JPS60185091A - Condenser - Google Patents

Condenser

Info

Publication number
JPS60185091A
JPS60185091A JP3958384A JP3958384A JPS60185091A JP S60185091 A JPS60185091 A JP S60185091A JP 3958384 A JP3958384 A JP 3958384A JP 3958384 A JP3958384 A JP 3958384A JP S60185091 A JPS60185091 A JP S60185091A
Authority
JP
Japan
Prior art keywords
heat transfer
condenser
heat exchanger
transfer pipe
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3958384A
Other languages
Japanese (ja)
Inventor
Yoshio Mochida
芳雄 餅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3958384A priority Critical patent/JPS60185091A/en
Publication of JPS60185091A publication Critical patent/JPS60185091A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators

Abstract

PURPOSE:To obtain high coefficiency in transmitting condensation heat in a condenser, by efficiently dripping condensed drain, by providing tubular projections, of which one side is made in smooth slope and the other side is made in plane so as to form a ridge line, to the outer surface of a heat transfer pipe, with the sloped side upward, having distances one another in the longitudinal direction. CONSTITUTION:Tubular projections 31, 31... extending outwardly to the radius direction, are monolithically formed on the outer surface of a heat transfer pipe 30, having distances one another in the longitudinal direction. The tubular projection 21 is composed so as to form a smooth slope 32 on one side, while the other side forms a plaen 33, and a ridge line 34 is formed between these faces. The projections 31 are formed on the outer surface of a heat transfer pipe 30, so as to put the sloped surface 32 upward, that is the upstream side for the deep-sea water flowing down through the heat transfer pipe 30. The root of a slope 32 is jointed to the outer surface of a heat transfer pipe 30 with a smooth surface. With such an arrangement, condensed drain adhered to the outer surface of a heat transfer pipe 30 drips along the outer surface of a pipe 30, flowing outwardly to the radius direction along the slope 32 of a projection 31, turning into drips on the ridge line 34 provided at the tip of a slope 32, from which the drain is dripped down.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、海水の温度差のような低熱落差エネルギを利
用して発電する低熱落差発電′7°ランド等に設置され
る/#縮器に関する1゜ 〔発明の技術的庁しチ〕 ;海水の温度差を利用して発電する海洋温度を発電プラ
ントは、第1図に示すように、蒸発器1゜蒸気加減弁2
.蒸気タービン3.凝縮器4.およびタンク5を閉回路
を構成するように管路6で接続して構成されるものであ
って、蒸発器1に導かれたフロン、アンモニア等の低沸
点媒体からなる作動流体を、海洋表層部の比較的高温な
海水によって加熱蒸発させ、その蒸発した作動流体を、
蒸気加減弁2を介して蒸気タービン3に送り、ここで膨
猥作用を受けて蒸気タービン3を回わし、この蒸気ター
ビン3に付設した発電機7を回転させて発電を行なうと
ともに、蒸気タービン3から排出される蒸気を凝縮W4
に送り、こ口で海洋深層部の比較的低温な海水によって
凝縮され、その凝縮水はタンク5に貯えられた後、循環
ポンプ8により蒸発器1に戻されるようになっている。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a condenser installed in a low heat drop power generation '7° land etc. that generates electricity using low heat drop energy such as the temperature difference of seawater. 1 ゜ [Technical Agency for Invention]: The generator 1 ゜ vitral dialect 2, as shown in Fig. 1, the marine temperature that generates electricity using the temperature difference of seawater is used.
.. Steam turbine 3. Condenser 4. The tank 5 is connected by a pipe 6 to form a closed circuit. The evaporated working fluid is heated and evaporated by relatively high temperature seawater.
The steam is sent to the steam turbine 3 via the steam control valve 2, where it is subjected to an expansion effect and rotates the steam turbine 3, which rotates the generator 7 attached to the steam turbine 3 to generate electricity. Condenses the steam discharged from W4
The condensed water is sent to the tank, where it is condensed with relatively low-temperature seawater from the deep ocean, and the condensed water is stored in a tank 5 and then returned to the evaporator 1 by a circulation pump 8.

