JPS60178271A - Refrigerator with electric expansion valve - Google Patents

Refrigerator with electric expansion valve

Info

Publication number
JPS60178271A
JPS60178271A JP3367384A JP3367384A JPS60178271A JP S60178271 A JPS60178271 A JP S60178271A JP 3367384 A JP3367384 A JP 3367384A JP 3367384 A JP3367384 A JP 3367384A JP S60178271 A JPS60178271 A JP S60178271A
Authority
JP
Japan
Prior art keywords
degree
electric expansion
refrigerant
valve
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3367384A
Other languages
Japanese (ja)
Other versions
JPH0349016B2 (en
Inventor
山下 和伸
木沢 敏浩
孝之 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP3367384A priority Critical patent/JPS60178271A/en
Publication of JPS60178271A publication Critical patent/JPS60178271A/en
Publication of JPH0349016B2 publication Critical patent/JPH0349016B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (゛産業上の利用分野) 本発明は冷凍機に関し、特に、膨張機構とじ゛〔開度調
整可能な電動式の膨張弁を備えたものの改良に関Jる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a refrigerator, and particularly relates to an improvement in an expansion mechanism equipped with an electrically operated expansion valve whose opening can be adjusted.

(従来技術2 従来より、この種の冷凍機として、例えば特公昭58−
47628号公報に開示されるように、開度調整可能な
熱電動式の電動膨張弁と共に、蒸発器出口の冷媒の過熱
度を検出する検出手段と、該検出手段の信号を受け、上
記過熱度に応じて上記電動膨張弁の弁開度を制御する制
御手段とを備え、上記冷媒の過熱度を上記電動膨張弁の
冷媒流室制御でもって所定伯に保持するようにしたもの
が知られている。
(Prior art 2) Conventionally, as this type of refrigerator, for example,
As disclosed in Japanese Patent No. 47628, a thermoelectric electric expansion valve whose opening degree can be adjusted, a detection means for detecting the degree of superheat of the refrigerant at the outlet of the evaporator, and a signal from the detection means are received to determine the degree of superheat. A control means for controlling the valve opening degree of the electric expansion valve according to the electric expansion valve, and the degree of superheating of the refrigerant is maintained at a predetermined value by controlling the refrigerant flow chamber of the electric expansion valve. There is.

しかるに、例えば冷房シーズン当初において冷凍機を初
めて運転開始するような場合等には、上記従来のちのぐ
は、電動膨張弁の当初の弁開度が全開であって、その後
の運転安定時の適正弁開度に対しC大きく離れた位置に
あることがら、運転中に制御づべき電動膨張弁の弁開度
の増大変化幅が人ぎ(て、適正弁開度への収束安定に比
較的長時間を要し、冷凍OL力の早期安定性に欠(〕る
However, for example, when a refrigerator is started for the first time at the beginning of the cooling season, the electric expansion valve is initially fully opened, and then when the operation stabilizes, it is not opened properly. Since the position C is far away from the valve opening, the range of increase in the valve opening of the electric expansion valve that must be controlled during operation is relatively long. It takes time and lacks early stability of frozen OL power.

(発明の目的) 本発明IJ、 l1liかる)jλに鑑み、弁開度を比
較的容易に制御ぐきる°電動膨張弁として、具体例どし
ては弁開度の変化が弁開度制御用駆動パルスのパルス数
t、: 1 : 1にり・1応りるスデッピングモータ
式のものがあることに着目し、その目的とJるところは
、上記電動膨張弁を使用するとともに、冷房や暖房シー
ズン当初等の初回運転開始時には、該電動膨張4fの弁
開度を運転開始に先立って試験等で予めめられた起動時
Cの適正か聞瓜に初期設定することにより、運転中に制
御づべき電動膨張弁の弁開度の増減変化幅を少なく L
 ’C、適正弁開度への収束安定を短時間C良好に行う
ことにある。
(Objective of the Invention) In view of the present invention IJ, l1li cal)jλ, the valve opening can be controlled relatively easily.As an electric expansion valve, for example, changes in the valve opening can be used to control the valve opening. We focused on the fact that there is a stepping motor type with a driving pulse number t: 1:1. When starting operation for the first time, such as at the beginning of the heating season, the valve opening degree of the electric expansion 4f is initially set to the appropriate value at start-up C, which is determined by a test or the like prior to the start of operation, and control is performed during operation. Reduce the range of increase/decrease in valve opening of the electric expansion valve that should be
``C'' is to achieve convergence and stability to the proper valve opening in a short period of time.

