JPS60185812A - Production of polyethylene fiber - Google Patents

Production of polyethylene fiber

Info

Publication number
JPS60185812A
JPS60185812A JP3928084A JP3928084A JPS60185812A JP S60185812 A JPS60185812 A JP S60185812A JP 3928084 A JP3928084 A JP 3928084A JP 3928084 A JP3928084 A JP 3928084A JP S60185812 A JPS60185812 A JP S60185812A
Authority
JP
Japan
Prior art keywords
fibers
gel
polyethylene
fiber
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3928084A
Other languages
Japanese (ja)
Other versions
JPH0418043B2 (en
Inventor
Fujio Okada
富士男 岡田
Toshihiko Oota
太田 利彦
Hiroshige Sugiyama
博茂 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP3928084A priority Critical patent/JPS60185812A/en
Publication of JPS60185812A publication Critical patent/JPS60185812A/en
Publication of JPH0418043B2 publication Critical patent/JPH0418043B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A polyethylene solution is extruded out and a plurality of the resultant gel filaments are taken up under heat melting to enable easy production of polyethylene fibers of high thickness, high strength and high elasticity. CONSTITUTION:A polyethylene solution is extruded and at least 2 of the resultant gel filaments are collected and taken up as they are fused under heating to give the objective fiber. In the fusion of the gel filaments, these filaments are passed through a die which has a narrower cross section than the total cross section of the filaments B as well as the inlet of a conical shape A. Further, the molecular weight of the polyethylene used is preferably more than 200,000.

Description

【発明の詳細な説明】 本発明はポリエチレン繊維の製造方法に関し、さらに詳
【2くはポリエチレンの溶液を紡糸して、高強力、高モ
ジュラスでかつ太いgIL維′(r製造する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyethylene fibers, and more specifically to a method for producing high strength, high modulus, and thick gIL fibers by spinning a polyethylene solution. be.

従来高強力、高モジュラスのポリエチレン繊維?與造す
る方法とE−では平均分−f量の大きなポリエチレンの
溶液を紡糸L2て冷却することによりゲル状繊維を作り
、こ)1.全さらに加熱延伸する方法が知られている。
Conventional high strength, high modulus polyethylene fiber? In the method of fabrication E-, a gel-like fiber is produced by spinning a polyethylene solution with a large average amount of -f in L2 and cooling it. A method of further heating and stretching is known.

しかしこの方法における問題点は最終的に得られるpL
維7’lE太いな1どその引張強さお工びモジュラスが
低くなZ)傾向があり・、しかも太くて高強力、高モジ
ュラスな繊維を得ることは困難であった。
However, the problem with this method is that the final pL
Fibers such as thick fibers tend to have low tensile strength and modulus, and it has been difficult to obtain thick, high strength, and high modulus fibers.

したがってこの方法によυ、例えば抗張力線として使用
し得るような断面積が0.01−以上でしかも高強力、
へ弾性率を有するポリエチレン繊維不二製造することも
、極めて困難であった。
Therefore, with this method, υ can be used as a tensile strength wire, for example, with a cross-sectional area of 0.01- or more, and with high strength.
It has also been extremely difficult to produce polyethylene fibers with a high elastic modulus.

本発明は、このような方法に新しい改良を刃口え太くて
、高強に2高モジユラス?有するポリエチレン繊維のM
造全可能にしたものである。
The present invention provides a new improvement to such a method with a thicker cutting edge, high strength, and 2 high modulus. M of polyethylene fiber with
This made it possible to completely construct it.

本発明者らは溶液から紡糸さyするゲル状繊卸が太いほ
どその高倍率の延伸が困難Vr′−ムリ・その為に、高
強力、高弾性率になり難いことに特に注目して鋭意工夫
1−た結果遂に、前記の問題点を解決する本発明に到達
した。
The present inventors have paid special attention to the fact that the thicker the gel-like fibers spun from a solution, the more difficult it is to stretch them at a high magnification. As a result of our efforts, we have finally arrived at the present invention which solves the above-mentioned problems.

