JPH0418043B2 - - Google Patents

Info

Publication number
JPH0418043B2
JPH0418043B2 JP3928084A JP3928084A JPH0418043B2 JP H0418043 B2 JPH0418043 B2 JP H0418043B2 JP 3928084 A JP3928084 A JP 3928084A JP 3928084 A JP3928084 A JP 3928084A JP H0418043 B2 JPH0418043 B2 JP H0418043B2
Authority
JP
Japan
Prior art keywords
fibers
gel
cross
polyethylene
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3928084A
Other languages
Japanese (ja)
Other versions
JPS60185812A (en
Inventor
Fujio Okada
Toshihiko Oota
Hiroshige Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP3928084A priority Critical patent/JPS60185812A/en
Publication of JPS60185812A publication Critical patent/JPS60185812A/en
Publication of JPH0418043B2 publication Critical patent/JPH0418043B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 本発明はポリエチレン繊維の製造方法に関し、
さらに詳しくはポリエチレンの溶液を紡糸して、
高強力、高モジユラスでかつ太い繊維を製造する
方法に関するものである。 従来高強力、高モジユラスのポリエチレン繊維
を製造する方法としては平均分子量の大きなポリ
エチレンの溶液を紡糸して冷却することによりゲ
ル状繊維を作り、これをさらに加熱延伸する方法
が知られている。 しかしこの方法における問題点は最終的に得ら
れる繊維が太いほどその引張強さおよびモジユラ
スが低くなる傾向があり、しかも太くて高強力、
高モジユラスな繊維を得ることは困難であつた。 したがつてこの方法により、例えば抗張力線と
して使用し得るような断面積が0.01mm2以上でしか
も高強力、高弾性率を有するポリエチレン繊維を
製造することも、極めて困難であつた。 本発明は、このような方法に新しい改良を加え
太くて、高強度、高モジユラスを有するポリエチ
レン繊維の製造を可能にしたもである。 本発明者らは溶液から紡糸されるゲル状繊維が
太いほどその高倍率の延伸が困難になり、その為
に、高強力、高弾性率になり難しいことに特に注
目して鋭意工夫した結果遂に、前記の問題点を解
決する本発明に到達した。 即ち、本発明は、ポリエチレン溶液を紡糸して
得られたゲル状繊維を2本以上引きそろえて、加
熱しつつ融合させて引取ることを特徴とするポリ
エチレン繊維の製造方法である。 本発明のポリエチレンの溶液は好ましくは平均
分子量(粘土法)が20万以上のポリエチレンをそ
の溶剤に加熱して調製される。溶剤としてはデカ
リンあるいは流動パラフインなどが使用できる。 ポリエチレンの平均分子量は一般に大きい方が
高強力、高モジユラスを得るのに適しており、20
万未満では高強力、高モジユラス繊維を得ること
がむずかしくなる。 紡糸は、加熱されたポリエチレン溶液を細孔か
ら押し出し、冷却によつて溶剤を含んだまま固化
することによりおこなわれる。 これにより得られるゲル状繊維を2本以上引き
そろえて加熱しつつ集束一体化するべく必要な力
を加えて融合させるのであるが、融合に際しては
延伸後の繊維の太さが、その使用目的にあう太さ
になるように、引きそろえるゲル状繊維の本数を
えらぶ。 もとのゲル状繊維が太いほど高倍率の延伸が困
難になる傾向があるので、出来るだけ高倍率の延
伸をして高強度、高モジユラス繊維を得るために
はもとのゲル状繊維が細い方が好ましい。 しかし、もとのゲル状繊維が細いほど、必要な
太さの延伸繊維を得るために引きそろえなければ
ならない本数が多くなり、設備や、手間がわずら
わしくなる。したがつて実際上好ましいゲル状繊
維の太さはこれらの兼ね合いによつて定まる。 引きそろえたゲル状繊維の融合は、加熱しつつ
引きそれえたゲル状繊維が集束一体化するべく力
を加えることによつておこなわれる。 引きそろえたゲル状繊維が集束一体化するべく
力を加える方法は融合するのに都合よければ、ど
のような方法でもよいが、円形断面でかつよく融
合した繊維を造るにはゲル状繊維をその断面積の
合計より小さい断面積を有する円形の孔をもつダ
イを通過させて引取る方法が、特に好適である。 もちろん任意の断面形状の繊維を造るために任
意の断面形状の孔を通過させることも可能であ
る。 孔を通過する際の抵抗を利用して、引取りの際
繊維を積極的に延伸することも可能である。 孔の断面積がゲル状繊維の断面積にくらべて小
さいほど融合させる力は強いが、引取りの抵抗が
増して糸切れすることがない範囲に限られる。 孔には円錐形の導入部を設けると、より円滑に
目的を達することが出来る。第1図は円錐形の導
入部をもつ孔(ダイ)を用いて、2本以上のゲル
状繊維を集束一体化する方法の1例を示す概略図
である。 ゲル状繊維を引きそれえて集束一体化するべく
力を加える方法としてはローラー間で圧しながら
走行させる方法もある。第2図は2本以上のゲル
状繊維をローラー間で圧しながら集束一体化する
方法の1例を示す概略図である。 融合させる際に加熱すれば融合しやすくなり、
延伸を行うにも有利になる。加熱温度は延伸繊維
の強度、モジユラスが低下しない範囲において高
い方が良い。 融合させた繊維は必要により、さらに熱延伸を
おこなうことにより、目的とするポリエチレン繊
維を製造することができる。 延伸方法としては加熱空気槽中あるいは液体熱
媒中における延伸、誘電加熱延伸のほか、加熱ダ
イによる引抜き延伸などの方法が使用できる。 融合を完全にする方法としては紡糸直後で固化
する前の液状繊維を2本以上合わせてから固化さ
せる方法もあるが、合わせた太さに相当する1本
を紡糸した場合と大差がなく本発明のような効果
は見られない。 なお、融合が不完全な融着糸では数多くの繊維
を引きそろえても高いモジユラスを得がたいこと
は明らかである。 先に述べたように従来、ポリエチレンの溶液を
紡糸して得られるゲル状繊維を熱延伸する方法は
高強度高弾性率繊維を製造するのに適しているの
にかかわらず太い繊維を得ようとするほど得られ
る繊維の強度および弾性率が低下し目的を達しな
いという問題点がある。 その理由は紡糸されたゲル状繊維が溶液を多量
に含むため極度にその断面積が大きくなることと
関係しており、ゲル状繊維が太いほどゲル状繊維
が紡糸で形成される際に、主として繊維断面方向
における繊維のむら、すなわち内外層差やその他
むらを生じやすいためであろうと推定される。 本発明では比較的細いゲル状繊維を紡糸してそ
れらを多数本融合させ必要な太さの延伸糸を得る
ことを可能にしたものである。 その融合の効果は、従来知られている繊維と繊
維の表面のみを融着させた融着糸とは異なり、繊
維の融合に必要な力の加え方と含有する溶剤の作
用とにより任意の断面形状を形成させうるもので
あり、ほぼ完全な一体化を伴うものである。 本発明によれば太くてかつ高強力高モジユラス
を有するポリエチレン繊維を比較的容易に製造す
ることが出来る。 例えばモノフイラメントの断面積が0.01mm2以上
で引張強度180Kg/mm2以上、引張弾性率3500Kg/
mm2以上のポリエチレン繊維を従来技術によるより
も容易に製造することが出来る。 以下本発明を実施例をもつて説明するが、本発
明はもとより、これらの実施例に限定されるもの
ではない。 実施例 1 平均分子量(粘度法)2×106のポリエチレン
4重量%、デカリン96重量%とからなる溶液を、
紡糸口金の孔から押出した後、冷却固化してゲル
状繊維を調製した。 その際溶液の温度は130℃であり、冷却固化は
30℃の水中でおこなつた。 また紡糸口金の孔径は0.7mmであり、得られた
ゲル状繊維はフイラメント数が180本で、各々の
フイラメントの断面積はデカリンを94.5重量%含
有する状態で平均0.71mm2であつた。 このゲル状繊維を第1図に示す形状の孔を有す
るダイを通過させて2倍の長さに延伸しながら引
取つた。 その際ダイの温度は100℃に保つた。 続いて130℃の加熱空気槽を通し、8.8倍さらに
続いて140℃の加熱空気槽を通して2倍の延伸を
して、全延伸倍率が35倍の実質的にデカリンを含