(発明の構成) 上記目的を達成するため、本発明の構成は、第1図に示
ずJ:うに、開閉および開度調整可能な電動膨張弁(v
l)と、熱交換器(2〜5)通過後の冷媒の過熱度又は
過冷却度を検出゛づ−る検出手段(5つ)と、該検出手
段(59)からの信号をうり、冷媒の過熱度又は過冷却
度に応じC上記電動膨張弁(vl)の弁開度を制御する
制御手段(55)とを備え、上記熱交換器く3)での過
熱度又は過冷却度を所定値に保持するようにした冷凍機
にJ3いて、冷凍機の運転量始時を検出する運転開始時
検出手段(56)と、該運転開始時検出手段(56)の
信号を受(プて上記電動膨張弁(Vl)の弁開度を全開
又は全開の開度基準位置に位置付りで基準位置信号を光
づる基準位置イリ【プ手段(57)と、該基準位置付は
手段(57)の信号を受(プて上記電動膨張弁(Vl)
の弁開度を予め設定した初期設定値に位置付ける初期設
定手段(58)とを備えたものである。このことにより
、冷房や暖房シーズン当初等での冷凍機の初回運転開始
時には、電動膨張弁の弁開度を先ず全開又は全開の聞度
基1ij−位置に位置(=jtelで、現在の弁間1立
と初期設定手段の弁開度差を把1屋したのら、電動膨張
弁を予め設定しlこ初期設定値に初期設定づるようにし
たものCある。
(Structure of the Invention) In order to achieve the above object, the structure of the present invention is as shown in FIG.
l), detection means (5 pieces) for detecting the degree of superheating or subcooling of the refrigerant after passing through the heat exchangers (2 to 5), and detecting means (5) for detecting the degree of superheating or subcooling of the refrigerant after passing through the heat exchangers (2 to 5); control means (55) for controlling the valve opening degree of the electric expansion valve (vl) according to the degree of superheating or supercooling of J3 is installed in the refrigerator, which is set to be held at the same value, and receives the signal from the operation start detection means (56) for detecting the start of the operating amount of the refrigerator (56). a reference position adjusting means (57) for emitting a reference position signal by positioning the electric expansion valve (Vl) at a fully open or fully open opening reference position; The electric expansion valve (Vl)
and initial setting means (58) for positioning the valve opening degree to a preset initial setting value. As a result, when the refrigerator starts operating for the first time at the beginning of the cooling or heating season, the valve opening degree of the electric expansion valve is first set to the fully open or fully open position 1ij- (=jtel, the current valve distance There is a method in which the electric expansion valve is set in advance and the initial setting value is set to the initial setting value after determining the difference in valve opening between the initial setting means and the initial setting means.

(弁明の効果) したか−)(、本発明の電動膨張弁を信晶えた冷凍機に
J、れば、冷1刀ヤ)暖房シースン当初等の初回運11
I、聞殆助には、」、記電動膨張弁の弁開度が仝聞又は
仝閉の聞度基i1.位置に位置(tlけられたのち予め
設定した初期設定値に初期設定されるので、電動膨張弁
の適正弁開度への収束制御を短時間で良好に行うことが
でき、よっ°C弁弁開の収束安定性の向上ひいては冷凍
(1u力の早期安定化をイj効に図ることができるもの
ひある。
(Effect of explanation) Did you do it?
I. In most cases, the valve opening degree of the electrically operated expansion valve is determined based on whether it is open or closed i1. Since the position (tl) is initialized to the preset initial setting value, convergence control to the appropriate valve opening of the electric expansion valve can be performed satisfactorily in a short time. There are some methods that can effectively improve the convergence stability of the opening and, by extension, the early stabilization of the refrigeration force (1u force).

