was completed, the pit 1 was not consumed at all, and the pure iron produced by reduction was quantitatively recovered as a molten lump.

なお、前記第1図及び第2図に示す本発明の一
実施例における実験炉は、その炉内5の空間を層
状に流れる還元性ガスのカーテン流れによつて被
熱物を還元雰囲気下に置く還元雰囲気室であるピ
ツト1と燃焼室とに区画すると共に、このカーテ
ン流れを形成するためノズル11から導入された
還元性ガスをガス溜り2から炉内5に送入するス
リツト3、そのカーテン流れを燃焼室に導く案内
機構であるダクト6、燃焼室へ酸素または空気な
どの燃料ガスまたは補助燃料を導入するための供
給口であるバーナポート4、燃焼排ガスの排出口
である通路8及び煙道7、更には図示されていな
い被熱物をピツト1内に供給し、熱処理後そこか
ら取り出すための搬入、搬出機構を装備している
が、本発明の加熱還元装置としては上記実施例の
実験炉に拘束されるものではなく、種々の形状及
び配置を有する装置が可能である。
The experimental furnace according to the embodiment of the present invention shown in FIGS. 1 and 2 has a curtain flow of reducing gas flowing in layers in the space 5 in the furnace to place the object to be heated in a reducing atmosphere. A slit 3 divides the reducing atmosphere into a pit 1, which is a reducing atmosphere chamber, and a combustion chamber, and also a slit 3 for feeding the reducing gas introduced from the nozzle 11 from the gas reservoir 2 into the furnace 5 to form this curtain flow. A duct 6 is a guide mechanism that guides the flow into the combustion chamber, a burner port 4 is a supply port for introducing fuel gas such as oxygen or air or auxiliary fuel into the combustion chamber, a passage 8 is an exhaust port for combustion exhaust gas, and smoke The pipe 7 is further equipped with a carry-in/take-out mechanism for supplying a material to be heated (not shown) into the pit 1 and taking it out from there after heat treatment. It is not limited to experimental reactors, and devices with various shapes and configurations are possible.

〔発明の効果〕〔Effect of the invention〕

従つて、本発明の還元雰囲気下での被熱物の加
熱還元方法及びその加熱還元装置を採用すれば、
従来の方法のごとくスラグ等の副生物を生ずるこ
とがなく、かつ消費電力も少ないという効果があ
る。
Therefore, if the method for thermally reducing a heated object under a reducing atmosphere and the thermally reducing device thereof according to the present invention are adopted,
Unlike conventional methods, this method does not produce by-products such as slag, and has the advantage of low power consumption.

また、本発明で使用される還元性ガスは、一酸
化炭素、水素、炭化水素またはこれらの混合ガス
で良く、炉内でこれらは完全燃焼し、炭酸ガスや
水蒸気になつて排出するので、従来の高炉法製鉄
プロセスにおけるように多量の一酸化炭素を排出
することなく、またこれに伴う一酸化炭素の回
収、利用のための設備が省略できるという利点が
ある。
In addition, the reducing gas used in the present invention may be carbon monoxide, hydrogen, hydrocarbons, or a mixture thereof, and these are completely combusted in the furnace and discharged as carbon dioxide gas or water vapor, which is different from conventional methods. This method has the advantage that it does not emit a large amount of carbon monoxide, unlike in the blast furnace ironmaking process, and that the accompanying equipment for recovering and utilizing carbon monoxide can be omitted.

