JPS60185076A - Refrigerator with electric expansion valve - Google Patents

Refrigerator with electric expansion valve

Info

Publication number
JPS60185076A
JPS60185076A JP4104784A JP4104784A JPS60185076A JP S60185076 A JPS60185076 A JP S60185076A JP 4104784 A JP4104784 A JP 4104784A JP 4104784 A JP4104784 A JP 4104784A JP S60185076 A JPS60185076 A JP S60185076A
Authority
JP
Japan
Prior art keywords
electric expansion
degree
refrigerant
expansion valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4104784A
Other languages
Japanese (ja)
Other versions
JPH0349034B2 (en
Inventor
山下 和伸
木沢 敏浩
孝之 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP4104784A priority Critical patent/JPS60185076A/en
Publication of JPS60185076A publication Critical patent/JPS60185076A/en
Publication of JPH0349034B2 publication Critical patent/JPH0349034B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 木光明1.L冷凍機に関し、特に、膨張機構として間V
調整可能な電動式の膨張弁を備えたものの改良に関する
[Detailed Description of the Invention] (Industrial Application Field) Kimitsuaki 1. Regarding the L refrigerator, in particular, the expansion mechanism is
This invention relates to an improvement in a device equipped with an adjustable electric expansion valve.

(従来技術) 従来より、この秤の冷凍機どして、例えば持分ll3b
 8 47628号公報に開示されるように、開度調整
可能な熱電動式の電動膨張弁ど共に、蒸発器出口の冷媒
の過熱度を検出する検出手段と、該検出手段の信号を受
【ノ、上記過熱度に応じ(↓記電動膨張弁の弁間疫を制
御する制御手段とを備え、上記冷媒の過熱度を上記電動
膨張弁の冷媒流用制御でもって所定値に保持するように
したちのが知られている。
(Prior art) Conventionally, a refrigerator for this scale, for example,
As disclosed in Japanese Patent No. 8 47628, a thermoelectric electric expansion valve whose opening degree can be adjusted is equipped with a detection means for detecting the degree of superheat of the refrigerant at the outlet of the evaporator, and a sensor for receiving the signal of the detection means. , a control means for controlling valve spacing of the electric expansion valve according to the degree of superheating (↓), and the degree of superheating of the refrigerant is maintained at a predetermined value by controlling refrigerant diversion of the electric expansion valve. It has been known.

しかるに、例えば冷房運転時や暖房運転時、若しくtよ
同一運転状態−(゛あっても空調リベき部屋数が賃なる
時等の各種運転モードでの運転間々ti lli冒こ(
,1、上記従来のもので(J、運転モードの)ηいに拘
らず、電動膨張弁の当初の弁開度が−t」!に全閉であ
っC1その後の運転モードに応じた運転安定時の適正弁
開度に対して大きく離れた位置にあることから、運転中
に制御寸べぎ電動膨張弁の弁開度の増大変化幅が大きく
て、適正弁開度への収束安定に比較的長時間を要し、冷
凍能力の早期安定性に欠1ノる。
However, for example, when operating in various operating modes, such as during cooling operation, heating operation, or when the same operating state -(゛even if the number of rooms with air conditioning is increased),
, 1. In the above-mentioned conventional type (J, operation mode), the initial valve opening of the electric expansion valve is -t''! Since C1 is fully closed at C1 and is at a position far away from the appropriate valve opening at stable operation depending on the subsequent operation mode, an increase in the valve opening of the controlled electric expansion valve during operation. Since the width is large, it takes a relatively long time to stabilize the valve opening to the appropriate degree, and the early stability of the refrigerating capacity is lacking.

(発明の目的)゛ 本発明は(υiかる点に鑑み、弁開度を比較的容易に制
御できる電動膨張弁として、具体例としては弁開度の変
化が弁開皮制御用駆動パルスのパルス数に1:1に対応
するステッピングモータ式のものがあることに着目−し
、ぞの目的とするところは、上記電動膨張弁を使用する
とともに、各種の運転モードでの運転開始時には、該電
動膨張弁の弁開度を予め運転に先立って試験等でめられ
た起動時での、運転モードに対応する適正弁開1哀に初
期設定JることにJ:す、運転中に制御リベ込−電動膨
張弁の弁開度の増減変化幅を少なくして、如何なる運転
モードCの運転時ri(うってし適正弁開度への収束安
定を短時間で良りrに行うことにある。
(Objective of the Invention) In view of the above, the present invention provides an electric expansion valve that can relatively easily control the valve opening. Focusing on the fact that there is a stepping motor type that has a 1:1 ratio of 1:1 to 1:1, our aim is to use the electric expansion valve described above, and to use the electric expansion valve when starting operation in various operation modes. The valve opening of the expansion valve is initially set to the appropriate valve opening corresponding to the operating mode at startup, which is determined in advance by tests etc. prior to operation. - The purpose is to reduce the range of increase/decrease in the valve opening of the electric expansion valve to achieve stable convergence to the appropriate valve opening in a short time and in a good manner during operation in any operation mode C.

(発明の構成) 上記目的を達成りるため、本発明の構成は、第1図に示
りにうに、聞1立調整可能な電動膨張弁(Vl)と、熱
交換器(2〜5)通過後の冷媒の過熱度又4.L過冷u
II哀を検出する検出手段〈55)と、該検出手段(5
5)からの信号をうり、冷媒の過熱度又は過冷却瓜に応
じて上記電動膨張弁〈Vl〉の弁開度を制御する制御手
段(56)とを備え、上記熱交換器(3)での過熱度又
は過冷却度を所定値に保持力るようにした冷凍機におい
て、冷凍機の運転開始時を検出する運転開始時検出手段
(57)ど、冷凍I幾の運転モードを判定覆る運転モー
ド判定手段(58)と、冷凍機の運転モードに応じ−C
上記電動膨張弁(V1〜V4)の初IUJ設定価を予め
記憶する記憶手段(59)と、上記運転モード判定手段
(58)の1.1号を受け、運転モードに応じた初期設
定値を上記記憶手段(59)からlliみ出づ読み出し
手段(60)と、上記運転開始時検出手段(57)の信
ぢを受()、−ト記電動膨張弁(Vl−V4)の弁開I
Qを上記読み出し手段(G O>により読み出された初
期設定値に位置(=1ける初期設定手段く61)とを備
えたしのである。このことにJ、す、本発明ひは、冷凍
機の運転開始時には、各種運転モードに対応して予め記
憶した初1!O設定!iIIのうち、その運転モードに
対応するものを読出したのち、電動膨張弁の弁開度をそ
の読出された初110設定値に初期設定づるようにした
ものである。
(Structure of the Invention) In order to achieve the above object, the structure of the present invention is as shown in FIG. 4. Degree of superheating of the refrigerant after passing through. L supercooled u
Detection means (55) for detecting II sadness, and the detection means (55)
5) control means (56) for receiving a signal from the heat exchanger (3) and controlling the valve opening degree of the electric expansion valve (Vl) according to the degree of superheating or subcooling of the refrigerant; In a refrigerator configured to maintain the superheating degree or subcooling degree at a predetermined value, an operation start time detection means (57) for detecting when the refrigerator starts operating is used to determine the operating mode of the refrigeration mode. -C according to the mode determination means (58) and the operating mode of the refrigerator.
A storage means (59) for storing in advance the initial IUJ setting value of the electric expansion valves (V1 to V4) and No. 1.1 of the operation mode determination means (58) are used to determine the initial setting value according to the operation mode. The readout means (60) from the storage means (59) and the signal from the start-of-operation detection means (57) are received () to open the electric expansion valve (Vl-V4).
Q is located at the initial setting value read out by the above-mentioned reading means (GO>) (=1 minus initial setting means 61). When the machine starts operating, the first 1! The initial setting is set to the initial setting value of 110.