即ち、本発明け、ポリエチレン溶液を紡糸して得られた
ゲル状繊維を2本以上引きそろえて、カロ熱し、つつ融
合させて引取ること全特徴とするボ1)エチレン繊維の
製造方法で所、ル。
That is, according to the present invention, two or more gel-like fibers obtained by spinning a polyethylene solution are pulled together, heated, fused, and taken off. , le.

本発明のポリエチレンの溶液は好ましくは平均分子量(
粘度法)が20万以上のポリエチレンをその溶剤に加熱
溶解して調製される。溶剤と12ではデカリンあるいは
流動ノζラフインなどが使用できる。
The polyethylene solution of the present invention preferably has an average molecular weight (
Viscosity method) is prepared by heating and dissolving polyethylene of 200,000 or more in the solvent. For the solvent and 12, decalin or fluidized ζ rough-in can be used.

ポリエチレンの平均分子量は一般に大きい方が高強力、
高モジ、ラス?得るのに適しており、20万未満では高
強力、高モジュラス繊維?得ることがむすかり、 くな
る。
In general, the higher the average molecular weight of polyethylene, the higher the strength.
High Moji, Russ? Is it suitable for obtaining high strength and high modulus fibers for less than 200,000 yen? It is difficult to obtain, and it becomes difficult to obtain.

紡糸は、加熱でれたポリエチレン溶液全組子(、〃・ら
押1.2出17、冷却によって溶剤を含んだ1ま[^j
(ヒすることによりおこなわれる。
For spinning, the polyethylene solution was heated to 1.2 mm (1.2 mm) and cooled to 1 mm containing the solvent.
(This is done by hitting.

これにより得られるゲル伏線維vf−2本以上弓1きそ
ろえて加熱しつつ集束一体rヒするべく必要彦力’(j
 710 、f−て融合させるのであるが、融合に際し
、ては延伸後の繊維の太さが、その使用目的にあう太さ
VCなるように、引きそろえるゲル伏線taの本数ケも
とのゲル状繊維が太いほど高倍率の延伸が困難になる傾
向があるので、出来るだけ高倍率の延伸をして高強期、
高モジュラス繊維を得るためにはもとのゲル状繊維が細
い方が好”ま1.い。
In order to heat the gelled fibers vf-2 or more obtained in this way and heat them together, the required force'(j
710, f-, but during the fusion, the number of gel foreshadowing lines ta to be aligned is adjusted so that the thickness of the fiber after drawing becomes the thickness VC that suits the purpose of use. The thicker the fiber, the more difficult it is to stretch at a high magnification.
In order to obtain high modulus fibers, it is preferable that the original gel-like fibers be thinner.

しかし、もとのゲル状繊維が細いほど、必要な太さの延
伸(載維?得るために引きそる兄なけれはならない本数
が多くなり、設備や、手間がわずられり、 くなる。L
、たがって実際上好ましいゲル状繊維の太さはこれらの
兼ね合いによって定まる。
However, the thinner the original gel-like fibers are, the greater the number of fibers that must be pulled to obtain the required thickness, which requires more equipment and time.L
Therefore, the practically preferable thickness of the gel-like fibers is determined by these considerations.

弓1きそろえたゲル状繊維の融合は、加熱1.つつ引き
そろえたゲル状繊維が集束一体化するべくカケ加えるこ
とによっておこなわれる。
The fusion of the gel-like fibers arranged in the bow 1 is performed by heating 1. This is done by adding chips to the gel-like fibers that have been pulled out in order to bundle and integrate them.

引きそく5えたゲル状繊維が集束一体化するべく力を加
える方法は融合するのに都合よければ、どのような方法
でもよいが、円形断面でかつよく融合した繊維ケ造るに
はゲル状繊維をその断面積の合計より小さい断面積?有
する円形の孔?もつダイ全通過させて引取る方法が、@
に好適である。
Any method of applying force may be used as long as it is convenient for the fusion of the gel-like fibers, but in order to create well-fused fibers with a circular cross section, gel-like fibers should be Is the cross-sectional area smaller than the sum of its cross-sectional areas? A circular hole with? The method of passing all the motsu dai and taking it is @
suitable for

もちろん任意の断面形状の繊維を造るために任意の断面
形状の孔?通過させることも可能である。
Of course, holes of arbitrary cross-sectional shape to create fibers of arbitrary cross-sectional shape? It is also possible to let it pass.