まない延伸繊維を得た。 延伸繊維は製造の過程でもとのゲル状繊維を構
成するすべてモノフイラメントが融合して全く単
一の円形断面を有するに至つており、その断面積
は0.205mm2であつた。 また延伸繊維の引張強さは301Kg/mm2であり、
引張モジユラスは8400Kg/mm2であり、さらに曲げ
に対しても充分な抵抗を示した。 実施例 2〜4 平均分子量(粘度法)2×106のポリエチレン
3.5重量%と、デカリン96.5重量%とからなる溶
液を紡糸口金の孔から押出した後冷却固化させて
ゲル状繊維を調製した。 その際溶液の温度は130℃であり冷却固化は30
℃の水中でおこなつた。続いて多数のフイラメン
トからなるゲル状繊維を実施例1と同じ方法で融
合させさらに延伸した。 融合に用いたダイの孔の断面積はゲル状繊維の
断面積の70〜90%に相当するものであつた。 ゲル状繊維のフイラメント数、ゲル状繊維の各
フイラメントの断面積、全延伸倍率、延伸繊維の
断面積、延伸繊維の引張強さ、および引張弾性率
は第1表のとおりであつた。 比較例 実施例2〜4と同じく紡糸してゲル繊維を得た
が、この場合、ゲル状繊維のフイラメント数は1
で、その断面積は他の実施例に較べて特に大であ
つた。このゲル状繊維も同様に延伸したが安定し
て可能な延伸の倍率は、他の例に較べて低く、延
伸繊維の引張強さ、引張弾性率共に低かつた。そ
れらの値は実施例2〜4と同じく第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyethylene fibers,
More specifically, by spinning a polyethylene solution,
The present invention relates to a method for producing high strength, high modulus, and thick fibers. Conventionally, a known method for producing high-strength, high-modulus polyethylene fibers is to spin a polyethylene solution with a large average molecular weight, cool it to produce gel-like fibers, and then heat and draw the fibers. However, the problem with this method is that the thicker the final fiber is, the lower its tensile strength and modulus tend to be.
It has been difficult to obtain highly modulus fibers. Therefore, it is extremely difficult to use this method to produce polyethylene fibers having a cross-sectional area of 0.01 mm 2 or more, high strength, and high elastic modulus, which can be used as tensile strength wires, for example. The present invention makes it possible to produce thick, high-strength, and high-modulus polyethylene fibers by adding new improvements to such methods. The inventors of the present invention paid special attention to the fact that the thicker the gel-like fibers spun from a solution, the more difficult it is to draw them at a high magnification, and as a result, it is difficult to achieve high strength and high elastic modulus. We have arrived at the present invention which solves the above problems. That is, the present invention is a method for producing polyethylene fibers, which comprises aligning two or more gel-like fibers obtained by spinning a polyethylene solution, fusing them while heating, and then taking them off. The polyethylene solution of the present invention is preferably prepared by heating polyethylene having an average molecular weight (clay method) of 200,000 or more in a solvent. As a solvent, decalin or liquid paraffin can be used. Generally speaking, the higher the average molecular weight of polyethylene, the more suitable it is for obtaining high strength and high modulus.
If it is less than 10,000, it becomes difficult to obtain high strength and high modulus fibers. Spinning is performed by extruding a heated polyethylene solution through pores and solidifying it while containing the solvent by cooling. Two or more of the resulting gel-like fibers are drawn together, heated, and fused by applying the necessary force to bring them together into a single piece. Select the number of gel-like fibers to be drawn so that the thickness matches. The thicker the original gel fiber is, the more difficult it is to draw it at a high magnification, so in order to draw it at a high magnification as much as possible to obtain high strength and high modulus fibers, it is necessary to make the original gel fiber thinner. is preferable. However, the thinner the original gel-like fibers are, the greater the number of fibers that must be drawn in order to obtain drawn fibers of the required thickness, which requires more equipment and labor. Therefore, the practically preferable thickness of the gel-like fibers is determined by these balances. The fusion of the aligned gel-like fibers is carried out by heating and applying force to bring the aligned gel-like fibers together. Any method of applying force to bring the aligned gel