また発電機7の負荷変動は、蒸気加減弁2の上6H7側
と蒸気タービン3の下流側を結ぶパ・イ・ヤス路9に設
はノこバイノfス弁lOを開閉することで調節できるよ
うになっている。
In addition, the load fluctuation of the generator 7 can be adjusted by opening and closing the sawbino valve 10 installed in the path 9 connecting the upper 6H7 side of the steam control valve 2 and the downstream side of the steam turbine 3. It looks like this.

一力上記海洋温度差発電プラントでは、高低熱源の温度
差が小さいため、送電端効率が数多程度と低く、単位発
電出力あたりの熱交換器熱負荷が非常に大きくなり、熱
交換器においては熱源と作動流体との温度差を2〜5℃
と極めて小さく設定する必要があり、熱交換器の製作費
、設置スR−スが大となり、熱交換器の高性能化、コン
・そクト化が重要な課題となっている。またフロン等の
低沸点媒体は、従来の作動流体である水に比較すると、
1桁程度伝熱特性が劣るため、熱交換器の高性能化、コ
ンパクト化を図るには、熱貫流率を規定する作動流体側
伝熱性能の同上を図る必要がある。
In the above-mentioned ocean temperature difference power generation plant, the temperature difference between the high and low heat sources is small, so the transmission net efficiency is low, on the order of a few degrees, and the heat exchanger heat load per unit power generation output is extremely large. The temperature difference between the heat source and the working fluid is 2 to 5 degrees Celsius.
It is necessary to set the heat exchanger to be extremely small, which increases the manufacturing cost and installation space of the heat exchanger, making it important to improve the performance and make the heat exchanger compact. Furthermore, compared to water, which is a conventional working fluid, low-boiling point media such as fluorocarbons have lower
Since the heat transfer characteristics are inferior by about one order of magnitude, in order to improve the performance and make the heat exchanger more compact, it is necessary to improve the heat transfer performance on the working fluid side, which defines the heat transfer coefficient.

fig力上記海洋温度差発電プラントに設置されるMB
2器としては、プレート式、シェルアンドチューブ式の
ものが用いられているか、この種の凝縮器は、タービン
出力の増大に伴ない大形化しており、陸上での設置がス
ペース上問題となり、海水側のわずかな圧力損失の増減
がタービンの送電端出力を左右するため、取水海水を陸
上まで圧送することが得策とはならず、各種@器を海上
設置形にすることが検討されている。
MB installed in the above ocean temperature difference power generation plant
The two types of condensers used are plate type and shell-and-tube type, and these types of condensers are becoming larger as turbine output increases, making installation on land a space issue. Since the slight increase or decrease in pressure loss on the seawater side affects the output of the turbine at the transmission end, it is not a good idea to forcefully convey the intake seawater to land, and various types of equipment are being considered to be installed offshore. .

すなわち各種機器をパージ上に設置するために、コンパ
クトな機器配#を行なう必要性から、凝縮器も縦形のも
のに設計されている。
That is, in order to install various devices on the purge, the condenser is also designed to be vertical due to the need for compact equipment arrangement.

上記縦形凝縮器は、第2図に示すように、縦形ケーシン
グ11と、この縦形ケーシング内に上下方向に間隔を置
いて配設される隔板12 、12と、複数の伝熱管13
t−支え板14を介して並列配置し上記隔板12 、1
2に連結される伝熱管群と、上記ケーシング11と上側
隔板12に画成される室を2分する垂直仕切板15とを
有し、一方の室16には深層海水導入管17が、他方の
室18には深層海水導出管19が接続されている。また
隔板12 、12間のケーシング11壁には作動流採蒸
気導入管加および作動流体凝縮ドレン導出管21が接続
されている。
As shown in FIG. 2, the vertical condenser includes a vertical casing 11, partition plates 12, 12 arranged at intervals in the vertical direction within the vertical casing, and a plurality of heat transfer tubes 13.
The partition plates 12 and 1 are arranged in parallel with the T-support plate 14 interposed therebetween.
2, and a vertical partition plate 15 that divides the chamber defined by the casing 11 and the upper partition plate 12 into two, and one chamber 16 has a deep seawater introduction pipe 17, A deep seawater outlet pipe 19 is connected to the other chamber 18 . Further, a working flow sampling inlet pipe and a working fluid condensation drain outlet pipe 21 are connected to the wall of the casing 11 between the partition plates 12 and 12.