礼金通過する際の抵抗を利用し、て、引取りの際繊維を
積極的に延伸することも可能である。
It is also possible to actively stretch the fibers during take-off by utilizing the resistance when the key money passes through.

孔の断面積がゲル状繊維の断面積にくらべて小さいほど
融合させる力は強いが、引取りの抵抗が増【7て糸切れ
することがない範囲に限られる。
The smaller the cross-sectional area of the pores is compared to the cross-sectional area of the gel-like fibers, the stronger the fusing force is, but it is limited to the extent that the pulling resistance increases and the fibers do not break.

孔[は円錐形の導入部を設けるとより円滑に目的を達す
ることが出来る。第1図は円錐形の導入部をもつ孔(ダ
イ)を用いて、2本以上のゲル状繊維を集束一体化する
方法の1例を示す概略図である。
If the hole [is provided with a conical introduction part, the purpose can be achieved more smoothly. FIG. 1 is a schematic diagram showing an example of a method for converging and integrating two or more gel-like fibers using a hole (die) having a conical introduction section.

ゲル状繊維を引きそろえて集束一体化するべくカケ加え
る方法とL7てはローラー間で圧しながら走行させる方
法もある。第2図は2本以上のゲル伏線維ケローラー間
で圧しながら集束一体化する方法の1例金示す概略図で
ある。
There is also a method of adding chips to align the gel-like fibers so that they are bundled and integrated, and a method of running the fibers while pressing them between rollers. FIG. 2 is a schematic diagram showing an example of a method for converging and integrating gel-formed fibers while pressing between two or more rollers.

融合させる際に加熱すれば融合しやすくなり、延伸ケ行
うにも有利になる。加熱温度は延伸繊維の強度、モジュ
ラスが低下しない範囲において高い方が良い。
Heating during fusing facilitates fusing and is also advantageous for stretching. The heating temperature is preferably as high as possible within a range that does not reduce the strength and modulus of the drawn fibers.

融合させた繊維は必要に19、さらに熱延伸をおこなう
ことにより、目的とするポリエチレン繊維全製造するこ
とができる。
If necessary, the fused fibers are further subjected to hot stretching to produce the desired polyethylene fiber.

延伸方法としては加熱空気槽中あるいは液体熱媒中にお
ける延伸、誘電加熱延伸のほか、加熱ダイによる引抜き
延伸などの方法が使用できる。
As the stretching method, methods such as stretching in a heated air tank or liquid heat medium, dielectric heating stretching, and drawing stretching using a heating die can be used.

融合を完全にする方法としては紡糸直後で固化する前の
液状繊維を2本以上合わせてから固化させる方法もある
が、合わせた太さに相当する1本を紡糸した場合と大差
がなく本発明のような効果は見られない。
As a method for complete fusion, there is a method of combining two or more liquid fibers immediately after spinning but before solidifying, but there is no big difference between spinning one fiber corresponding to the combined thickness and the present invention. No such effect was observed.

なお、融合が不完全な融着糸+は数多くの繊維を引きそ
ろえても高いモジュラスを得がたいことは明らかである
Note that it is clear that it is difficult to obtain a high modulus even if a large number of fibers are arranged in the fused yarn +, which is incompletely fused.

先に述べたように従来、ポリエチレンの溶液全紡糸して
得られるゲル状繊維を熱延伸する方法は高強度高弾性率
繊維?製造するのに適しているのにかかわらず太い繊維
?得ようとするほど得られる繊維の強度および弾件率が
低下し目的を達しないという問題がある。
As mentioned earlier, the conventional method of hot-drawing gel-like fibers obtained by solution spinning polyethylene is a high-strength, high-modulus fiber. Is thick fiber suitable for manufacturing? There is a problem in that the more one attempts to obtain a fiber, the lower the strength and elastic modulus of the fiber obtained, making it impossible to achieve the intended purpose.