fibers together may be used as long as it is convenient for fusing them, but in order to create fibers with a circular cross section and well fused, Particularly suitable is the method of drawing through a die with circular holes having a cross-sectional area smaller than the sum of the cross-sectional areas. Of course, it is also possible to pass through holes of any cross-sectional shape to produce fibers of any cross-sectional shape. It is also possible to actively stretch the fibers during take-off by utilizing the resistance when passing through the holes. The smaller the cross-sectional area of the pores is compared to the cross-sectional area of the gel-like fibers, the stronger the fusing force is, but it is limited to the extent that the pulling resistance increases and the fibers do not break. If the hole is provided with a conical introduction part, the purpose can be achieved more smoothly. FIG. 1 is a schematic diagram showing an example of a method for converging and integrating two or more gel-like fibers using a hole (die) having a conical introduction section. As a method of applying force to pull the gel-like fibers and bundle them together, there is also a method of running the gel-like fibers while pressing them between rollers. FIG. 2 is a schematic diagram showing an example of a method for converging and integrating two or more gel-like fibers while pressing them between rollers. If you heat it when fusing, it will be easier to fuse,
It is also advantageous for stretching. The heating temperature is preferably as high as possible within a range that does not reduce the strength and modulus of the drawn fibers. If necessary, the fused fibers can be further subjected to hot stretching to produce the desired polyethylene fiber. As the stretching method, methods such as stretching in a heated air tank or liquid heat medium, dielectric heating stretching, and drawing stretching using a heating die can be used. As a method for complete fusion, there is a method of combining two or more liquid fibers immediately after spinning but before solidifying, but there is no big difference between spinning one fiber corresponding to the combined thickness and the present invention. No such effect was observed. It is clear that it is difficult to obtain a high modulus with a fused yarn that is incompletely fused even if a large number of fibers are aligned. As mentioned above, although the conventional method of hot-drawing gel-like fibers obtained by spinning a polyethylene solution is suitable for producing high-strength, high-modulus fibers, it is difficult to obtain thick fibers. There is a problem that the strength and elastic modulus of the obtained fibers decrease as the fibers increase, making it impossible to achieve the intended purpose. The reason for this is that the spun gel fiber contains a large amount of solution, so its cross-sectional area becomes extremely large.The thicker the gel fiber is, the more the gel fiber is formed by spinning. It is presumed that this is because fiber unevenness in the cross-sectional direction of the fibers, that is, differences between inner and outer layers, and other unevenness tend to occur. The present invention makes it possible to obtain a drawn yarn of the required thickness by spinning relatively thin gel-like fibers and fusing a large number of them. The effect of this fusion is different from the conventionally known fused yarn, which fuses only the surfaces of fibers, and the effect of the fusion can be achieved by applying the force necessary to fuse the fibers and by the action of the solvent contained in the fibers. It is possible to form a shape and involves almost complete integration. According to the present invention, polyethylene fibers that are thick and have high strength and high modulus can be produced relatively easily. For example, the cross-sectional area of monofilament is 0.01 mm 2 or more, the tensile strength is 180 Kg/mm 2 or more, and the tensile modulus is 3500 Kg/mm 2 or more.