しかして深層海水導入管17を介して室16に導かれた
深層海水は、伝熱管13を矢示する方向に流れ、室17
から深層海水導出管19を通って器外に排出され、一方
作動流体蒸気導入管加から器内に導かれた作動流体は、
各伝熱管13内を流れる深層海水との間で熱交換され、
凝縮液化し、その凝縮ドレンは各伝熱管13の外面に沿
って流下し、凝縮器下□部の液溜めに集められた後作動
流体凝縮ドレン導出管21ヲ通って器外へ排出される。
The deep seawater introduced into the chamber 16 through the deep seawater introduction pipe 17 flows through the heat transfer tube 13 in the direction indicated by the arrow, and flows through the chamber 17.
The working fluid is discharged outside the vessel through the deep seawater outlet pipe 19, while the working fluid is led into the vessel from the working fluid steam introduction pipe.
Heat is exchanged with deep seawater flowing inside each heat exchanger tube 13,
The condensed liquid flows down along the outer surface of each heat transfer tube 13, is collected in a liquid reservoir at the bottom of the condenser, and is then discharged outside the vessel through the working fluid condensed drain outlet pipe 21.

〔背景技術の問題点〕[Problems with background technology]

しかし上記形式の凝縮器では、伝熱管の外面が平滑面で
あるため、伝熱面を大きく設定し得す、伝熱効果を上げ
ることに限界がある。
However, in the above type of condenser, since the outer surface of the heat transfer tube is a smooth surface, the heat transfer surface can be set large, and there is a limit to increasing the heat transfer effect.

そこで伝熱管13を、第3図に示すように、外周面に機
械加工や圧延加工を施して、長手方向に延びる溝22ヲ
有するフリューテッド管として凝縮熱伝達の促進を図る
ようにした技術手段が開発された。
Therefore, as shown in FIG. 3, the heat transfer tube 13 is a fluted tube having longitudinally extending grooves 22 by machining or rolling the outer circumferential surface of the heat exchanger tube 13 as a technical measure to promote condensation heat transfer. was developed.

しかし上記伝熱管13では、第4図に示すように、溝η
の山部幻で凝縮した凝縮とレンを表面張力の作用で谷部
々に導き、山部おでの凝縮液膜を薄くし、谷部調での凝
縮ドレン排除を行ない凝縮熱伝達の促進を図るようにし
ているが、実際上は、凝縮の進行に伴なって、凝縮ドレ
ンが増大するため\凝縮ドレンが谷部冴よりあふれ、山
部乙での凝縮ドレン排除を有効に行ない得す、性能の向
上をそれほど期待できない。
However, in the heat exchanger tube 13, as shown in FIG.
The condensate and water condensed at the peaks are guided to the valleys by the effect of surface tension, the condensate film at the peaks is thinned, and the condensed condensate is removed at the valleys to promote condensation heat transfer. However, in reality, as the condensation progresses, the condensed condensate increases, so the condensed condensate overflows from the Tanibe Sae, and the condensed condensate cannot be effectively removed at the Yamabe Otsu. You can't expect much improvement in performance.

さらに上記伝熱管13の長手方向に間隔を置いて円板を
外嵌し、凝縮ドレンを排除する技術手段も提案されたが
、この場合には、伝熱管のそれぞれに円板を取付けなけ
ればならず、また伝熱管は支え板に支持されているから
、その取付位置に制限があり、熱交換器の組立作業が煩
雑になり、実用゛ 的ではない。
Furthermore, a technical means has been proposed in which disks are externally fitted at intervals in the longitudinal direction of the heat exchanger tubes 13 to eliminate condensation drain, but in this case, a disk must be attached to each of the heat exchanger tubes. Furthermore, since the heat exchanger tubes are supported by support plates, there are restrictions on their mounting positions, making the assembly of the heat exchanger complicated and impractical.

〔発明の目的〕[Purpose of the invention]

本発明は上記した点に鑑みてなされたもので、伝熱管の
外面に付着する凝縮ト・レンの排除を簡単に行ない得る
とともに、性能の向上を図り得るようにした凝縮器を提
供することを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a condenser that can easily remove condensation tubes adhering to the outer surface of a heat exchanger tube and improve its performance. purpose.

