JPS60187044A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60187044A
JPS60187044A JP4337484A JP4337484A JPS60187044A JP S60187044 A JPS60187044 A JP S60187044A JP 4337484 A JP4337484 A JP 4337484A JP 4337484 A JP4337484 A JP 4337484A JP S60187044 A JPS60187044 A JP S60187044A
Authority
JP
Japan
Prior art keywords
film
wiring
metal silicide
layer
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4337484A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagakubo
長久保 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4337484A priority Critical patent/JPS60187044A/en
Publication of JPS60187044A publication Critical patent/JPS60187044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable to form a low resistance electrode wiring without lowering workability by a method wherein, after a metal silicide film to be turned to an electrode or a wiring has been formed, a heat treatment is performed, and a polycrystalline Si film is formed on said metal silicide film. CONSTITUTION:The first layer of wiring 23 is formed on an Si substrate 21 through the intermediary of an oxide film 22. Then, after an interlayer insulating film 24 has been formed on a layer 23, a phosphorus-doped polycrystalline Si film 25 and an MoSi2 film 26 are deposited successively on the whole surface. Subsequently, a heat treatment is performed, and the wire at the stepped part of the film 26 id disconnected. Then, a phosphorus-doped polycrystalline Si film 27 is deposited on the whole surface, and the film 26 is buried in the wire- disconnected part. Then, the second layer of wiring is formed by performing a patterning on the films 25 and 26 successively. According to this method, a current runs not only on the film 25 located at the wire-disconnected part of the film 26 but also on the film 27 which is buried in the wire-disconnected part, thereby enabling to prevent the increase in wiring resistance. Also, as the increase in film thickness of the layer 25 is unnecessary, no trouble is generated pertaining to the workability of the device.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特にメタルシリ
サイドを配線として用いる半導体装置の製造に使用され
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and is particularly used for manufacturing a semiconductor device using metal silicide as wiring.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般的に半導体装置のゲート電極及び配線としては多結
晶シリコンが用いられているが、微細化とともlこ高速
化が製品としての重要な条件となるため、多結晶シリコ
ンの抵抗が無視できないものとなっている。
Generally, polycrystalline silicon is used for gate electrodes and wiring in semiconductor devices, but as miniaturization and high speed become important requirements for products, the resistance of polycrystalline silicon cannot be ignored. It becomes.

そこで、多結晶シリコンより1オ一ダー程度抵抗が低い
モリブデンシリサイド、タングステンシリサイド等のメ
タルシリサイドが新たな電極配線として注目され、一部
では製品への実用化が行なわれている。
Therefore, metal silicides such as molybdenum silicide and tungsten silicide, which have resistances about an order of magnitude lower than polycrystalline silicon, are attracting attention as new electrode wiring, and are being put to practical use in some products.

従来、メタルシリサイドを配線として用いた半導体装置
を製造する場合、まず第1図(aHこ示すようにシリコ
ン基板I上に例えば酸化膜2を介して形成された例えば
多結晶シリコンからなる第1層配線3上に層間絶縁膜4
を形成し、更に全面に第2層配線となる例えばモリブデ
ンシリサイド(M08!l )膜5を堆積する。この後
、Mo5t、膜5をパターニングして電極配線を形成す
る。ところが、 Mo8 i、 $5を堆積した後、酸
化等の熱処理工程を行なうと、第1図(b)に示すよう
に第1層配線3の端部の形状に対応する段差部近傍でM
oSi、膜5が断線してしまう。これは、熱処理の前後
でMoSi、膜5自身の膨張、収縮から生じるストレス
が段差部近傍で最大となるためであると考えられる。
Conventionally, when manufacturing a semiconductor device using metal silicide as wiring, first, as shown in FIG. Interlayer insulating film 4 on wiring 3
A molybdenum silicide (M08!l) film 5, for example, which will become a second layer wiring, is further deposited on the entire surface. Thereafter, the Mo5t film 5 is patterned to form electrode wiring. However, when a heat treatment process such as oxidation is performed after depositing Mo8i, $5, the M in the vicinity of the stepped portion corresponding to the shape of the end of the first layer wiring 3 is removed, as shown in FIG. 1(b).
The oSi film 5 is disconnected. This is considered to be because the stress caused by the expansion and contraction of MoSi and the film 5 itself before and after the heat treatment is greatest near the step portion.