一方、被熱物としては還元雰囲気下での熱処理
の目的に応じて金属系、酸化物系、酸素酸塩系
等、幅広い種類のなかから選ばれた原料物質でよ
く、その形態も定形と非定形、固体と液体、原料
物質単味と混合物、例えば金属酸化物と炭素粉末
との混合物のいづれかを問わないので、汎用性の
ある還元雰囲気下での被熱物の加熱還元方法及び
その装置を提供することができる。
On the other hand, the material to be heated may be a raw material selected from a wide variety of materials, such as metals, oxides, and oxy-acid salts, depending on the purpose of heat treatment in a reducing atmosphere, and its form may be fixed or irregular. Regardless of whether it is a fixed shape, a solid or a liquid, a raw material or a mixture, such as a mixture of a metal oxide and carbon powder, we provide a versatile method and apparatus for heating and reducing the object under a reducing atmosphere. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における加熱還元装置
のバーナポート部分の側断面図、第2図は第1図
の装置の上部平断面図である。 1…ピツト、2…ガス溜り、3…スリツト、4
…バーナポート、5…炉内、6…ダクト、8…排
ガス通路、9…煙道、10…のぞき穴、11…還
元性ガス供給ノズル。
FIG. 1 is a side cross-sectional view of a burner port portion of a thermal reduction apparatus according to an embodiment of the present invention, and FIG. 2 is a top plan cross-sectional view of the apparatus shown in FIG. 1. 1... pit, 2... gas reservoir, 3... slit, 4
... Burner port, 5... Furnace interior, 6... Duct, 8... Exhaust gas passage, 9... Flue, 10... Peephole, 11... Reducing gas supply nozzle.

Claims (1)

【特許請求の範囲】 1 炉内において、層状に流れる還元性ガスのカ
ーテンで被熱物を遮蔽し、このカーテンを通して
カーテンの外側で発生した熱を被熱物に伝達させ
ることを特徴とする還元雰囲気下での被熱物の加
熱還元方法。 2 炉内において、被熱物を遮蔽する層状に流れ
る還元性ガスのカーテンを予熱した水平のガス流
れとしてその被熱物の上面を覆うようにその炉内
に送入通過させた後、このカーテン状ガス流れを
炉内上方部に導びいて燃焼させ、それによつて発
生する熱エネルギーを主として輻射熱の形で上記
カーテン状ガス流れを貫いて被熱物に伝達される
ことを特徴とする還元雰囲気下での被熱物の加熱
還元方法。 3 炉内において、層状に流れる還元性ガスが一
酸化炭素、水素、炭化水素及びこれらの混合物の
中のいづれかである特許請求の範囲第1項または
第2項記載の還元雰囲気下での被熱物の加熱還元
方法。 4 炉内において、層状に流れる還元性ガスで遮
蔽される被熱物が、含酸素物質、または含酸素物
質と含炭素物質との混合物である特許請求の範囲
第1項、第2項または第3項記載の還元雰囲気下
での被熱物の加熱還元方法。 5 一つの炉内空間を層状に流れる還元性ガスの
カーテン流れによつて還元雰囲気室と燃焼室とに
区画された炉内に、このカーテン流れを形成する
還元性ガス送入用のスリツト、カーテン流れを燃
焼室に導く室内機構、燃焼室用の酸素または空気
及び必要に応じて補助燃料のための供給口、燃焼
排ガスの排出口及び被熱物を還元雰囲気室へ供給
し、熱処理後そこから取り出すための搬入、搬出
機構を装備したことを特徴とする還元雰囲気下で
の被熱物の加熱還元装置。
[Claims] 1. A reduction characterized in that in a furnace, an object to be heated is shielded by a curtain of reducing gas flowing in layers, and heat generated outside the curtain is transmitted to the object to be heated through this curtain. A method for heating and reducing objects to be heated in an atmosphere. 2. In the furnace, a curtain of reducing gas flowing in layers that shields the object to be heated is passed through the furnace as a preheated horizontal gas stream so as to cover the top surface of the object to be heated, and then this curtain is removed. A reducing atmosphere characterized in that a curtain-shaped gas flow is guided to the upper part of the furnace and combusted, and the thermal energy generated thereby is transmitted mainly in the form of radiant heat to the object to be heated through the curtain-shaped gas flow. A heating reduction method for heated objects. 3. Heated in a reducing atmosphere according to claim 1 or 2, wherein the reducing gas flowing in a layered manner in the furnace is any one of carbon monoxide, hydrogen, hydrocarbons, and mixtures thereof. A method of heating and reducing things. 4. Claims 1, 2, or 4, wherein the object to be heated that is shielded by the reducing gas flowing in layers in the furnace is an oxygen-containing substance or a mixture of an oxygen-containing substance and a carbon-containing substance. A method for heating and reducing a material to be heated in a reducing atmosphere according to item 3. 5. A slit or curtain for feeding reducing gas that forms this curtain flow into a furnace that is divided into a reducing atmosphere chamber and a combustion chamber by a curtain flow of reducing gas flowing in layers in one furnace space. An indoor mechanism that directs the flow to the combustion chamber, a supply port for oxygen or air for the combustion chamber and, if necessary, auxiliary fuel, an exhaust port for the combustion exhaust gas, and a supply port for the heated material to the reducing atmosphere chamber and from there after heat treatment. A heating reduction device for a heated object in a reducing atmosphere, characterized by being equipped with a loading and unloading mechanism for taking out a heated object.
JP4324184A 1984-03-07 1984-03-07 Process and apparatus for reducing material to be heated by heating in reducing atmosphere Granted JPS60187333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4324184A JPS60187333A (en) 1984-03-07 1984-03-07 Process and apparatus for reducing material to be heated by heating in reducing atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4324184A JPS60187333A (en) 1984-03-07 1984-03-07 Process and apparatus for reducing material to be heated by heating in reducing atmosphere