〔発明の概要〕[Summary of the invention]

本発明はケーシング内に設けた上下方向に延びる伝熱管
の外周面に、−側をなだらがな傾斜面とし他側を稜線を
形成するように平面とした環状突起を、傾斜面を上側に
して長手方向に間隔を置くように配設し、伝熱管の外面
に付着する凝縮ドレンを効率よく流下せしめて、高い凝
縮熱伝達係数を得るようにしたものである。
In the present invention, an annular protrusion is formed on the outer circumferential surface of a heat exchanger tube provided in a casing and extends in the vertical direction, with the - side being a gently sloped surface and the other side being a flat surface forming a ridgeline. The tubes are arranged at intervals in the longitudinal direction, and the condensate condensate adhering to the outer surface of the heat transfer tube is efficiently flowed down, thereby obtaining a high condensation heat transfer coefficient.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面につき説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第5図において符号(資)は本発明の凝縮器に組み込ま
れる伝熱管を示すものであって、この伝熱管側の外周面
には、長手方向に間隔を置いて、半径方向外方に延びる
環状突起31 、31川が一体に形成されている。
In FIG. 5, the reference numeral (capital) indicates a heat exchanger tube incorporated in the condenser of the present invention, and on the outer circumferential surface of the heat exchanger tube side, extending radially outward is provided at intervals in the longitudinal direction. The annular protrusions 31 and 31 are integrally formed.

上記環状突起31は、第6図に示すように1−側をなだ
らかな傾斜面32とするとともに他側を平面おとしこれ
らの間に稜線34を形成するように構成されており、傾
斜面32を上側すなわち伝熱管30を流れる深R1海水
の上流側に位置するように伝熱管Iの外周面に突設され
ている。上記傾斜面32の基端は伝熱管側の外面に対し
て滑らが面で連らなっている。したがって伝熱管(資)
の外周面に付着した凝縮ドレンは、伝熱管側の外周面に
沿って下降した後、突起31の傾斜面32に沿って半径
方向外方に流れ、(la’i斜而32面先端位置に設け
た稜線凋において、滴状となり、ここより滴下されるこ
とになる。
As shown in FIG. 6, the annular protrusion 31 is configured to have a gentle slope 32 on the first side and a flat surface on the other side, forming a ridge line 34 between them. It is provided protrudingly on the outer circumferential surface of the heat exchanger tube I so as to be located on the upper side, that is, on the upstream side of the deep R1 seawater flowing through the heat exchanger tube 30. The base end of the inclined surface 32 has a smooth surface connected to the outer surface on the heat exchanger tube side. Therefore, heat exchanger tube (equipment)
The condensed condensate adhering to the outer circumferential surface of the projection 31 descends along the outer circumferential surface of the heat exchanger tube side, and then flows radially outward along the inclined surface 32 of the protrusion 31. At the provided ridgeline, it becomes drop-shaped and is dripped from there.

なお実験的には伝熱管側に設けた環状突起の間隔は、凝
縮流体の種類および単位長さ当りの凝縮量によって変動
するが、10〜100mm程度に、また環状突起の高さ
は、凝縮ドレンの剥離効果および熱交換器の組立作業を
考慮して0.3〜1.0mm程度に設定するのが望まし
い。
Experimentally, the distance between the annular protrusions provided on the heat transfer tube side varies depending on the type of condensed fluid and the amount of condensation per unit length, but it has been determined that the interval between the annular protrusions is approximately 10 to 100 mm. It is desirable to set the thickness to about 0.3 to 1.0 mm in consideration of the peeling effect and the assembly work of the heat exchanger.

次に作用を説明する。Next, the action will be explained.