そこで、メタルシリサイドを用いた第2層配線の断線に
対する対策として第2層配線を多結晶シリコンとメタル
シリサイドとを積層したいわゆるポリサイド構造とする
ことが行なわれている。すなわち、第2図に示す如くシ
リコン基板Il上に例えば酸化膜12を介して形成され
た第1層配線13上に層間絶縁膜14を形成し、更に全
面に多結晶シリコン膜15及びMo8 i、膜I6を堆
積する。このようにすれば、熱処理により図示の如(M
oSi、膜I6が断線したとしても、その下の多結晶シ
リコン膜I5によって導電性を補うことができる。
Therefore, as a countermeasure against disconnection in the second layer wiring using metal silicide, the second layer wiring is formed into a so-called polycide structure in which polycrystalline silicon and metal silicide are laminated. That is, as shown in FIG. 2, an interlayer insulating film 14 is formed on a first layer wiring 13 formed on a silicon substrate Il via, for example, an oxide film 12, and then a polycrystalline silicon film 15 and Mo8i, Deposit film I6. In this way, by heat treatment, as shown in the figure (M
Even if the oSi film I6 is disconnected, the conductivity can be compensated for by the underlying polycrystalline silicon film I5.

しかし、この方法ではMoSi、膜I6“の断線部で電
流が多結晶シリコン膜I5を流れ、しかも電流密度が高
くなり抵抗値が増大する。したがって、MoSi、膜1
6の断線箇所が何箇所もあれば、そ東だけ配線抵抗が増
加し、メタルシリサイドを配線として用いるメリットは
低下する。
However, in this method, current flows through the polycrystalline silicon film I5 at the disconnection part of the MoSi film I6'', and the current density increases and the resistance value increases.
If there are a number of disconnection points 6, the wiring resistance increases only in the east, and the advantage of using metal silicide as the wiring decreases.

なお、上述したポリサイド構造を用いる場合、配線抵抗
はメタルシリサイド下の多結晶シリコン膜の膜厚に依存
し、この膜厚が厚いほど抵抗値は低くなる。したがって
、多結晶シリコン膜の膜厚を厚くすれば、抵抗の増大を
ある程度防止することができるが、新たに配線の加工性
の低下という問題が生じる。
Note that when the above-mentioned polycide structure is used, the wiring resistance depends on the thickness of the polycrystalline silicon film under the metal silicide, and the thicker the film, the lower the resistance value. Therefore, if the thickness of the polycrystalline silicon film is increased, an increase in resistance can be prevented to some extent, but a new problem arises in that the workability of wiring is reduced.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであり、メタル
シリサイドを配線として用いる場合に、加工性を低下さ
せることなくメタルシリサイドの断線による配線抵抗の
増大を防止し得る半導体装置の製造方法を提供しようと
するものである。
The present invention has been made in view of the above circumstances, and provides a method for manufacturing a semiconductor device that can prevent an increase in wiring resistance due to disconnection of metal silicide without reducing workability when metal silicide is used as wiring. This is what I am trying to do.

〔発明の概要〕[Summary of the invention]

本発明の半導体装置の製造方法は、電極あるいは配線と
なるメタルシリサイド膜を形成した後、熱処理してメタ
ルシリサイド膜を段差部で断線させ、更にメタルシリサ
イド膜上に多結晶シリコン膜を形成して断線部は埋込む
ことにより、加工性を低下させることなく配線抵抗の増
大を防止するものである。
The method for manufacturing a semiconductor device of the present invention includes forming a metal silicide film to serve as an electrode or wiring, then heat-treating the metal silicide film to disconnect it at a stepped portion, and then forming a polycrystalline silicon film on the metal silicide film. By embedding the disconnected portion, increase in wiring resistance can be prevented without deteriorating workability.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図(al 、 (bl及び
第4図を参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 3 (al, bl) and FIG. 4.