その理由は紡糸されたゲル状繊維が溶液全多量に含むた
め極度にその断面積が犬きぐなることと関係しており、
ゲル状繊維が太いほどゲル状繊維が紡糸で形成される際
に、主として繊維断面方向における繊維のむら、゛すな
わち内外層差やその他むらを生じやすいためであろうと
推定される。
The reason for this is that the spun gel fibers are contained in a large amount of the solution, making their cross-sectional area extremely large.
It is presumed that this is because the thicker the gel fiber is, the more likely it is that unevenness of the fiber in the cross-sectional direction of the fiber, ie, the difference between the inner and outer layers, and other unevenness will occur when the gel fiber is formed by spinning.

本発明では比較的細いゲル状繊維を紡糸し7てそi’L
ら全多数本融合させ必要な太さの延伸糸全得ることを可
能I/C1,たものである。
In the present invention, relatively thin gel-like fibers are spun and the i'L
It is possible to obtain all the drawn yarns of the required thickness by fusing all the yarns together.

その融合の効果は、従米知られている繊維と繊維の表面
のみ゛を融着させた融着糸とは異なり、繊維の融合に必
要な力の加え方と含有する溶剤の作用とにより任意の断
面形状全形成させうるもので、F+ l’)、はぼ完全
な一体化を伴うものである。
The fusion effect differs from the known fused yarn in which only the surfaces of the fibers are fused together, and the effect of the fusion depends on the way the force is applied to fuse the fibers and the action of the solvent contained. The cross-sectional shape can be completely formed, and F+l') is accompanied by almost complete integration.

本発明によれば太くてかつ高強力高モジュラス?有する
ポリエチレン繊維を比較的容易に製造することが出来る
According to the present invention, is it thick and has high strength and high modulus? It is relatively easy to produce polyethylene fibers having the following properties.

例えばモノフィラメントの断面積が0.01− 以上で
引張強度t s o Kt/−以上、引張弾性率3.5
00 Kf/−以上のポリエチレン繊維を従来技術によ
るよりも容易に製造することが出来る。
For example, if the cross-sectional area of the monofilament is 0.01- or more, the tensile strength is t s o Kt/- or more, and the tensile modulus is 3.5.
Polyethylene fibers of 0.00 Kf/- or more can be produced more easily than with the prior art.

以下本発明を実施例をもって説明するが、本発明はもと
より、これらの実施例に限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 平均分子量(粘度法) 2 X 10’のポリエチレン
4重量%、デカリン96重量係とからなる溶液を、紡糸
口金の孔から押出1.た後、冷却固化1.てゲル状繊維
を調#した。
Example 1 A solution consisting of 4% by weight of polyethylene having an average molecular weight (viscosity method) of 2 x 10' and 96% by weight of decalin was extruded through the holes of a spinneret. After cooling and solidifying 1. A gel-like fiber was prepared.

その際溶液の温度は130℃であり、冷却同化は30℃
の水中でおこ力った。
At that time, the temperature of the solution was 130 °C, and the cooling assimilation was 30 °C.
It was forced into the water.

また紡糸口金の孔径は0.7闘であり、得られたゲル状
繊維はフィラメント数が180本で、各々のフィラメン
トの断面積はデカリンi 94.5重量%會有する状態
で平均0.71−であった。
The pore diameter of the spinneret was 0.7mm, the number of filaments in the gel-like fiber obtained was 180, and the cross-sectional area of each filament was 0.71mm on average in a state containing 94.5% by weight of decalin. Met.

このゲル状繊維全第1図に示す形状の孔を有するダイを
通過させて2倍の長さに延伸しながら引取った。
All of this gel-like fiber was passed through a die having holes in the shape shown in FIG. 1, and drawn while being stretched to double its length.

その際タイの温度は100℃に保った。At that time, the temperature in Thailand was maintained at 100°C.

続いて130℃の加熱空気槽を通し、8.8倍さらに続
いて140℃の加熱空気槽を通し、て2倍の延伸をして
、全延伸倍率が35倍の実質的にデカリンゲ含まない延
伸繊維を得た。
Subsequently, the film was stretched 8.8 times through a heated air tank at 130°C, and then stretched 2x through a heated air tank at 140°C, resulting in a substantially decalinge-free stretching film with a total stretching ratio of 35x. Obtained fiber.