Polyethylene fibers larger than mm 2 can be produced more easily than with conventional techniques. The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. Example 1 A solution consisting of 4% by weight of polyethylene with an average molecular weight (viscosity method) of 2×10 6 and 96% by weight of decalin,
After extruding through the holes of a spinneret, the fibers were cooled and solidified to prepare gel-like fibers. At that time, the temperature of the solution was 130℃, and the cooling solidification was
It was carried out in water at 30℃. The pore diameter of the spinneret was 0.7 mm, and the gel-like fibers obtained had 180 filaments, and each filament had an average cross-sectional area of 0.71 mm 2 in a state containing 94.5% by weight of decalin. This gel-like fiber was passed through a die having holes in the shape shown in FIG. 1 and drawn while being stretched to double its length. At that time, the die temperature was maintained at 100°C. Subsequently, the fiber was stretched 8.8 times through a heated air bath at 130°C, and then stretched 2 times through a heated air bath at 140°C to obtain a drawn fiber substantially free of decalin with a total stretching ratio of 35 times. . During the manufacturing process, all of the monofilaments constituting the original gel-like fibers of the drawn fiber were fused to have a completely single circular cross section, and the cross-sectional area was 0.205 mm 2 . In addition, the tensile strength of the drawn fiber is 301Kg/ mm2 ,
The tensile modulus was 8400 Kg/mm 2 and it also showed sufficient resistance to bending. Examples 2 to 4 Polyethylene with an average molecular weight (viscosity method) of 2×10 6
A gel-like fiber was prepared by extruding a solution consisting of 3.5% by weight of decalin and 96.5% by weight of decalin through the holes of a spinneret, and cooling and solidifying the solution. At that time, the temperature of the solution was 130℃, and the cooling solidification was 30℃.
It was carried out in water at ℃. Subsequently, gel-like fibers consisting of a large number of filaments were fused together and further drawn in the same manner as in Example 1. The cross-sectional area of the hole in the die used for fusion corresponded to 70-90% of the cross-sectional area of the gel-like fibers. The number of filaments of the gel-like fibers, the cross-sectional area of each filament of the gel-like fibers, the total stretching ratio, the cross-sectional area of the drawn fibers, the tensile strength, and the tensile modulus of the drawn fibers were as shown in Table 1. Comparative Example Gel fibers were obtained by spinning in the same manner as in Examples 2 to 4, but in this case, the number of filaments of the gel fiber was 1.
The cross-sectional area was particularly large compared to other examples. This gel-like fiber was similarly drawn, but the drawing ratio that could be stably achieved was lower than in the other examples, and both the tensile strength and tensile modulus of the drawn fiber were low. Those values are shown in Table 1 as in Examples 2-4. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円錐形の導入部をもつ孔を用いて2本
以上のゲル状繊維を集束一体化する方法の1例を
示す概略図である。第2図は2本以上のゲル状繊
維をローラー間で圧しながら集束一体化する方法
を示す1例を示す概略図である。 A……円錐形導入部、B……ゲル状繊維、D…
…引取り方向、d……孔の直径、R,R′……ロ
ーラー。
FIG. 1 is a schematic diagram showing an example of a method for converging and integrating two or more gel-like fibers using a hole having a conical introduction section. FIG. 2 is a schematic diagram showing an example of a method of converging and integrating two or more gel-like fibers while pressing them between rollers. A...Conical introduction part, B...Gel-like fiber, D...
...Take-off direction, d...Diameter of hole, R, R'...Roller.