まず、シリコン基板21上に酸化膜22を介して第1層
配線23を形成する。次に、第1層配線23上に層間絶
縁@24を形成した後、全面に例えば膜厚1ooo&の
リンドープ多結晶シリコン膜25及び膜厚3000λの
Mo5i21126を順次堆積する。つづいて、例えば
1000℃で10分間熱処理を行ない、 MoSi、膜
26の段差部を断線させる(第2図(at図示)。次い
で、減圧CVD法により全面に膜厚2ooiのリンドー
プ多結晶シリコン膜27を堆積し、Mo8i。
First, a first layer wiring 23 is formed on a silicon substrate 21 with an oxide film 22 interposed therebetween. Next, after forming interlayer insulation @24 on the first layer wiring 23, a phosphorus-doped polycrystalline silicon film 25 with a thickness of 100 mm and a Mo5i21126 with a thickness of 3000λ are sequentially deposited on the entire surface. Subsequently, a heat treatment is performed at, for example, 1000° C. for 10 minutes to disconnect the stepped portion of the MoSi film 26 (see FIG. 2 (at diagram)). Next, a phosphorus-doped polycrystalline silicon film 27 with a thickness of 2 ooi is formed on the entire surface by low-pressure CVD. Deposit Mo8i.

膜26の断線部に埋込む。次いで、多結晶シリコン@2
7、MoSi、膜26及び多結晶シリコン膜25を順次
パターニングして第2層配線を形成する(同図(b1図
示)。
It is embedded in the disconnected part of the membrane 26. Next, polycrystalline silicon@2
7. The MoSi film 26 and the polycrystalline silicon film 25 are sequentially patterned to form a second layer wiring (as shown in the figure (b1)).

しかして本発明方法によれば、第3図中実線で示すよう
に電流はMoSi、膜26の断線部において、多結晶シ
リコン膜25だけでなく断線部に埋込まれた多結晶シリ
コン膜27をも流れる。
According to the method of the present invention, however, as shown by the solid line in FIG. It also flows.

すなわち、第3図中配線で示す従来の方法により製造さ
れた配線よりもはるかに1!流パスが多くなる。したが
って、Mo8輸膜26の断線部における電流密度は従来
よりも低下し、配線抵抗の増大を防止することができる
。また、第2層配線(ポリサイド層)の膜厚を増加させ
る必要がないので加工性の点でも問題が生じることはな
いO 膜26下に多結晶シリコン膜を形成しない場合でも同様
の効果を得ることができる。
In other words, it is much more efficient than the wiring manufactured by the conventional method as shown by the wiring in FIG. There will be more flowing passes. Therefore, the current density at the disconnected portion of the Mo8 transducer film 26 is lower than in the conventional case, and an increase in wiring resistance can be prevented. In addition, since there is no need to increase the thickness of the second layer wiring (polycide layer), there is no problem in terms of processability. The same effect can be obtained even if a polycrystalline silicon film is not formed under the O film 26. be able to.

また、MoSi、嘆26を堆積した後に熱酸化を行なう
ような場合にはMoSi、膜26表面に酸化膜が形成さ
れるが、MoSi、膜26上に直接多結晶シリコン@2
7を形成するために、多結晶シリコン膜27の堆積前に
Mo8i、膜26上の酸化膜を除去すればよい。
Furthermore, when thermal oxidation is performed after depositing MoSi, an oxide film is formed on the surface of the MoSi film 26, but when polycrystalline silicon@2 is deposited directly on the MoSi film 26, an oxide film is formed on the surface of the MoSi film 26.
7, the oxide film on Mo8i and the film 26 may be removed before the polycrystalline silicon film 27 is deposited.