延伸紳維は!!造の過程でもとのゲル状繊維全構成する
すべてモノフィラメントが融合1.て全く単一の円形断
面を有するに至っており、その断面積は0.205−で
あった。
Stretching the line! ! During the manufacturing process, all the monofilaments that make up the original gel fiber are fused together.1. It had a completely single circular cross section, and its cross-sectional area was 0.205-.

また延伸繊維の引張強さは301KP/−であり、引張
モジュラスは8400KP/−であり、さらに曲げに対
1−でも充分な抵抗ケ示した。
The drawn fibers had a tensile strength of 301 KP/-, a tensile modulus of 8,400 KP/-, and exhibited sufficient bending resistance even at 1-.

実施例2〜4 平均分子量(粘度法J2X1(16のポリエチレン3.
5爪膿嘱と、デカリン96.5重量%とからなる溶液を
紡糸口金の孔から押出E、た後冷却固化させてゲル状繊
維を調製しまた。
Examples 2-4 Average molecular weight (viscosity method J2X1 (16 polyethylene 3.
A gel-like fiber was prepared by extruding a solution consisting of 5-nail abscess and 96.5% by weight of decalin through the holes of a spinneret, cooling and solidifying it.

その際溶液の温度は130℃であり冷却固化は30℃の
水中でおこなった。。続いて多数のフィラメントからな
るゲル状繊維を実施例1と同じ方法で融合させさらに延
伸した。
At that time, the temperature of the solution was 130°C, and the cooling solidification was performed in water at 30°C. . Subsequently, gel-like fibers consisting of a large number of filaments were fused together and further drawn in the same manner as in Example 1.

融合に用いたダイの孔の断面積はゲル状繊維の断面積の
70〜90%に相当するものであった。
The cross-sectional area of the hole in the die used for fusion corresponded to 70 to 90% of the cross-sectional area of the gel-like fibers.

ゲル状繊維のフィラメント数、ゲル状繊維の各フィラメ
ントの断面積、全延伸倍率、延伸nt#の断面積、延伸
繊維の引張強さ、および引張弾性率は第1表のとおりで
あった。
The number of filaments of the gel-like fibers, the cross-sectional area of each filament of the gel-like fibers, the total stretching ratio, the cross-sectional area of the drawn nt#, the tensile strength, and the tensile modulus of the drawn fibers were as shown in Table 1.

比較例 実施例2〜4と同じく紡糸してゲル状繊維を得たが、こ
の場合、ゲル状繊維のフィラメント数け1で、その断面
積は他の実施例に較べて特に大であった。このゲル状繊
維も同様に延伸したが妥定して可能な延伸の倍率は、他
の例に較べて低く、延伸gl維の引張強さ、引張弾性率
共に低かった。
Comparative Example Gel-like fibers were obtained by spinning in the same manner as in Examples 2 to 4, but in this case, the filaments of gel-like fibers were number 1, and their cross-sectional area was particularly large compared to other Examples. This gel-like fiber was similarly drawn, but the drawing ratio that was reasonably possible was lower than in the other examples, and both the tensile strength and tensile modulus of the drawn GL fiber were low.

それらの値は実施例2〜4と同じく第1表に示す。Those values are shown in Table 1 as in Examples 2-4.

m 1 表m1 table

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円錐形の導入部をもつ孔を用いて2本以上のゲ
ル状繊維を集束一体化する方法の1例を示す概略図であ
る。 第2図は2本以上のゲル状繊維をローラー開で圧しなが
ら集束一体化する方法を示す1例を示す概略図である。 A・会Φ・φ円ψ1を形溝入部 B・・・・・ゲル成粒l維 D・・0・引取り方向 d・・・・・孔の直径 R1R′・・・ローラー 特許出願人 東洋紡績株式会社
FIG. 1 is a schematic diagram showing an example of a method for converging and integrating two or more gel-like fibers using a hole having a conical introduction section. FIG. 2 is a schematic diagram showing an example of a method of converging and integrating two or more gel-like fibers while pressing them with an open roller. A. Shape the circle Φ and φ1. Grooved part B...Gel granulation l fiber D...0.Take-off direction d...Diameter of hole R1R'...Roller patent applicant Toyo Spinning Co., Ltd.