(実施例) 以F、本発明の実施例を第2図以下の図面に基づ゛い−
(詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings below in Figure 2.
(Explain in detail.

第2図は本発明をビー(−ポンプ式冷暖房給湯機に対し
く適用し!、:場合の実施例を示し、<A)は室外に配
設された室外ユニット、(B)、(C)。
Fig. 2 shows an example in which the present invention is applied to a pump-type air-conditioning/heating water heater. .

(D>はそれぞれ室内の相異なる部屋に配設された室内
ユニット、(E)は貯湯槽ユニットであって、上記室外
ユニット(Δ)は、内部に圧縮機(1)および熱源側熱
交換器(2)を備えているとともに、室内ユニット(B
)、(C)、(D>はそれぞれ内部に空調負荷側熱交換
器(3)。
(D> is an indoor unit installed in a different room in the room, (E) is a hot water tank unit, and the outdoor unit (Δ) has a compressor (1) inside and a heat exchanger on the heat source side. (2), as well as an indoor unit (B
), (C), and (D> each have an air conditioning load side heat exchanger (3) inside.

(4)、(5)を備えCいる。また、貯湯槽ユニット(
E)は、内部に水を貯溜づる貯湯槽(6)と、該貯湯槽
(6)内の貯溜水を加熱づ−る給温負荷側熱交1!ll
!器(7)と、貯湯槽〈6)内の貯溜水を該給湯負荷側
熱交換器(7)に循環させるポンプ(P)とを備えてい
る。
C includes (4) and (5). In addition, the hot water tank unit (
E) is a hot water storage tank (6) that stores water therein, and a heat exchanger 1 on the heating load side that heats the water stored in the hot water storage tank (6). ll
! (7), and a pump (P) that circulates the water stored in the hot water storage tank (6) to the hot water supply load side heat exchanger (7).

上記室外ユニツ1〜(Δ)内において、(SVl)およ
び(SV2)はそれぞれOFF作動時に実線の如く切換
ねり、ON作動時に破線の如く切換わる四路切換弁、(
SV3)はレシーバ(8)から給湯負荷側熱交換器(7
)への冷媒流れをa′[容する電磁開閉弁、(V+ ン
、(V、! )、(V3 )。
In the above outdoor units 1 to (Δ), (SVl) and (SV2) are four-way switching valves that switch as shown by solid lines when OFF and switch as shown by broken lines when ON, respectively.
SV3) is connected from the receiver (8) to the hot water supply load side heat exchanger (7
) is an electromagnetic on-off valve that allows the refrigerant flow to a′ [(V+, (V,!), (V3).

(Va)J5J:び(\/s>はそれぞれ間開月つ開成
調整可能なステッピングモータ式電動膨張弁であって、
該各雷動膨張弁(■1)〜(■5)はその弁聞麿の変化
が後述づるCPU(42>で発生刃る弁聞疫制御信号と
しCの駆動パルスのパルス数に1:′1に対応するもの
ひある。
(Va)J5J:bi(\/s> is a stepping motor-type electric expansion valve that can be adjusted to open and open, respectively.
Each of the lightning expansion valves (■1) to (■5) uses a control signal generated by the CPU (42), which will be described later, in which the change in the valve length is 1:'1 in the number of driving pulses of C. There is a corresponding one.