(発明の効果) したがって、本発明の電動膨張弁を備えた冷を特機にJ
:れ(、f1冷凍機の各種運転モードCの運転開始時、
電動膨張弁の弁開度が、読出し手段によって読出された
。現在の運転モードに対応づる初期%+!1 + 縫■
1− り+ 1111 Wロール λ h 六小Tカ1
14dllヤ ス;甫由7モ −ドでの運転■・1であ
っても、運転中に制御リベき電動膨張弁の弁開度の増減
変化幅を少なくして、電動膨張弁の運転モードに応じた
適止弁開1立への収束制御を短時間C良θfに行うこと
ができ、よって弁開度の収束安定性の向上ひいては冷凍
1jシカの早期安定化を有効に図ることができるしので
ある。
(Effects of the Invention) Therefore, it is possible to use a J
:Re(, at the start of operation of various operation modes C of the f1 refrigerator,
The valve opening degree of the electric expansion valve was read out by the reading means. Initial %+ corresponding to the current driving mode! 1 + stitch■
1- Ri+ 1111 W roll λ h 6 small T Ka 1
14 dll Yasu; Hoyu - Operation in 7 mode - Even in 1, reduce the range of increase/decrease in the valve opening of the control lever electric expansion valve during operation, and switch to the operation mode of the electric expansion valve. Convergence control to the appropriate valve opening of 1 can be performed in a short time with a good Cθf, thereby improving the convergence stability of the valve opening and effectively stabilizing the frozen 1j deer at an early stage. It is.

(実施例) 以下、本発明の実施例を第2図以下の図面に基づいてl
iT躬IIに説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings below in Figure 2.
It will be explained in iTman II.

第2図は本発明をと−1−ポンプ式冷暖房給湯1幾に対
して適用した場合の実施例を示し、(△)は室外に配設
さtlだ室外ユニット、(B)、(C)。
Fig. 2 shows an embodiment in which the present invention is applied to a pump-type air-conditioning/heating/hot-water supply system, in which (△) is an outdoor unit installed outdoors, (B), (C) .

(D)はそれぞれ室内の相異なる部屋に配設された窯内
ユニット、([三〉は貯湯槽コニッl−(゛あって、上
記室外ユニツ1−(A)は、内部に圧縮(幾〈1)およ
び熱源側熱交挽器(2)を描えているとともに、室内ユ
ニツ+−(B)、(C)、(D>(よイれぞれ内部に空
、ilV負荷側熱交換器(3)。
(D) is an in-kiln unit disposed in a different room in the room, ([3] is a hot water storage tank), and the outdoor unit 1-(A) is compressed (some 1) and the heat source side heat exchanger (2), and the indoor units +- (B), (C), (D>) are empty inside, and the ilV load side heat exchanger ( 3).

(4)、(5)を備えている。また、貯湯槽コニッ1〜
([)は、内部に水を貯溜づる貯湯槽(6)と、該貯湯
l!l1(G)内の貯溜水を加熱する給湯負荷側熱交換
器(7)と、貯湯槽(6)内の貯溜水を該給湯負荷側熱
交換器(7)に循環さぼるポンプ([〕)とを備えてい
る。
It is equipped with (4) and (5). In addition, hot water tank Koni 1~
([) is a hot water storage tank (6) that stores water inside, and the hot water storage l! A hot water supply load side heat exchanger (7) that heats the water stored in l1 (G), and a pump ([]) that circulates the stored water in the hot water storage tank (6) to the hot water supply load side heat exchanger (7). It is equipped with

上記室外ユニット(△)内にJ3いて、(SVl)J>
 J、び(SV2)はそれぞれOFF作動時に実線の如
く切換4つり、ON作動時に破線の如く切換ねる四路切
換弁、(S’V3)はレシーバ(8)から給4)真向側
熱交換器(7)への冷媒流れを+l、容するil¥ f
4k Itl m ブ↑、(V+ >、 (V2 >、
 (■3 >。
J3 is in the outdoor unit (△) above, (SVl)J>
J, and (SV2) are four-way switching valves that switch as shown by solid lines when OFF, and four-way switching valves that switch as shown by broken lines when ON, respectively. (S'V3) is a heat exchanger that is supplied from the receiver (8) 4) Directly opposite side heat exchange +l, il\f to accommodate the refrigerant flow to the vessel (7)
4k Itl m bu↑, (V+ >, (V2 >,
(■3 >.

(V4)および(5)はそれぞれ開閉且つ聞度調整可0
Iliなスデツピングモータ式電動膨張弁であって、該
各電動膨張弁(■1)〜(V5)はその弁間痕の変化が
後述するCPU(!12)で発生覆る弁開度制御信号と
しての駆動パルスのパルス数に1;1に対応するもので
ある。
(V4) and (5) can be opened/closed and the intensity can be adjusted 0
Each electric expansion valve (1) to (V5) is a stepping motor type electric expansion valve, and each of the electric expansion valves (1) to (V5) receives a valve opening control signal that is generated by a CPU (!12) which will be described later. This corresponds to the pulse number of the driving pulse as 1:1.

加え−C1(T +−11>は、上記電動膨張弁(\/
4>及びレシーバ(8)間の液配管く15)と圧縮機(
1)への戻りガス配管(23>との間を接続りる。キャ
ピラリチューブ(27)を介設した第1バイパス包< 
36 )における該キャピラリチューブ(27)の戻り
ガス配管(23)側に設けたサーミスタよりなる第1温
痕センリーであって、冷凍サイクル中の蒸発温度(1°
1)を検出りるIこめのちのであり、(T I−12>
は各空調0荷側熱交換器(3)へ・(5)及び四路切換
弁(SV2)間の」ζ通ガス配管(16)と上記各′r
fiilIIJ膨張弁(V+)。
In addition -C1 (T +-11>) is the electric expansion valve (\/
4> and the liquid pipe between the receiver (8) 15) and the compressor (
1) with the return gas pipe (23).The first bypass envelope with the capillary tube (27) interposed
36), which is a first temperature sensor consisting of a thermistor provided on the return gas pipe (23) side of the capillary tube (27), and is configured to control the evaporation temperature (1°
1) is detected after (T I-12>
is the ζ gas pipe (16) between each air conditioner load side heat exchanger (3)/(5) and the four-way switching valve (SV2) and each of the above
fiilIIJ expansion valve (V+).

(V2 ) 、、 (V3 >の室内ユニット(B)、
(C)、(D)側の分岐液配管(20)、<21)。
(V2) ,, (V3 > indoor unit (B),
(C), (D) side branch liquid piping (20), <21).

(22)どの間を接続づる。補助凝縮器(37)、キレ
ピラリデユープ(28)、逆止弁(38)をfPrQし
た第2バイパス管〈39)にa5ける補助凝縮器(37
)とキレピラリチューブ(28)との間に設けたナーミ
スタj、りなる第2;品;立しンザであって、暖房運転
時の空調負荷側熱交換器(3)。
(22) Which spaces should be connected? The auxiliary condenser (37), the auxiliary condenser (37), and the check valve (38) are connected to the second bypass pipe (39) with fPrQ.
) and the sharp tube (28), the air conditioner load-side heat exchanger (3) during heating operation.

(4)、(5)の凝縮温度(T2)を室外側で検出可能
にするためのものであり、また、< T I−13)〜
(Tl−110>はそれぞれ上記と同様にサーミスタに
りなる第3〜第10の温庶センザであって、第3〜第5
温度センサ(T )−13)〜(TI〜15)はイれぞ
゛れ空調負荷側熱交換器(3)〜(5〉ど四路IJ) 
J’A弁(S V 2 > 1771 (1)分岐カス
配’i’l (’I 7 ) 〜(1つ)に段()られ
、冷房運転口)及び冷房給泥運転時の低圧ガス冷奴の冷
媒湿度(−r:+ )、(T4)、(’T5)を検出り
るものであり、第6〜第8 &。
This is to enable the condensation temperature (T2) of (4) and (5) to be detected outside the room, and < T I-13) ~
(Tl-110> are the third to tenth temperature sensors which are respectively thermistors as above, and the third to fifth temperature sensors
Temperature sensors (T)-13) to (TI to 15) are removed, and air conditioning load side heat exchangers (3) to (5) are four-way IJ.
J'A valve (S V 2 > 1771 (1) Branch waste distribution 'i'l ('I7) ~ (1) stage (), air conditioning operation port) and low pressure gas cold sluice during cooling mud supply operation It detects the refrigerant humidity (-r:+), (T4), ('T5) of 6th to 8th &.