Publications (2)

Publication Number Publication Date
JPS60187333A JPS60187333A (en) 1985-09-24
JPS6320170B2 true JPS6320170B2 (en) 1988-04-26

Family

ID=12658400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4324184A Granted JPS60187333A (en) 1984-03-07 1984-03-07 Process and apparatus for reducing material to be heated by heating in reducing atmosphere

Country Status (1)

Country Link
JP (1) JPS60187333A (en)

Also Published As

Publication number Publication date
JPS60187333A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
FI77897C (en) SAETT FOER FRAMSTAELLNING AV METALLER OCH / ELLER GENERERING AV SLAGG.
KR920000520B1 (en) Method for the melt reduction of iron ores
US8540794B2 (en) Method for reducing iron oxide and producing syngas
US5118479A (en) Process for using fluidized bed reactor
JPS60226596A (en) Manufacture of synthetic gas and equipment therefor
WO2008051356A2 (en) Microwave heating method and apparatus for iron oxide reduction
US4259081A (en) Process of calcining limestone in a rotary kiln
RU2220209C2 (en) Method of direct reduction of iron
JP2000506221A (en) Method for producing molten pig iron or molten iron ore preproduct and plant for performing the method
US5632953A (en) Process and device for melting iron metallurgical materials in a coke-fired cupola
ES8105395A1 (en) Method and apparatus for the secondary gaseous reduction of metal ores
JP3909088B2 (en) Metal reduction and melting methods
US4644557A (en) Process for the production of calcium carbide and a shaft furnace for carrying out the process
GB2107841A (en) Heating process air
RU2346057C2 (en) Advanced method of melting for receiving of iron
JPS6320170B2 (en)
CA1050265A (en) Apparatus for injection of hot reducing gas into a shaft
JPS6038443B2 (en) Iron ore reduction processing method
JP4736541B2 (en) Method for producing reduced metal
US3615353A (en) Apparatus and process of smelting scrap
US2715575A (en) Method of treating iron ore blast furnaces
JPS6040488B2 (en) Method for improving heat utilization efficiency when producing steel from solid ferrous raw materials
CA1119001A (en) Process of directly reducing iron oxide-containing materials
JP4992257B2 (en) Method for producing reduced metal
JPS6043883B2 (en) Direct reduction method in rotary kiln

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term