加えて、(王1〜11)は、上記電動膨張弁〈V4)及
びレシーバ(8)間の液配管(15>と圧縮機(1)へ
の戻りカス配管(23)との間を接続づる。ギヤビラリ
ブ1−ブ(27)を介設した第1バイパス管(36)に
お【ノるキトピラリチューブ(27)の戻り万ス配箆(
23>側に設(〕たナーミスタJ二りなる第1温瓜セン
リであって、冷凍ソイクル中の蒸発8+A IJllt
(’T1)を検出Jるためのものであり、< T I−
12>は各空調負荷側熱交換器(3)へ−く5〉及び四
路切換弁(SV2>間の44通ガス配管(16)と上記
各電動膨張弁(V+)、−(V2 >、(V3 )の室
内ユニット(B)、(C)、〈D)側の分岐液配管(2
0)、(21)。
In addition, (Kings 1 to 11) connect the liquid pipe (15> between the electric expansion valve <V4) and the receiver (8) and the waste pipe (23) returning to the compressor (1). .Insert the return tube (27) into the first bypass pipe (36) with the gear rib (27) interposed.
23> The first warm melon sensor with Narmister J installed on the side, and the evaporation 8+A in the frozen soycle
('T1), and < T I-
12> is the 44-pass gas pipe (16) between each air conditioning load side heat exchanger (3) and the four-way switching valve (SV2>), and each of the electric expansion valves (V+), -(V2>, Branch liquid piping (2) on the indoor unit (B), (C), <D) side of (V3)
0), (21).

(22)との間を接続する。補助凝縮器(37)、キャ
ピラリチューブ(28)、逆止弁(38)を介設した第
2バイパス管〈39)にお(プる補助凝縮器(37)と
ギ17ピラリチコーブ(28)との間に設(プたジーミ
スタよりなる第2温度セン→プ”であって、暖房運転時
の空調負荷側熱交換器(3)。
(22). The connection between the auxiliary condenser (37) and the 17th pillar cove (28) is connected to the second bypass pipe (39), which is equipped with an auxiliary condenser (37), a capillary tube (28), and a check valve (38). A second temperature sensor consisting of a thermometer is installed between the air conditioning load side heat exchanger (3) during heating operation.