11センリ(T H6)〜〈丁[」8)はイれぞれ空調
Cq i?ii側熱交挽器交換)〜(5)とレシーバ(
8〉間の分岐液配管(20)〜(22)に設りられ、暖
房運転11,1及びIO凋運転時の凝縮液化後の高F丁
液冷媒のン13媒温1哀<T6 )、(TI )、(丁
8 )を検出づるものであり、また第9記度レン」ノ(
T l−19)(J圧縮機(1)への戻りガス配管(2
3)の冷媒温度(T9)を検出づるものであり、さらに
(王HIO)は圧縮1幾(1)の吐出カス配管(2/I
)の冷媒)B磨(−r 10 )を検出するものである
11 centimeter (T H6) to <Ding ['8) are each air conditioner Cq i? ii side heat exchanger exchange) ~ (5) and receiver (
It is installed in the branch liquid piping (20) to (22) between (TI), (8), and the 9th degree ren'no (
T l-19) (Return gas piping (2) to J compressor (1)
3) is used to detect the refrigerant temperature (T9), and the (Ou HIO) is used to detect the discharge waste piping (2/I) of compression 1 (1).
) to detect the refrigerant) B polishing (-r 10 ).

よって、空調0荷側熱交換器(3)〜(5)がそれぞれ
蒸発器として作用J−る場合には第1温度センザ(T 
I−11)により蒸発温度(T1)を、d3J、び第3
〜第5温度レンザ(T I−13>へ・(T I−15
)により該各空調負?’i?j側熱交換器(3)〜く5
)通過1殺の低圧ガス冷媒の冷媒温度(T3)、(T。
Therefore, when the air conditioning load side heat exchangers (3) to (5) each act as an evaporator, the first temperature sensor (T
I-11), the evaporation temperature (T1), d3J, and the third
~5th temperature lens (TI-13> to (TI-15)
) by each air conditioner negative? 'i? J-side heat exchanger (3) to 5
) Refrigerant temperature of low pressure gas refrigerant (T3), (T.

1 )、(T5)を検出し、逆に各空調工′l荀側え)
交換2::(3)〜・(5)が凝縮器として作用Jる場
合に(j第2温tαピンザ(T I 2 >にJ:すδ
λ稲湿磨(T2)を、J5 J:び第6・〜第8温度セ
ンリー(T H6)〜(1’ N 8 )にJ:り該各
空調負荷側熱交換器(3)〜(5)通過後の高圧液冷媒
の冷媒温度(T6’)。
1), (T5) is detected, and conversely, each air conditioner's
Exchange 2:: When (3) to (5) act as a condenser,
λ rice dampening (T2) is applied to each of the air conditioning load side heat exchangers (3) to (5). ) The refrigerant temperature (T6') of the high-pressure liquid refrigerant after passing through it.

(TI)、(Ta )を検出りるとともに、熱源側熱交
換器(2)が蒸発器とし゛(作用する場合に【よ第1温
度レンザ(T I−11)ににり蒸発温度(TI )を
、おJ:び第9濡麿センリ< T I−19’)ににり
該熱源側熱交換器(2)通過後の低圧ガス冷奴の冷媒温
度(T=1)を検出JるJ:うにしている。尚、図中、
(29)はキャピラリデユープ、<30)+、j給渇負
荷側熱交換器(7)からレシーバ(8)への冷媒流れを
許容りる一方向弁、(31) +Σ1アニ1コムレータ
、(,32)〜(35) I;を閉鎖弁である。
(TI) and (Ta), and when the heat source side heat exchanger (2) acts as an evaporator, the first temperature lens (TI-11) detects the evaporation temperature (TI). Detect the refrigerant temperature (T=1) of the low-pressure gas refrigerant after passing through the heat source side heat exchanger (2) at the 9th wet sensor < T I-19'). I'm doing it. In addition, in the figure,
(29) is a capillary duplex, <30) +, j one-way valve that allows refrigerant to flow from the supply/cooling load side heat exchanger (7) to the receiver (8), (31) +Σ1 Ani1 combulator, (,32) to (35) I; are closing valves.

イして1.に記ion凡1の記1哀レン4す(T I−
11)へ(TI−410)はイれぞれ第3図にも示ηよ
゛)に上記四路切操ブ↑(SVI)、(SV2>および
電画・開閉弁(SV3)並ひに5個の電動膨張弁(Vl
)−(v5)を制御ηる制御回路(40)に1.−シ3
の授受1il能に接続され(いる。該制御回路(40)
は、第3図に示1J3J、う;、二、その内部に、10
個の温度センリ−(T111)〜(T I−1’10 
)からの温度信号をマルチプレクリ(41)を介して選
択的に受イnづ゛るどともに、3個の室内ユニット(B
)〜(D)からの冷房a3よび1暖房の各)車lIl/
i指令信号。
1. 1. 1. 1. 4. (T I-
11) To (TI-410), install the above-mentioned four-way steering valves ↑ (SVI), (SV2>) and electric picture/on-off valve (SV3) as well as shown in Fig. 3. 5 electric expansion valves (Vl
) - (v5) to the control circuit (40) that controls η. -C3
The control circuit (40) is connected to the transmission/reception function of the
is shown in Figure 3. 1J3J;
temperature sensor (T111) ~ (T I-1'10
) selectively receives the temperature signal from the three indoor units (B
) to (D) for cooling a3 and heating each) car lIl/
i command signal.

設定室温信号おにび実際室温信号並びに貯湯槽−7ニッ
j−<E)からの給温運転指令信号を受tJるC1″U
(’12)ど、圧縮機(1)のh1動11、)に運転指
令18号の種類や室内ユニット(B)〜(D)の運転数
(運転室数)等の各種運転t−−ドに応じて適正となる
ようめられ!ご上記4f17t1の°電動膨張弁(V’
Nへ・(V4)の弁間)哀の初(υ]段設定111を予
め記憶づるROM(43)とを備えている。
Receives the set room temperature signal, the actual room temperature signal, and the heating operation command signal from the hot water storage tank -7 Nij-<E) C1''U
('12), various operation t--codes such as the type of operation command No. 18 and the number of operations (number of operating rooms) of indoor units (B) to (D) for the h1 movement 11 of the compressor (1). Be sure to be appropriate depending on the situation! Please note the above 4f17t1 ° electric expansion valve (V'
It is equipped with a ROM (43) that stores in advance the first (υ) stage setting 111 for the first (υ) step (to N/(V4)).