ケーシング11内設けた深層海水導入管17を介して室
16に導かれた深層海水は、上下方向に列設した伝熱管
30を通り、室17がら深層海水導出管19を通って器
外へ排出されるが、ケーシング11内には作動流体導入
管20を通ってフロンのような作動流体が導かれ、この
作動流体は列設した伝熱管(2)の間を通り抜ける際に
、伝熱管30を通る深層海水により熱交換され、凝縮液
化される。凝縮液化したドレンは、伝熱管(9)の外周
面に句着し、滴化し、この滴化したドレンは伝熱管間の
外面に沿って下降し、環状突起31の傾斜面(資)の基
端に余り、ついで傾斜面32に沿って半径方向外方に#
Lれ、第6図に示すように、環状突起31の先端部に設
けた稜線真に導かれ、ここから重力の作用で滴下し、凝
縮器下部に設けた液溜めに集められ、凝縮ドレン導出管
21を通って器外へ排出されることになる。
The deep seawater introduced into the chamber 16 via the deep seawater introduction pipe 17 provided inside the casing 11 passes through the heat transfer tubes 30 arranged in the vertical direction, and is discharged outside the chamber 17 through the deep seawater outlet pipe 19. However, a working fluid such as chlorofluorocarbon is introduced into the casing 11 through a working fluid introduction pipe 20, and when this working fluid passes between the heat transfer tubes (2) arranged in a row, it passes through the heat transfer tubes 30. Heat is exchanged with the deep seawater that passes through it, and it is condensed and liquefied. The condensed and liquefied condensate settles on the outer peripheral surface of the heat exchanger tube (9) and becomes droplets, and the condensed condensate descends along the outer surface between the heat exchanger tubes and reaches the base of the inclined surface (material) of the annular protrusion 31. # at the end and then radially outward along the ramp 32
As shown in Fig. 6, the liquid is guided to the ridge line provided at the tip of the annular protrusion 31, from which it drips under the action of gravity, collected in a reservoir provided at the bottom of the condenser, and condensed drain. It will be discharged outside the vessel through the pipe 21.

上記伝熱管側の外面に付着したドレンは、環状突起31
の傾斜面32に沿って半径方向外方へ積極的に流れるか
ら、伝熱管恥の外面に滴化したドレンが付着した状態で
止まることがなく、伝熱管の外面全域は熱交換すべき面
として作用するから、高い凝縮熱伝達係数を得ることが
できる。
The drain attached to the outer surface of the heat exchanger tube is removed by the annular protrusion 31.
Since the condensate actively flows radially outward along the inclined surface 32 of the heat exchanger tube, the condensate does not remain attached to the outer surface of the heat exchanger tube, and the entire outer surface of the heat exchanger tube is used as a surface for heat exchange. Because of this, a high condensing heat transfer coefficient can be obtained.

第7図は本発明による凝縮器の実験結果を示すものであ
って、作動流体としてフロンを用い、凝縮温度(資)℃
で実験を行なった。
Figure 7 shows the experimental results of the condenser according to the present invention, using Freon as the working fluid and showing the condensation temperature (℃).
I conducted an experiment with.

第7図においてたて4II+は本発明の伝熱管の凝縮熱
伝達係数と平らな外面の伝熱管(平滑管)の凝縮熱伝達
係数との比、よこ軸は伝熱管に設けた環状突起の間隔で
ある。
In Fig. 7, the vertical axis 4II+ is the ratio of the condensing heat transfer coefficient of the heat exchanger tube of the present invention to the condensing heat transfer coefficient of the heat exchanger tube with a flat outer surface (smooth tube), and the horizontal axis is the interval between the annular projections provided on the heat exchanger tube. It is.

上記実験結果によれば、平滑管との性能比は、環状突起
の間隔が大きくなるにつれて次第に減少するO なお本発明の凝縮器葡、海洋温度差発電プラントに睦月
した場合には、管内の深層海水が管外作動流体の凝縮潜
熱を奪って温度上昇Tるので、旨長手方向に熱流束が徐
々に減少することになる。
According to the above experimental results, the performance ratio with that of a smooth tube gradually decreases as the interval between the annular protrusions increases. Since the seawater absorbs the latent heat of condensation from the working fluid outside the pipe and the temperature rises T, the heat flux gradually decreases in the longitudinal direction.

すなわち単位長さ当りの凝縮量も徐々に減少するので、
羊位長ざ当りのM kd 蓋の多い部分では突起間隔を
狭く、単位長ざ当りの凝縮量の少ない部分では突起間隔
を広くし、形成される凝縮ドレンの排除を効果的に行な
うようにすることが望ましい。
In other words, the amount of condensation per unit length gradually decreases, so
M kd per unit length The distance between the protrusions should be narrow in areas with a lot of lids, and the distance between the protrusions should be widened in areas with a small amount of condensation per unit length to effectively eliminate the condensation drain that is formed. This is desirable.