更に、上記実施例では第1層配線23の端部の形状に対
応する段差部について説明を行なったが、第1層配線2
3の端部以外の段差部についても全て本発明方法を適用
できることは勿論である。
Furthermore, in the above embodiment, the step portion corresponding to the shape of the end of the first layer wiring 23 was explained, but the first layer wiring 23
Of course, the method of the present invention can also be applied to all step portions other than the end portions of No. 3.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の半導体装置によれば、加工性
を低下させることなく極めて低抵抗の電極配線を形成で
きる等顕著な効果を奏するものである。
As described in detail above, the semiconductor device of the present invention provides remarkable effects such as being able to form electrode wiring with extremely low resistance without deteriorating workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al及び山)は従来の配線の形成方法を示す断
面図、第2図は従来の他の配線の形成方法を示す断面図
、第3図(a)及び(blは本発明の実施例における配
線の形成方法を示す断面図、第4図は本発明の実施例に
おいて形成された配線中の電流の流れを示す説明図、第
5図は本発明の他の実施例における配線の形成方法を示
す断面図である。 21・・・シリコン基板、22・・・酸化膜、23・、
。 第1層配線、24・・・層間絶縁膜、25.27・・・
多結晶シリコン膜、26・・・Mo8i、@。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 第3図 。 第4図
Fig. 1 (al and mountains) is a cross-sectional view showing a conventional wiring forming method, Fig. 2 is a cross-sectional view showing another conventional wiring forming method, and Fig. 3 (a) and (bl) are cross-sectional views showing a conventional wiring forming method. FIG. 4 is an explanatory diagram showing the flow of current in the wiring formed in the example of the present invention, and FIG. 5 is a cross-sectional view showing the method of forming the wiring in the example of the present invention. It is a sectional view showing a formation method. 21... Silicon substrate, 22... Oxide film, 23...
. First layer wiring, 24... Interlayer insulating film, 25.27...
Polycrystalline silicon film, 26...Mo8i, @. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3. Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1) メタルシリサイドを電極あるいは配線として用
いる半導体装置を製造するにあたり、メタルシリサイド
膜を形成した後、熱処理し、更にメタルシリサイド膜上
に多結晶シリコン膜を形成することを特徴とする半導体
装置の製造方法。
(1) In manufacturing a semiconductor device using metal silicide as an electrode or wiring, a metal silicide film is formed, then heat treated, and a polycrystalline silicon film is further formed on the metal silicide film. Production method.
(2) メタルシリサイド膜を形成し、熱処理した後、
メタルシリサイド膜表面の酸化膜を除去し、更にメタル
シリサイド膜上に多結晶シリコン膜を形成する特許請求
の範囲第1項記載の半導体装置の製造方法。 (31多結晶シリコン膜が不純物を含む低抵抗多結晶シ
リコン膜である特許請求の範囲第1項又は第2項記載の
半導体装置の製造方法。
(2) After forming a metal silicide film and heat-treating it,
2. The method of manufacturing a semiconductor device according to claim 1, wherein the oxide film on the surface of the metal silicide film is removed and a polycrystalline silicon film is further formed on the metal silicide film. (31) The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the polycrystalline silicon film is a low resistance polycrystalline silicon film containing impurities.
JP4337484A 1984-03-07 1984-03-07 Manufacture of semiconductor device Pending JPS60187044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4337484A JPS60187044A (en) 1984-03-07 1984-03-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4337484A JPS60187044A (en) 1984-03-07 1984-03-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60187044A true JPS60187044A (en) 1985-09-24

Family

ID=12662061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4337484A Pending JPS60187044A (en) 1984-03-07 1984-03-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60187044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11022714B2 (en) 2016-12-23 2021-06-01 Weatherford U.K. Limited Antenna for downhole communication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11022714B2 (en) 2016-12-23 2021-06-01 Weatherford U.K. Limited Antenna for downhole communication

Similar Documents

Publication Publication Date Title
WO1986005321A1 (en) A method in the manufacture of integrated circuits
JPS607775A (en) Semiconductor device and manufacture thereof
JPS60187044A (en) Manufacture of semiconductor device
JPH1092764A (en) Method for forming polycide layer for semiconductor element
JPS62154784A (en) Semiconductor device
JPS62290166A (en) Manufacture of semiconductor element
JP2797367B2 (en) Method for manufacturing semiconductor integrated circuit device
KR940008375B1 (en) Fabricating method of semiconductor device
JPS60167355A (en) Manufacture of semiconductor device
JPS62115868A (en) Manufacture of semiconductor device
JPH0479330A (en) Method of forming laminated wiring
JPS60134445A (en) Manufacture of semiconductor device
JPH0613605A (en) Semiconductor device and manufacture thereof
JP2515040B2 (en) Semiconductor device and manufacturing method thereof
JPH03157925A (en) Manufacture of semiconductor device
JPH06104428A (en) Semiconductor device and its manufacture
JPH0669498A (en) Semiconductor device and its manufacture
JPS6120154B2 (en)
JPS6360546A (en) Manufacture of semiconductor device
JPS62194658A (en) Manufacture of semiconductor device
JPS61251170A (en) Mis type semiconductor device
JPS6047445A (en) Manufacture of semiconductor device
JPH03112151A (en) Active layer stacked element
JPH03154332A (en) Manufacture of semiconductor device
JPS58106847A (en) Manufacture of semiconductor device