Claims (1)

【特許請求の範囲】 1 ポリエチレン溶液を紡糸して得られたゲル状
繊維を2本以上引きそろえて、加熱しつつ融合さ
せて引取ることを特徴とするポリエチレン繊維の
製造方法。 2 2本以上の繊維を融合させて引取る方法が、
ゲル状繊維を、その断面積の合計より小さい断面
積を有する孔を通過させて引取る方法である特許
請求の範囲第1項記載のポリエチレン繊維の製造
方法。
[Scope of Claims] 1. A method for producing polyethylene fibers, which comprises aligning two or more gel-like fibers obtained by spinning a polyethylene solution, fusing them while heating, and taking them off. 2. A method of fusing two or more fibers and pulling them together is
The method for producing polyethylene fibers according to claim 1, wherein the gel-like fibers are drawn by passing through holes having a cross-sectional area smaller than the total cross-sectional area of the gel-like fibers.
JP3928084A 1984-02-29 1984-02-29 Production of polyethylene fiber Granted JPS60185812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3928084A JPS60185812A (en) 1984-02-29 1984-02-29 Production of polyethylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3928084A JPS60185812A (en) 1984-02-29 1984-02-29 Production of polyethylene fiber

Publications (2)

Publication Number Publication Date
JPS60185812A JPS60185812A (en) 1985-09-21
JPH0418043B2 true JPH0418043B2 (en) 1992-03-26

Family

ID=12548751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3928084A Granted JPS60185812A (en) 1984-02-29 1984-02-29 Production of polyethylene fiber

Country Status (1)

Country Link
JP (1) JPS60185812A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2710408B2 (en) * 1989-05-24 1998-02-10 ユニチカ株式会社 Polyvinyl alcohol monofilament and method for producing the same

Also Published As

Publication number Publication date
JPS60185812A (en) 1985-09-21

Similar Documents

Publication Publication Date Title
US2313296A (en) Fiber or filament of glass
JPS60198218A (en) Oriented polyolefin composition
JPH0321648B2 (en)
CN113215669B (en) Thermoplastic polyurethane fiber and manufacturing method thereof
JP2005179823A (en) Method for producing polyester fiber and spinning cap for melt spinning
JP2000178829A (en) Polyphenylene sulfide fiber and its production
JPH0418043B2 (en)
CN105862166A (en) FDY/POY differential shrinkage blended filament of biomass nylon 56 fiber/PBT fiber, and preparation method thereof
JPS643961B2 (en)
JP2001192936A (en) Splittable conjugate fiber, method of producing the same, and ultrafine fiber nonwoven fabric using the same
JP2515368B2 (en) Method for producing yarn by melt spinning polyethylene terephthalate
JP2528985B2 (en) Method for melt spinning polyester fiber
JPS5966507A (en) Method for spinning at high speed
JP2887380B2 (en) Highly shrinkable polyphenylene sulfide monofilament and method for producing the same
JPH07238416A (en) Production of high-strength polyethylene fiber
JP3347377B2 (en) Multifilament manufacturing method
JP2842243B2 (en) Melt spinning equipment
KR100490790B1 (en) Method for manufacturing single component hollow fiber crimped fiber using capillary cooling device
JPS6024846B2 (en) composite yarn
JPH04327214A (en) Conjugate fiber
JP3332248B2 (en) Method for producing high-strength polyethylene porous fiber
JP2000345428A (en) Production of polyolefin-based fiber
JPH04333618A (en) Polyphenylene sulfide conjugate fiber
JPH0617317A (en) Production of polyester fiber
JPH07310231A (en) Porous and light-weight polyethylene terephthalate fiber