ぞして、上記CPU(42>は、3台の室内ユニッ1〜
(B)〜(D)からの冷房又は暖房運転指令13号およ
び実際室温信号並びに給湯運Iin指令信号(ごlii
> Uτ[馴1泡(1)を0N−OFF制並1iづると
ともに、下表に示η如く、四路切換ブp(SVl)、(
S、V 2 ) 、 電m Ijtl閉弁(SV3)i
t>、I、ぴ4個の電動膨張弁(Vl)〜くv7′I〉
を冷房運転時には同表第1段目の如く制御して、運転上
−ド信シうを発し″(いる室内」−ニラ1〜側(以下、
)11に運転側という)の空調負荷側熱交換器(3)へ
−(5)で室内から吸熱した熱量を熱源側熱交換器(2
)で室外に敢熱しで対応する室内を)1〕房しつつ、上
記蒸発器どじで作用づる各空調負荷側熱交換器(3)〜
(5)での冷媒の過熱度、即ち冷媒温度の温度差 (T
3−1−+ ) 、 (T 4 − T+ ) 、 (
T5 −T1)をぞれぞれ対応ブる電動膨張弁(\/1
)〜(v3)で設定過熱If (’S l−1o + 
)に調整7る一力、冷房給(易運転時には同表2段目の
如く制御しC1運転側の空調負11側熱交換器(3)〜
(5)で室内から吸熱した熱Irlを給湯負前側熱交換
器(7)で貯湯槽(6)内の貯溜水に放熱して該貯溜水
を加熱(給湯)シー)つ対応Jる室内を冷房し、同時に
上記蒸発器として作用する空調負荷側熱交換器(3)〜
(5)での冷媒の過熱度、即ら冷り11)苦爪の記1丸
差(T3−1’+ )、(T4−丁1 )。
Therefore, the CPU (42>) is connected to the three indoor units 1 to 4.
The cooling or heating operation command No. 13 from (B) to (D), the actual room temperature signal, and the hot water supply operation command signal (please refer to
>Uτ
S, V 2 ), electric m Ijtl valve closed (SV3) i
t>, I, 4 electric expansion valves (Vl)~kuv7'I>
During cooling operation, it is controlled as shown in the first row of the same table, and a signal is emitted during operation.
) 11 is referred to as the operation side) to the air conditioning load side heat exchanger (3) - (5) heat absorbed from the room is transferred to the heat source side heat exchanger (2).
) while heating the corresponding indoor area) 1), each air conditioning load side heat exchanger (3) which operates with the evaporator door mentioned above.
(5) The degree of superheating of the refrigerant, that is, the difference in refrigerant temperature (T
3-1-+), (T4-T+), (
Electric expansion valve (\/1) corresponding to T5 - T1)
) ~ (v3) Set overheating If ('S l-1o +
), the cooling supply (during easy operation, control as shown in the second row of the same table) and the air conditioning negative 11 side heat exchanger (3) on the C1 operation side.
In (5), the heat Irl absorbed from the room is radiated to the water stored in the hot water storage tank (6) by the hot water supply negative front heat exchanger (7), and the stored water is heated (hot water supplied) to the corresponding room. Air conditioning load side heat exchanger (3) that cools the room and simultaneously acts as the evaporator.
The degree of superheating of the refrigerant in (5), that is, the degree of cooling 11) One round difference (T3-1'+), (T4-1).

(1゛5〜王1)を上記と同様にそれぞれ対応覆る電動
膨張弁(vl)〜(V3)で設定過熱度(Sl−1o2
)に調整し、また給湯運転簡には同表3段口の如く制御
して、熱源側熱交換器(2)で室外から吸熱しノこ熱量
を給湯真向側熱交換器(7)で貯)易++V (G )
内の貯溜水に放熱して給湯しつつ、上記蒸発器として作
用Jる熱源側熱交j真黒(2)て゛の冷媒の過熱庶、即
ち冷媒温度の渇p1差(−1−9−T+)を電動膨張弁
(v4)で設定過熱度(S11o3)に;l!整し、さ
らに暖房運転11.5には同人4段目の如く制御(ノー
(、熱源側熱交換器(2)で室外から吸熱した熱量を運
転側の空調負荷側熱交換器(33)〜(5)で室内に放
熱しC対応勺る室内を暖房しつつ、上記蒸発器として作
用づる熱源側熱交換器(2)での冷媒の過熱度、即ら冷
媒温度の温度差(’T’9−1−+)を電動IIj、3
張弁(V4)で設定過熱度(St−1o4)に調整覆る
と共に上記凝縮器どして作用づ−る空調負荷側熱交換器
(3)〜〈5)Cの冷媒の過電1,11度、即ち冷媒温
度の温度差(T2−Tr ) 、 <T2−T7 ) 
、 (l−2−1−8)をそれて゛れ対応りる電動膨張
弁(vl)へ・(V3)−C設定過IThJJII哀(
S C1] ト) K調整ツール。
The superheat degree (Sl-1o2) is set using the electric expansion valves (vl) to (V3) corresponding to (1゛5 to 1) in the same way as above.
), and for easy hot water supply operation, control is performed as shown in the third stage in the same table, and the heat exchanger (2) on the heat source side absorbs heat from the outside, and the heat amount of the saw is transferred to the heat exchanger (7) directly opposite the hot water supply. Saving) Easy ++V (G)
The heat exchanger on the heat source side, which acts as the evaporator while supplying hot water by dissipating heat to the stored water inside the tank, causes the superheating of the refrigerant in pitch black (2), i.e., the difference in refrigerant temperature p1 (-1-9-T+). to the set superheat degree (S11o3) using the electric expansion valve (v4); l! In addition, during heating operation 11.5, control is performed as shown in the fourth stage of the same process. In (5), heat is radiated into the room to heat the room, and the temperature difference ('T' 9-1-+) to electric IIj, 3
Adjustment to the set superheat degree (St-1o4) with the tension valve (V4) and overcurrent of the refrigerant in the air conditioning load side heat exchangers (3) to <5)C, which are operated by the above-mentioned condenser, etc. degree, that is, the temperature difference in refrigerant temperature (T2-Tr), <T2-T7)
, deviate from (l-2-1-8) and go to the corresponding electric expansion valve (vl). (V3)-C setting is too high.
S C1] K adjustment tool.

尚、暖房時の運転f、Bij止は、各至内ユニツ1〜(
B)。
In addition, operation f and Bij stop during heating are determined by each unit 1 to (
B).

(C)、(1つ)に設けた各室内ファン(3うa)。(C), each indoor fan (3a) installed in (1).

(4a )、<58 )を停止ηることにより行う、。(4a), <58) is performed by stopping η.

このj4合、停止側の空調負1′、η側熱交換器(3)
This j4 case, stop side air conditioner negative 1', η side heat exchanger (3)
.

(4)、(5)での放熱量はぎ4つめ(少ないので、電
動膨張弁(■1)〜(3)は全閉に(Lず、1暖房運転
時の設定過冷却度(SCO2)に調整り−ることに、ノ
、り暖りフ能力の1n人を実用上問題と<Qら/jい程
度に制御811 Lながら、液溜りをも可及的に防止づ
るのである。尚、第3図中、(15)〜(49〉はぞれ
ぞれ5個の電動膨張ブi’(Vl)〜(V 5 )を駆
動υるドライバ、(50)lよCPU(4,2)で発生
”lル5 gIO) 電nJ Ila; 6Q弁(Vl
−)〜(\15)の弁開麿制御イ1]号どしての駆動パ
ルス(後)ボ〉を対応づるものに分配゛りるマルチプレ
クリ、(51)は冷媒流皇不足時に〆λ灯するガス欠表
示灯、(1′>2)は電源プラグである。ニした、電動
膨張フt−(\/5)は冷ill li笈の運転の停止
11・1に聞いてLt縮は′(1)の高圧側と低圧側と
を圧力バランスさせる均圧用膨張弁どしく作用りるもの
である。
The amount of heat dissipated in (4) and (5) is the fourth (lower, so the electric expansion valves (■1) to (3) are fully closed (L), and the set degree of supercooling (SCO2) during heating operation is set. In particular, it is possible to control the heating capacity to a degree that does not pose a practical problem, while also preventing liquid pooling as much as possible. In Fig. 3, (15) to (49> are drivers for driving the five electric expansion valves i' (Vl) to (V 5 ), respectively, (50) l and CPU (4, 2). 6Q valve (Vl
-) to (\15) Valve opening control (1) to distribute the drive pulses (after) to the corresponding ones, (51) The low gas indicator light (1'>2) is the power plug. The electric expansion valve t-(\/5) is an expansion valve for pressure equalization that balances the pressure between the high pressure side and the low pressure side of '(1). It works very well.

次tこ、上記CrLJ(42)による4 +lI!lの
電!I!JJ膨張弁(vl)〜・(\171)の弁開度
制御を第4図のフ[1−ヂャートに阜づいて説明覆る。
Next, 4 +lI by CrLJ (42) above! l's electricity! I! The valve opening control of the JJ expansion valves (vl) to (\171) will be explained based on the chart in FIG.