第8図は本発明の他の実施例?示すものであつ ゝて、
この場合伝熱管40の外周面に上記伝熱管側と同様に環
状突起31を設けるとともに、環状突起3】。
Is Fig. 8 another embodiment of the present invention? It is something that shows
In this case, an annular projection 31 is provided on the outer peripheral surface of the heat exchanger tube 40 in the same manner as on the heat exchanger tube side, and an annular projection 3] is provided on the outer peripheral surface of the heat exchanger tube 40.

31の間に位置する部分に長手方向に延びるたて溝41
全形成するようにしている。たて溝41ヲ設けると、こ
の部分の凝縮熱伝達係数が相当向上することが実験的に
判った。
A vertical groove 41 extending in the longitudinal direction in a portion located between 31 and 31.
I try to fully form it. It has been experimentally found that the provision of the vertical grooves 41 significantly improves the condensation heat transfer coefficient in this portion.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、伝熱管の外周面に間
隔を置いて現状突起を設け、付着した凝縮ドレンを積極
的に排除するようにしたので、凝縮熱伝達係数が大幅に
改善ぎ?L、凝縮性能が向上し、装置のコンパクト化が
可能になるという効果を秦する。
As described above, according to the present invention, protrusions are provided at intervals on the outer peripheral surface of the heat transfer tube to actively remove attached condensate condensate, so that the condensation heat transfer coefficient is significantly improved. ? L. The condensing performance is improved and the device can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は海洋温度差発秘7″ジントの概略系統図。 第2図は同海洋温度差発tfう/トに設置される縦形凝
縮器の!断面図、第3図は縦形凝縮器に組み込まれる伝
熱管の一部斜視図、第4図は伝熱管に付着する凝縮ドレ
ンの作用説明図、第5図は本発明による凝縮器に組み込
ま6伝熱管の一部斜視図、第6図は伝熱管に付着する凝
縮ドレンの作用説明図、第7図は伝熱性能の実験結果を
示す図。 第8図は本発明の池の実施例ケ示す図である。 11・・・縦形ケーシング、16・・・室、18・・・
室。 30・・・伝熱管、31・・・04状突起、32・・・
傾斜向、33・・・平面、34・・・稜線。 出願入代lj人 拓 股 清 第3図 第4121 第5図 ■+ ■− 第6図 芋8図 手続ン市正書 昭和59年5 月 14日 特許庁長官 若杉和夫 殿 1 事件の表示 昭和59年 特許願 第39583号 2 発明の名称 凝 縮 器 3 補正をする者 事件との関係 特許出願人 (307) 株式会社 東 芝 4 代 理 人 11刊猶 彷β゛111 躍 繁 簡 に図面。 ゛(命1./ 8 補正の内容 (1) 明III It第5頁第14行から第15行の
[伝熱面を・・・限界がある」の記載を下記の通り訂正
する。 「作動流体側の伝熱性能が極めて低く、必然的に膨大な
伝熱面積を必要とする」 (2) 第8図申付号41を別紙で未配づ−るように補
正する。
Figure 1 is a schematic system diagram of the ocean temperature difference generator 7". Figure 2 is a sectional view of the vertical condenser installed at the ocean temperature difference generator tf/t. Figure 3 is a cross-sectional view of the vertical condenser FIG. 4 is an explanatory diagram of the action of the condensation drain attached to the heat exchanger tube. FIG. 5 is a partial perspective view of the sixth heat exchanger tube incorporated into the condenser according to the present invention. FIG. Fig. 7 is a diagram showing the experimental results of heat transfer performance. Fig. 8 is a diagram showing an embodiment of the pond of the present invention. 11...Vertical casing, 16...room, 18...
Room. 30... Heat exchanger tube, 31... 04-shaped projection, 32...
Slope direction, 33...Plane, 34...Ridge line. Submission of application Taku Mata Kiyoshi Figure 3 Figure 4121 Figure 5 ■+ ■- Figure 6 Imo Figure 8 Proceedings City book May 14, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1 Display of the case 1982 Year Patent Application No. 39583 2 Name of the invention Condenser 3 Relationship with the case of the person making the amendment Patent applicant (307) Toshiba Corporation 4 Representative Agent 11th edition of the 11th publication β゛111 Drawings in simplified form.゛(Instruction 1. / 8 Contents of amendment (1) Mei III It, page 5, lines 14 to 15, the statement ``There is a limit to the heat transfer surface...'' is corrected as follows. The heat transfer performance on the fluid side is extremely low, and an enormous heat transfer area is inevitably required.'' (2) Request No. 41 in Figure 8 is amended so that it is not distributed in a separate sheet.