Claims (1)

【特許請求の範囲】 l、 ポリエチレン溶液全紡糸し、て得られたゲル状繊
維ケ2本以上引きそろえて、加熱し7つつ融合させて引
取ることを特徴とするポリエチレン繊維の製造方法。 22本ν上の繊維を融合させて引取る方法が、ゲル状繊
維金、その断面積の合計より小さい断面積を有する礼金
通過させて引取る方法である特許請求の範囲第1項記載
のポリエチレン繊維の製造方法。
[Claims] l. A method for producing polyethylene fibers, which comprises spinning a polyethylene solution completely, pulling two or more gel-like fibers together, heating them, fusing them together, and taking them off. The polyethylene according to claim 1, wherein the method of fusing and taking off the 22 ν fibers is a method of passing gel-like fiber gold and a key metal having a cross-sectional area smaller than the sum of the cross-sectional areas thereof and taking it off. Fiber manufacturing method.
JP3928084A 1984-02-29 1984-02-29 Production of polyethylene fiber Granted JPS60185812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3928084A JPS60185812A (en) 1984-02-29 1984-02-29 Production of polyethylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3928084A JPS60185812A (en) 1984-02-29 1984-02-29 Production of polyethylene fiber

Publications (2)

Publication Number Publication Date
JPS60185812A true JPS60185812A (en) 1985-09-21
JPH0418043B2 JPH0418043B2 (en) 1992-03-26

Family

ID=12548751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3928084A Granted JPS60185812A (en) 1984-02-29 1984-02-29 Production of polyethylene fiber

Country Status (1)

Country Link
JP (1) JPS60185812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399528A2 (en) * 1989-05-24 1990-11-28 Unitika Ltd. Polyvinyl alcohol monofilament yarns and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399528A2 (en) * 1989-05-24 1990-11-28 Unitika Ltd. Polyvinyl alcohol monofilament yarns and process for producing the same
US5091254A (en) * 1989-05-24 1992-02-25 Unitika Ltd. Polyvinyl alcohol monofilament yarns and process for producing the same

Also Published As

Publication number Publication date
JPH0418043B2 (en) 1992-03-26

Similar Documents

Publication Publication Date Title
US4521483A (en) Vinylidene fluoride resin filament and production thereof
JPH02127509A (en) Fibrous material of polytetrafluoroethylene and production thereof
JPS6021908A (en) Manufacture of composite monofilament
US6174601B1 (en) Bicomponent fibers in a sheath-core structure comprising fluoropolymers and methods of making and using same
US6316103B1 (en) Bicomponent fibers in a sheath-core structure comprising fluoropolymers and methods of making and using same
JPS60185812A (en) Production of polyethylene fiber
JP3386219B2 (en) Method for producing polyester mixed fiber yarn
JP2941176B2 (en) Polyvinylidene fluoride monofilament and its production method
JPS5966507A (en) Method for spinning at high speed
MXPA05000325A (en) Spinning method.
JPS6197416A (en) Special monofilament having high strength and its production
JPS6141318A (en) Manufacture of multifilament
JP5390041B1 (en) Unstretched fluororesin fiber, stretched fluororesin fiber, method for producing unstretched fluororesin fiber, and method for producing stretched fluororesin fiber
JPH10292226A (en) Conjugate monofilament and its production
KR100490790B1 (en) Method for manufacturing single component hollow fiber crimped fiber using capillary cooling device
JPH10292227A (en) Conjugate monofilament and its production
JP3332248B2 (en) Method for producing high-strength polyethylene porous fiber
JPH04327214A (en) Conjugate fiber
JPH0357965B2 (en)
JPH02446B2 (en)
JPH02300308A (en) Polyvinyl alcohol fiber and production thereof
JPH02277811A (en) Hollow polyester fiber having high tenacity and modulus
JP3234327B2 (en) High shrinkable conjugate fiber and its manufacturing method
JPS60199913A (en) Manufacture of high-tenacity polyvinylidene fluoride monofilament
JPH0610210A (en) Polyvinyl alcohol-based fiber excellent in knot strength