尚、暖房運転11、冒こは、4個の電動膨張弁(Vl)
〜・(\/4)の全部が前記表の如く弁開度制御されて
、本実施例の制御の全容を説明できるので、以下暖房運
転時の流れを説明覆る。本フローヂャ−1〜は3台の室
内ユニットのうち少なくとも1台からの暖房運転指令信
号を受けCスタートηるもので、先ずステップS1にお
いて3台の室内ユニット(B)〜・(D>のうち少なく
とも1台から受信した運転指令111号おにびその受信
数に基づいて運転モードを判別したのち、ステップS2
において4飼の電動膨張弁(Vl)〜(V/I)の開度
を閉じる方向に弁開度制御信号どしての駆動パルスを発
生して、該各電動膨張弁(Vl)〜(■4)の弁開度を
全開状態となる間11i塁準位置に位置付ける。イして
、ステップS]に43いて上記判別された運転モードに
応じてROM(43)から各電動膨張弁(vl)〜(v
4)の弁開度の初期設定値を読み出し、該初1IIJ設
定11′1と一1記間度基準位置どの開度差に応じたパ
ルス数の駆mhパルスを、対応づる電動膨張フr(vl
)〜(V 71’)に出力してそのJT聞瓜を該各初期
設定1白に制御りる。そして、ステップS aにおいて
この弁開度か運転の安定−するまでの過渡時間に相当り
る所定時間(例えば5分)のあいIご滉持されるよう指
示したのち、ステップSst’初めて圧縮(幾(1)を
起動づる。
In addition, heating operation 11, above, four electric expansion valves (Vl)
Since the valve opening degree of all of the valve openings of ~.(\/4) is controlled as shown in the table above, and the entire control of this embodiment can be explained, the flow during the heating operation will be explained below. This flowchart 1~ receives a heating operation command signal from at least one of the three indoor units and performs a C start. First, in step S1, among the three indoor units (B)~ (D> After determining the driving mode based on the driving command No. 111 received from at least one vehicle and the number of received driving commands, step S2
, a drive pulse such as a valve opening control signal is generated in the direction of closing the opening of the four electric expansion valves (Vl) to (V/I), and each of the electric expansion valves (Vl) to (■ 4) Position the valve at the 11i base semi-position while the valve opening is fully open. Then, in step S] 43, each electric expansion valve (vl) to (v
4) Read the initial setting value of the valve opening degree, and apply the driving mh pulse of the number of pulses according to the opening degree difference between the first 1IIJ setting 11'1 and the 11th degree reference position to the corresponding electric expansion valve r( vl
) to (V71') to control the JT melon to each initial setting of 1 white. Then, in step S a, an instruction is given to maintain this valve opening for a predetermined time (e.g., 5 minutes) corresponding to the transient time until the operation becomes stable, and then in step Sst', the compression is performed for the first time. Start Iku (1).

続いて、ステップS6において10個の湿度ヒンザ(”
r H1)〜(T I−110)からの温度信号に基づ
き第2図の10箇所の温度(1−+ ) 〜(T 10
 )を跣み出したの15、ステップS7において圧縮1
;丈(1)の冷媒ガス吐出温度(Too>をその異常上
昇時に相当する所定舶(TcM)と大小比較し、該所定
1[1’J (T E M ) J、りも大ぎいYES
の六I;i運転時には、ステップ88において運転モー
ドに対応覆る設定過熱庶(SHo4)を下げて冷媒ガス
吐出温度(TIO>を低下さけ、この状態が安定J゛る
までの所定時間を持ってステップS9に進む一方、冷媒
ガス吐出tili(Too)が所定イ:ri (’T−
E M )以下のNoの通常運転時の場合には直ちにス
テップS9に進む。
Next, in step S6, 10 humidity hinges ("
Based on the temperature signals from r H1) to (T I-110), the temperatures at 10 locations in Figure 2 (1-+) to (T 10
) is exposed 15, and compressed 1 in step S7.
; Compare the refrigerant gas discharge temperature (Too> of height (1)) with the specified ship (TcM) corresponding to the abnormal rise, and determine that the specified 1 [1'J (T E M ) J, too large YES
6I: During operation, in step 88, the setting superheating point (SHo4) corresponding to the operation mode is lowered to avoid a drop in the refrigerant gas discharge temperature (TIO), and the temperature is set for a predetermined period of time until this state becomes stable. While the process proceeds to step S9, the refrigerant gas discharge tili (Too) is adjusted to a predetermined value i:ri ('T-
EM) If the following No is the case during normal operation, the process immediately proceeds to step S9.

ぞして、ステップS9において蒸発器どしく作用してい
る熱源側熱交換器(2)Cの実際の冷媒の過熱度(S 
H)を−1−記湿度差(T9−T+)に基づいて締出J
るどともに、凝縮器として作用している運転側の空調負
荷側熱交換器および(?止側の空調負荷側熱交換器(3
)〜(5)での実際の過冷却度(SC)をト記湿度差(
−r2− Te )。
Therefore, in step S9, the actual degree of superheating (S
H) is excluded based on -1 - recorded humidity difference (T9 - T+)
The air conditioning load side heat exchanger on the operation side and the air conditioning load side heat exchanger on the stop side (3) act as condensers.
) to (5), the actual degree of supercooling (SC) is expressed as the humidity difference (
-r2-Te).

<1”2−Ty ) 、(T2−Ta >に基づいて暉
出したのち、ステップ31Gにおいて実際の過熱度(S
 I−+ > a;よび実際の過冷却度(SC)をそれ
ぞれ対応する設定過熱度(SHoa)713よび設定過
冷却度(SCo+−・、〕2)と大小比較づる。そし−
(、イれぞれが共に一致していないN、Oの場合にはス
テップSoに進み、該ステップSoにおいて実際の過熱
度(S l−1>が対応Jる設定過熱度(Sl−1o4
)よりも大きい場合および実際の過冷却度(SC)が設
定過冷却度(SCo l〜02 )よりも大きい場合に
は、冷媒流通量が少ないと判断して対応する¥i動膨張
ブ↑(vl)〜(V4)に対してパルス数をjt)やり
間(Er号としての駆動パルスを出力してその弁開度を
大きくJる一方、逆に、実際の過熱度(St〜1)が対
応する設定過熱度(S l−1o4)より6小さい場合
J5よび実際の過冷却度(SC)が設定過電MI19 
(SCo + 〜o z )よりも小さい場合には、冷
媒流通量が多いと判断して対応りる電動膨張弁(Vl)
へ−(V/I)に対してパルス数を減らJ閉イム号とし
Cの駆動パルスを出力して弁開1良を小さくしたのち、
ステップSI2に進む。一方、ステップS 10で実際
の過熱度(SII)および実際の過電ill I立(S
C)がてれでれ対応りる設定値(SHo a ) 、(
SCo + ”o 2 )に等qいYESの場合には冷
媒流通mが適正であると判断し【直ちにステップS 1
2に進む。
<1"2-Ty), (T2-Ta>), the actual superheat degree (S
I−+>a; and the actual degree of supercooling (SC) are compared in size with the corresponding set degree of superheat (SHoa) 713 and set degree of supercooling (SCo+−·, 2). Soshi-
In the case of N and O, which do not match each other, the process proceeds to step So, and in step So, the actual superheat degree (S l-1> corresponds to the set superheat degree (Sl-1 o4
) or when the actual degree of subcooling (SC) is greater than the set degree of supercooling (SCol~02), it is determined that the refrigerant flow rate is small and the corresponding ¥i dynamic expansion valve ↑ ( While the number of pulses for vl) to (V4) is output as jt) and a driving pulse as Er (Er) to increase the valve opening, conversely, the actual degree of superheating (St~1) If J5 and actual subcooling degree (SC) are 6 less than the corresponding set superheating degree (S l-1o4), the setting overcurrent MI19
If it is smaller than (SCo + ~oz), it is determined that the refrigerant flow rate is large and the corresponding electric expansion valve (Vl) is activated.
After reducing the number of pulses to (V/I) and outputting the drive pulse of C to reduce the valve opening time,
Proceed to step SI2. On the other hand, in step S10, the actual superheat degree (SII) and the actual overvoltage (SII) are determined.
C) Setting value (SHo a ), (
If YES, which is equal to SCo + "o 2 ), it is determined that the refrigerant flow m is appropriate, and [immediately step S1
Proceed to step 2.