Claims (1)

【特許請求の範囲】 1、支え板に支持された複数の伝熱管を、ケーシング内
部に上下方向に延びるよう筺配設した凝縮器において、
−側をなだらかな傾斜面とするとともに他側を稜線を形
成するように平面とした現状突起を、傾斜面が上側に位
置するようにして、上記伝熱管の外周面に間隔を置いて
配設したことf!:%徴とする凝縮器。 2、環状突起の間隔を単位長さ当りの凝縮量の多い部位
で狭く設定したことを特徴とする特許請求の範囲第1項
記載の凝縮器。 3、環状突起間に位置する伝熱管の外周面に長手方向に
延びる溝を形成したことを特徴とする特J1@求の範囲
第1項または第2項記載の凝縮器。
[Claims] 1. A condenser in which a plurality of heat transfer tubes supported by a support plate are disposed inside a casing so as to extend vertically,
The current protrusions, which have one side as a gently sloped surface and the other side as a flat surface forming a ridgeline, are arranged at intervals on the outer circumferential surface of the heat exchanger tube, with the sloped surface facing upward. What I did f! : Condenser with % characteristics. 2. The condenser according to claim 1, wherein the interval between the annular protrusions is set to be narrower at a portion where the amount of condensation per unit length is large. 3. The condenser as set forth in item 1 or 2 of the scope of claim J1, characterized in that a groove extending in the longitudinal direction is formed on the outer circumferential surface of the heat transfer tube located between the annular protrusions.
JP3958384A 1984-03-01 1984-03-01 Condenser Pending JPS60185091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3958384A JPS60185091A (en) 1984-03-01 1984-03-01 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3958384A JPS60185091A (en) 1984-03-01 1984-03-01 Condenser

Publications (1)

Publication Number Publication Date
JPS60185091A true JPS60185091A (en) 1985-09-20

Family

ID=12557110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3958384A Pending JPS60185091A (en) 1984-03-01 1984-03-01 Condenser

Country Status (1)

Country Link
JP (1) JPS60185091A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626606U (en) * 1992-08-19 1994-04-12 香賓精密工業股▲ふうん▼有限公司 Breathable rug
JP2017096621A (en) * 2009-07-16 2017-06-01 ロッキード マーティン コーポレーション Helical tube bundle arrangements for heat exchangers
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626606U (en) * 1992-08-19 1994-04-12 香賓精密工業股▲ふうん▼有限公司 Breathable rug
JP2017096621A (en) * 2009-07-16 2017-06-01 ロッキード マーティン コーポレーション Helical tube bundle arrangements for heat exchangers
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making

Similar Documents

Publication Publication Date Title
Stenger Experimental feasibility study of water-filled capillary-pumped heat-transfer loops
US4477396A (en) Countercurrent flow absorber and desorber
US4560533A (en) Fast reactor power plant design having heat pipe heat exchanger
EP0164326A2 (en) System for diaphragm distillation
EP0057694B1 (en) Open cycle thermal boosting system
Abed Design and fabrication of a multistage solar still with three focal concentric collectors
US4253519A (en) Enhancement for film condensation apparatus
JPS60185091A (en) Condenser
US4372126A (en) Closed cycle system for generating usable energy from waste heat sources
Rahul et al. A review on solar desalination techniques using vacuum technology
US4184536A (en) Heat rejection system
WO1982000597A1 (en) Countercurrent flow absorber and desorber
GB2390668A (en) Heat recovery from flue gas of a boiler
Robertson Waste heat rejection from geothermal power stations
US5159975A (en) Unit to enhance heat transfer through heat exchanger tube
JPS59212601A (en) Falling liquid-film type evaporator
Kalinin et al. Compact tube and plate-finned heat exchangers
RU2018032C1 (en) Heat power-to-pressure control energy converter
JPH0518618Y2 (en)
JPS5818095A (en) Evaporator
SU1177653A1 (en) Heat tube
RU2415363C2 (en) Screw heat exchanger
SU1193426A1 (en) Gravity thermal tube
JPS6337638Y2 (en)
Michel et al. Condenser designs for binary power cycles