続いて、ステップS 12においで過熱度の制御過程に
ある電動膨張弁(V4)の弁開度を判定し、全開でない
Noの場合には過熱度の適正制御中であると判断しζス
テップS r、に戻る一方、弁開度が全開であるYES
の場合には過熱度が若しく人さい冷媒カスの不足11.
’i (ガス欠IL’+ ) rあると判断したのら、
スフツブS 13に進む。そして、暖房運転+1.’l
ぐあるから、先ず停止側の室内ユニツ1〜([3)〜<
 D > ”(’の)1々溜りに起因し−C刀ス欠が生
じているかを判別リベく、ステップS 15にd3いて
暖房停止111’l (1) ”、i! 内1’ニツl
−([3)〜(D ) ’rの設定過電7JII哀(S
 Co 、! )を下げて、これニ幻応tl’ ル電f
ar膨張弁(Vl)−(V3)を所定開度たり余分に聞
いて溜った冷媒を回収し始める。そして、回収するのに
十分す時間を待つでステップS IGにJ3いて対応づ
る過熱度(81−104>を制御している電動ル1;張
弁(V 4 )の弁開1哀を改めC判定し1.全開でな
いNoの場合には過熱度の適正制御に戻ったど判[!7
i L (スフツブS6に戻る一方、未だ全開であるY
 E S L))場合にはガス欠時と判断してステップ
S 14に43いて圧縮機〈1)の作動を停止させると
と6に、ガス欠表示灯(5つ)を点灯させる。
Subsequently, in step S12, the valve opening degree of the electric expansion valve (V4) which is in the process of controlling the degree of superheat is determined, and if the answer is No that it is not fully open, it is determined that the degree of superheat is being controlled appropriately, and ζ step S. Return to r, while the valve opening is fully open YES
In the case of 11. the degree of superheating is low and there is insufficient refrigerant scum.
'i (lack of gas IL'+) rIf you judge that there is,
Proceed to Sfutsubu S 13. And heating operation +1. 'l
First of all, indoor units 1~([3)~<
D >``(') It is determined whether the -C sword gap has occurred due to the accumulation of ``('), and the heating is stopped in step S15 by d3 (111'l (1)'', i! inside 1' day l
-([3)~(D)'r setting overvoltage 7JII (S
Co,! ), lower this phantom response tl' le electric f
Start collecting the accumulated refrigerant by opening the ar expansion valves (Vl)-(V3) to a predetermined degree or more. Then, after waiting for sufficient time to recover, the electric motor 1 controlling the corresponding superheat degree (81-104>) in step S IG changes the valve opening 1 of the tension valve (V 4 ). Judgment: 1. If the answer is No, the degree of superheating has returned to proper control [!7
i L (Returning to S6 S6, Y still at full throttle
In the case of E S L)), it is determined that there is a gas shortage, and the operation of the compressor (1) is stopped in step S14 (43), and the gas shortage indicator lamps (5) are turned on in step S14.

一方、冷房運転時の場合に(よ、ステップS+++にあ
い−4直ちに圧縮機(1)の作動を停止させるとともに
、ガス欠表示灯(51)を点灯する。
On the other hand, in the case of cooling operation (step S+++-4), the operation of the compressor (1) is immediately stopped and the out-of-gas indicator light (51) is turned on.

イしく、(;(正側の室内=1ニツ!へ([3)〜(1
〕)から新たに暖房運転指令信号を受信した時には、第
4図のフローチャー1−に割込んぐ第5図のフローヂャ
〜トに進み、ステップ817ででの運転指令信号の種類
を判定し且つステップS+s ’71”運転室数を詐出
して運転モードを判別したのら、スーj′ツブS19で
上記判別された運転モードに応じたフ? fin麿の初
回限定1直をROM(43)から読み出しで、新たに運
転開始しようとする空調負6む側熱交1!/!器(3)
 〜(5) l、: 対応リル電!r!JI膨張弁(V
 1 ) −〈V3)の弁開度を上記初期設定(10に
初期みジ定Jる。しかる後、この弁開度を冷媒流通の安
定するまぐの所定時間のあいだ保持りるよう指示して第
4図のスj−ツブS6にリターンJる。
(;(The room on the front side = 1 day!)
]), when a new heating operation command signal is received, the process proceeds to the flowchart of FIG. 5 which interrupts flowchart 1- of FIG. Step S+s '71'' After deceiving the number of driver's cabins and determining the driving mode, use Suj' Tsubu S19 to read the initial limited 1st shift of Fin Maro according to the driving mode determined above from the ROM (43). When read out, the air conditioner negative 6 side heat exchanger 1!/! unit (3) that is about to start operation anew
~(5) l: Compatible Lilden! r! JI expansion valve (V
1) Set the valve opening degree of −<V3) to the above initial setting (10). Then, instruct the valve opening degree to be maintained for a predetermined period of time during which the refrigerant flow is stabilized. Return to the tube S6 in FIG. 4.

よって、第4図の71−1〜チt−−1−のステップ8
9にJ:す、暖房運転時には蒸発器として作用りる熱源
側熱交換器(2)通過後の冷媒の過熱度(Sト1)を湿
度差(T9−T1)に基づいて検出Jるとともに、凝縮
器として1′1ミ用する空調負荷側熱交1!/!器(3
)、1.)、(5)通過後の冷媒の過冷即度(SC)を
それぞれ温度?:、(−r2 Ts>。
Therefore, step 8 of 71-1 to t--1- in FIG.
9. During heating operation, the degree of superheating (S1) of the refrigerant after passing through the heat source side heat exchanger (2), which acts as an evaporator, is detected based on the humidity difference (T9-T1). , Air conditioning load side heat exchanger 1 used as a condenser! /! Vessel (3
), 1. ), (5) What is the subcooling degree (SC) of the refrigerant after passing through? :, (-r2 Ts>.

(−[2−T7)、(T2−Ts)に基づいて検出づる
J:うにした検出手段(55)を椙成しでいる。
(-[2-T7) and (T2-Ts), a detection means (55) has just been completed.

まIこ、第4図のステップShoおよび511にJ、す
、熱源側熱交換器(2)での実際の過熱度(S l−1
>、13よび運転側の空調負荷側熱交換器(3)〜(5
)での実際の湯冷u1度(SC)がそれぞれ設定過熱L
(1(S Ho 、t )および設定過電1111 (
S Co + )に等しくなるにう、上記冷媒温度の温
度差(1゛9−王1)おJ、び(T、+ −T6 ) 
、(1−2−,1−7> 。
In steps Sho and 511 of FIG. 4, the actual degree of superheating (S l-1
>, 13 and operation side air conditioning load side heat exchangers (3) to (5
) The actual hot water cooling u1 degree (SC) is the setting superheat L
(1 (S Ho , t ) and set overcurrent 1111 (
The temperature difference between the refrigerant temperatures (1゛9-K1) and (T, + -T6) becomes equal to S Co + ).
, (1-2-, 1-7>.

(王21−a)に応じて対応する電動膨張弁(Vl)〜
(v4)の弁開度を制御するようにした制御手段く5G
)を構成している。また、3台の室内ユニット(B)〜
(Iつ)のうち少なくとも1台からの運転指令信号をC
PU(42)が受信した時には第4図のフローチャート
がスタートづることにより、冷凍機の運転開始時を検出
りるようにした運転開始時検出1段(57)が構成され
ているととしに、この冷凍機の運転開始時つまり第4図
のフローチャートh(スター1−ツれば、ス“アップS
+ に進/υぐ冷凍(幾の運転モードを判定づ゛るよう
にした運転モード判定手段(58〉を+71S成してい
る。さらに、制御回路(40)のROM13)にJ、す
、冷凍機の各種運転モードに応して電動1113張弁(
Vl〜V 4 )の初期jQ定値を予め配船づるように
した記憶手段(59)をtj4成している。加えて、第
4図のフ[1−y−1・−1・のステップS1の後はス
テップS3に進むこと、つまり運転モード判定手段(5
8〉のH,、、′i);を受けて該ステップS3の前段
にa3いて運転モードに応じた初ill] gQ定)「
[をRO’M(43)(記憶7段< 59 ) ) l
))ら読み出JJ:うにしノこ読み出し手段(60)を
)II3成しているとともに、ステップS 3 riF
I段での処理#h 4’+の1(は、その後段に進んで
、冷凍1幾の運転聞始口・1には電動膨張弁(Vl〜V
4)の弁開度を上記ステップS3’(読み出し一手段(
60))により読み出された運転モードにス・j応する
初I!I]設定1111に位置付tノるようにした初期
設定手段(61)を構成している。
Corresponding electric expansion valve (Vl) according to (King 21-a) ~
Control means for controlling the valve opening degree of (v4) 5G
). In addition, three indoor units (B) ~
The operation command signal from at least one of the (I)
When the PU (42) receives the signal, the flowchart shown in FIG. 4 starts, thereby configuring a first stage (57) for detecting the start of operation of the refrigerator. At the start of operation of this refrigerator, that is, if the flowchart h in Fig. 4 (Start 1 -
The operation mode determining means (58) for determining the operation mode of refrigeration proceeding to +/υ is comprised of +71S.Furthermore, the ROM 13 of the control circuit (40) contains J, S, Refrigeration. Electric 1113 tension valve (
tj4 comprises a storage means (59) in which initial jQ constant values of Vl to V4) are stored in advance. In addition, after step S1 of FIG.
8〉H,,,'i);, a3 is placed in the first stage of step S3 and the first ill]gQdetermined) is executed according to the operation mode.
[RO'M(43) (7th memory stage < 59)) l
)) ra readout JJ: The sea urchin readout means (60) is formed as )II3, and step S3riF
Processing in stage I #h 4'+ 1 (proceeds to the subsequent stage, and electric expansion valves (Vl to V
4) in step S3' (reading means (
60)) The first I that corresponds to the operation mode read by I] The initial setting means (61) is configured such that the setting 1111 has a position.

したがって、−に記実施例においては、冷凍機の運転開
始時、過熱度又は過冷却度を制御づべきスミ−ラビング
七−タ式電動膨張弁(vl)〜、(V/I)(L、イの
弁間I良がROIVI(43)(記憶手段(59))か
ら読み出された運転モードに対応づる初期設定[1に初
期設定されるので、電動膨張弁の弁開度(3L、当初は
運転安定時の適正弁間+i+ご対しで人さく離れIご(
il置にあった場合に6、運転開始時にd3いてその運
転モードでの運転安定11)の適正ブを開1健近(力に
位同イζHJられることになる。その結果、電動膨張ブ
tの弁開度は運転上−ドに拘らず713に適正弁開度に
グ、0時間C良好に収束安定することになり、よって弁
開度の収束安定性の向」二ひいては冷凍rjhカの早期
安定化をイj効に図ることができる。
Therefore, in the embodiment described in -, when the refrigerator starts operating, the Smeer rubbing seven-tar type electric expansion valve (vl) ~, (V/I) (L, The valve opening of the electric expansion valve (3L, initially I (
If it is in the il position, d3 at the start of operation, the operation stability in that operating mode 11) The proper valve will be opened 1 force (equal to the force ζHJ. As a result, the electric expansion valve t Regardless of the operating conditions, the valve opening of 713 will converge to an appropriate valve opening and will converge and stabilize well at 0 hours C. Therefore, the convergence stability of the valve opening will be improved. Early stabilization can be achieved effectively.

尚、1−記実施例では、電動膨張弁(\/1)〜(v4
)の初期設定をROM(43)内で予め記憶さ1′1だ
初期設定値Cもって行うにうにしたが、本発明はその他
、ROM<43)をRAMに代え−(、電動膨張弁(V
l)〜(V4)の弁開度を変更ある(i)に出き換え記
10するようにしてもにいの【、L勿論である。この場
合、次回の運転間!If1簡には、”!TffiL11
1X<I![イや〆\/1)〜(\/A)のイf1m+
y’rの、ン月1111Aft定は第6図のステップS
′3の如<1)0回の運転の停止l、−にa3いて記憶
され−(いる弁開度に」Jづい°(行われることにムる
ので、適正弁開度への収束安定をJ、り短時間で行うこ
とが0きる。
In addition, in the embodiment 1-, the electric expansion valves (\/1) to (v4
), the initial setting of the electric expansion valve (V
Of course, even if the valve opening degrees of (1) to (V4) are changed and replaced with (i), it is possible to do so. In this case, during the next drive! If1 simply says “!TffiL11
1X<I! [Iya〆\/1) ~ (\/A)'s I f1m+
The 1111Aft constant of y'r is determined by Step S in Figure 6.
As in '3 < 1) 0 operation stops l, - is stored in a3 and - (is performed at the current valve opening), so the convergence to the appropriate valve opening is stabilized. J, it can be done in a short time.

j、た、上記実施例では、冷凍機の運転間!Ifi n
’r、過熱度又は過電11 +Uを制1ll−りへさ電
動111i’張5r (\/1)〜(V4)を−11弁
開度が全閉となる聞I良す卑−位置に位置付りたが、で
れに代え、ブ↑開磨が全開どなる間1良!!準位置に(
1′/首付けるJ、うにしてしよいのは勿論のこと、運
転中は過±()麿J3 J:び過電2J]度の双方を必
ず制御づる必Hitイrく、何れか一方のみr シJ、
い。
j, T, In the above example, while the refrigerator is operating! Ifin
'r, superheating degree or overcurrent 11 +U control 1ll-reverse electric motor 111i' tension 5r (\/1) ~ (V4) -11 valve opening is fully closed, position is good. I was in position, but instead of Dere, I got 1 Ryo while the bu↑ Kaima was at full throttle! ! in semi-position (
1' / It is of course possible to do so, but during operation, it is necessary to control both overvoltage and overvoltage, and it is necessary to control either one of them. Only r Shi J,
stomach.

さらに、上i11実施例Cは、暖房運転時に113いで
!lj制御中の電動膨張ブT’(V4)が全開て−ある
時には、停止1側の寮内−lニット([3)へ−〈[〕
〉に列応りる電動膨張弁〈Vl)〜(V3)を59定過
冷却庶(SCO2>の低減により所定開度だ(プ余分に
聞いて、ぞこに溜った冷媒を回収づるJ、うにしたが、
での他、上記停止側〒°内ユニツ]〜([3)〜(L)
)に3=l応する電動に;張ブi (V 1 ) 〜(
V 3 ) (a lll1 >LI)間のあいだ強制
的に全開させ【溜つI〔冷媒の回収を行うJ:うにしで
もよい。
Furthermore, in the above i11 Example C, 113 is applied during heating operation! When the electric expansion valve T' (V4) under lj control is fully open, the inside of the dormitory on the stop 1 side - to the l unit ([3) - <[]
The electric expansion valves (Vl) to (V3) corresponding to I did it, but
In addition to the above-mentioned stop side 〒〒〒unit〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒
) to the electric motor corresponding to 3=l; Zhangbui (V 1 ) ~(
V 3 ) (a lll1 > LI) The refrigerant may be forcibly opened fully during the period of [reservoir I] [Recover refrigerant J: Sea urchin may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示づブロック図、第2図ないし
第6図は本発明の実施例を示し、第2図13L冷暖房給
湯機に適用した場合の冷媒配管系統図、り13図【、L
制御回路の内部構成を示J電気回路図、第4図および第
5図はそれぞれCPUの作動を示J)「l−チト−1〜
図、第6図はc r−’ uの作動の変形例を示1フに
1−チャート図である。 (V1〜v/I)・・・電!PII膨張弁、(2〜5 
) =−熱交換器、(55)・・・検出手段、(56)
・・・制御手段、(57)・・・運転開始時検出手段、
(58)・・・運り’/i t−ド判定手段、く59)
・・・記憶手段、(60)・・・読み出し手段、(61
)・・・初期設定手段。 第1 口 第6図 第5図
Fig. 1 is a block diagram showing the configuration of the present invention, Figs. 2 to 6 show embodiments of the invention, Fig. 2 is a refrigerant piping system diagram when applied to a 13L air-conditioning/heating water heater, and Fig. [,L
The internal configuration of the control circuit is shown in the electrical circuit diagram, and Figures 4 and 5 respectively show the operation of the CPU.
FIG. 6 is a 1-chart diagram showing a modification of the operation of cr-'u. (V1~v/I)...Electricity! PII expansion valve, (2~5
) =-heat exchanger, (55)... detection means, (56)
...control means, (57) ...operation start detection means,
(58) ... Luck'/i t-do judgment means, 59)
... Storage means, (60) ... Reading means, (61
)...Initial setting means. 1st mouth Figure 6 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)開度調整可能な電動膨張弁(Vl〜V4)と、熱
交換器(2〜5)通過後の冷媒の過熱度又は過冷却度を
検出り°る検出手段(55)と、該検出手段’(55)
からの信号を受け、冷媒の過熱度又は過冷却度に応じて
上記電動膨張弁(V1〜V4)の弁開度を制御する制御
手段(56)とを備え、上記熱交換器(2〜5)での冷
媒の過熱度又は過冷却Iffを所定値に保持するJ:う
にした冷凍機において、冷凍機の運転開始時を検出する
運転開始時検出手段(57)と、冷凍機の運転モードを
判定する運転モード判定手段〈58)と、冷凍機の運転
モードに応じて上記電動膨張弁(V1〜V4)の初期設
定賄を予め記憶する記憶手段(59)と、上記運転モー
ド判定手段(5B)の信号を受り、運転モード(応じた
:i1萌帖定値をト記lP憤千の(59)から読み出す
読み出し手段(60)と、上記運、転聞始11、ケ検出
手段(57)の信号を受(プ、上記電動膨張弁(V1〜
V4)の弁開疫を上記読み出し手段(60)により読み
出された初11J設定値に位置付ける初期設定手段(6
1)とを備えたことを特徴とづる電動膨張弁を備えた冷
凍I幾。
(1) Electric expansion valves (Vl to V4) whose opening degree can be adjusted; detection means (55) for detecting the degree of superheating or subcooling of the refrigerant after passing through the heat exchangers (2 to 5); Detection means' (55)
control means (56) for receiving a signal from the heat exchanger (2 to 5) and controlling the valve opening degree of the electric expansion valve (V1 to V4) according to the degree of superheating or subcooling of the refrigerant; ) to maintain the degree of superheating or subcooling If of the refrigerant at a predetermined value. an operation mode determination means (58) for determining, a storage means (59) for storing in advance the initial settings of the electric expansion valves (V1 to V4) according to the operation mode of the refrigerator, and the operation mode determination means (5B). ) reading means (60) which receives the signal of the operation mode (according to the operation mode) and reads out the fixed value of i1 from the register (59); The electric expansion valve (V1~
initial setting means (6) for positioning the valve opening of V4) at the initial 11J set value read out by the reading means (60);
1) Refrigeration equipment equipped with an electric expansion valve.
JP4104784A 1984-03-02 1984-03-02 Refrigerator with electric expansion valve Granted JPS60185076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4104784A JPS60185076A (en) 1984-03-02 1984-03-02 Refrigerator with electric expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4104784A JPS60185076A (en) 1984-03-02 1984-03-02 Refrigerator with electric expansion valve

Publications (2)

Publication Number Publication Date
JPS60185076A true JPS60185076A (en) 1985-09-20
JPH0349034B2 JPH0349034B2 (en) 1991-07-26

Family

ID=12597487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4104784A Granted JPS60185076A (en) 1984-03-02 1984-03-02 Refrigerator with electric expansion valve

Country Status (1)

Country Link
JP (1) JPS60185076A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133745A (en) * 1988-11-15 1990-05-22 Matsushita Seiko Co Ltd Device for controlling motor-driven expansion valve in air conditioner
JP2003254635A (en) * 2002-02-28 2003-09-10 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner
JP2009068744A (en) * 2007-09-12 2009-04-02 Mitsubishi Heavy Ind Ltd Valve opening pulse setting method for electric expansion valve and multiple air conditioner
JP2011196649A (en) * 2010-03-23 2011-10-06 Mitsubishi Electric Corp Multi-room type air conditioner
JP2014163532A (en) * 2013-02-21 2014-09-08 Mitsubishi Electric Corp Air conditioner
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644567A (en) * 1979-09-19 1981-04-23 Matsushita Electric Ind Co Ltd Refrigerant flow rate controller
JPS59180264A (en) * 1983-03-30 1984-10-13 三菱電機株式会社 Refrigeration cycle device
JPS6055960U (en) * 1983-09-27 1985-04-19 株式会社東芝 air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055960B2 (en) * 1977-06-20 1985-12-07 株式会社岡崎製作所 Thermocouple extraction device in a simulated nuclear reactor assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644567A (en) * 1979-09-19 1981-04-23 Matsushita Electric Ind Co Ltd Refrigerant flow rate controller
JPS59180264A (en) * 1983-03-30 1984-10-13 三菱電機株式会社 Refrigeration cycle device
JPS6055960U (en) * 1983-09-27 1985-04-19 株式会社東芝 air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133745A (en) * 1988-11-15 1990-05-22 Matsushita Seiko Co Ltd Device for controlling motor-driven expansion valve in air conditioner
JP2003254635A (en) * 2002-02-28 2003-09-10 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner
JP2009068744A (en) * 2007-09-12 2009-04-02 Mitsubishi Heavy Ind Ltd Valve opening pulse setting method for electric expansion valve and multiple air conditioner
JP2011196649A (en) * 2010-03-23 2011-10-06 Mitsubishi Electric Corp Multi-room type air conditioner
US9032749B2 (en) 2010-03-23 2015-05-19 Mitsubishi Electric Corporation Indoor expansion valve initialization sequence for an air conditioner
JP2014163532A (en) * 2013-02-21 2014-09-08 Mitsubishi Electric Corp Air conditioner
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH0349034B2 (en) 1991-07-26

Similar Documents

Publication Publication Date Title
JPWO2009098751A1 (en) Air conditioning and hot water supply complex system
WO2012043297A1 (en) Hot water supply system
JPS60185076A (en) Refrigerator with electric expansion valve
JP2006234321A (en) Outdoor unit and air conditioner
JPS60178271A (en) Refrigerator with electric expansion valve
JPS60194260A (en) Refrigerator with electric expansion valve
JPH0914802A (en) Air conditioner
JP2003222416A (en) Heat storage type air conditioner
JPH05280837A (en) Air conditioner
JP2839066B2 (en) Heat pump defrost system
JPH0737102Y2 (en) Air conditioner
JP2001235253A (en) Air conditioner
JP3195991B2 (en) Multi-room air conditioning system
JPH0730959B2 (en) Air conditioner
JPS63123961A (en) Heat pump device
JP3082304B2 (en) Air conditioner
JPH10153354A (en) Refrigeration plant
JP3649853B2 (en) Air conditioning system
JPH06201199A (en) Controlling method for room air-conditioner
JP2001116392A (en) Air conditioner
JPS60194259A (en) Refrigerator with electric expansion valve
JP3298477B2 (en) Ice storage refrigerator
JPS61223463A (en) Air-conditioning and hot-water supply heat pump device
JPH05180519A (en) Heat regenerating freezing cycle device
JPH024148A (en) Air-conditioner