(4)、(5)の凝縮温度(T2)を室外側−C検出可
能にづるためのものであり、また、(T H3)〜(T
I−410)はそれぞれ上記と同様にサーミスタJこり
なる第3〜第10の温度センサであつ″(、第3〜第5
温度センサ(T +−13)〜(王1−15 > +よ
それぞれ空調負荷側熱交換器(3)〜(5)及び四路切
換弁<5V2)間の分岐ガス配管(17)〜(19)に
設りられ、冷房運転時及び冷房給湯運転時の低圧ガス冷
媒の冷媒温度<1−3)、<T4)、(T5)を検出り
るものであり、第6〜第8温庶センサ(T I−16)
〜(T I−18)はそれぞtし空調負荷側熱交換器(
3)〜(5)及びレシーバ(8)間の分岐液配管(2Q
)〜(22)に設けられ、暖房運転時及び給温運転時の
凝縮液化後の高圧液冷媒の冷媒温度(Te )、(T7
 )、(TB)を検出するものであり、またダ19温度
センサ(T I−19>は圧縮機(1)への戻りガス配
管(23)の冷媒温度(Ta)を検出するものであり、
さらに(T H10)は圧縮機(1)の吐出ガス配管〈
24ンの冷媒温度(TIO)を検出づるものである。J
:って、空調負荷側熱交換器(3)〜(5)がてれぞれ
蒸発器として作用する場合には第1温度しンリ(T I
〜11)にJ二り蒸発湿度(1−+)を、・IJび第3
〜第5温1良セン1ノ(T if 3 )〜(T l−
15))にJ、り該各空♂1負仙側熱交換器〈3)・−
(5)通過後の低圧ガス冷媒の冷媒温度(王3)、(T
4 ) 、<1−5 >を検出し、逆に各空調負荷側熱
交換器(3) =−(5)が凝縮器として作用づる場合
には第211i1度レンリ(T’ )−12>により凝
縮温度〈下り〉を、J5J:び第6へ一第8箭度センサ
(T l−1(3)−・(T’ Ll 8 >により該
各空調負前側熱交換器く3)−・(5)通過後の高圧液
冷媒の冷媒温1良<Te ) 、(1’7 ) 、(−
1−a )を検出9るとともに、熱源側熱交換器く2)
が魚介器として作用づる場合には第1渇を良センナ(−
])〜11)により蒸発器1良(王りを、おJ、び第9
温度レン(〕(丁1−19 )にJ、り該熱源側熱交換
器く2)通過後の低圧ガス冷媒の冷媒温度(TB)を検
出゛ジーるようにしている。尚、図中、(29)はキャ
ピラリチューブ、(30〉は給温負荷側熱交換器(7)
からレシーバ(8)への冷媒流れを許容する一方向弁、
(3,1)はアキュムレータ、(32)〜(35)は閉
鎖弁である。
This is to detect the condensation temperature (T2) of (4) and (5) on the outdoor side.
I-410) are the third to tenth temperature sensors which are thermistors J in the same way as above, and
Branch gas piping (17) to (19) between temperature sensor (T+-13) to (King 1-15>+) and air conditioning load side heat exchanger (3) to (5) and four-way switching valve <5V2, respectively. ), and detects the refrigerant temperature of the low-pressure gas refrigerant <1-3), <T4), and (T5) during cooling operation and cooling hot water supply operation, and the sixth to eighth temperature sensors (TI-16)
~ (T I-18) are respectively t and the air conditioning load side heat exchanger (
3) Branch liquid piping (2Q) between (5) and receiver (8)
) to (22), the refrigerant temperature (Te ) of the high-pressure liquid refrigerant after condensation and liquefaction during heating operation and heating operation, (T7
), (TB), and the temperature sensor (TI-19) detects the refrigerant temperature (Ta) of the return gas pipe (23) to the compressor (1).
Furthermore, (T H10) is the discharge gas pipe of the compressor (1)
It detects the refrigerant temperature (TIO) at 24°C. J
: When the air conditioning load side heat exchangers (3) to (5) each act as an evaporator, the first temperature (T I
~11) J second evaporation humidity (1-+), ・IJ and third
~5th temperature 1 good temperature 1 no (T if 3) ~ (T l-
15)) J, each air ♂ 1 negative side heat exchanger <3)・-
(5) Refrigerant temperature of low pressure gas refrigerant after passing (King 3), (T
4), <1-5> is detected, and conversely, when each air conditioning load side heat exchanger (3) = - (5) acts as a condenser, the The condensing temperature (downward) is determined by J5J: and the 6th and 8th temperature sensors (T' Ll 8 >). 5) Refrigerant temperature of high-pressure liquid refrigerant after passing through: 1<Te), (1'7), (-
1-a) At the same time as detecting 9), the heat source side heat exchanger 2)
If it acts as a seafood organ, the first thirst is caused by good senna (-
]) to 11), the evaporator 1
The refrigerant temperature (TB) of the low-pressure gas refrigerant after passing through the heat source side heat exchanger 2 is detected by the temperature refrigerant (1-19). In the figure, (29) is the capillary tube, (30> is the heating load side heat exchanger (7)
a one-way valve that allows refrigerant flow from the receiver (8) to the receiver (8);
(3,1) is an accumulator, and (32) to (35) are closing valves.

そして、上記10([1,1の温度センサ(T)−11
)〜(THl0)lよそれぞれ第3図にも示−すように
上記四路切換弁(SVl)、(SV2)および電磁開閉
弁(SV3)並びに5個の電動膨張弁(■1)〜(V5
)を制rJII ’!t’ ル制御回路(,40)に信
号ノ授受可能に接続されている。該制御回路(40)は
、第3図に示づように、その内部に、10個の温度セン
サ(THl)〜(THlo)からの温度信号をマルチル
り會す(41)を介して選択的に受信するとともに、3
個の室内ユニット(B)〜(D)からの3種の運転モー
ド信号(冷房、給湯、暖房の各運転指令信号)、設定室
温信号および実際室温信号並びに貯湯槽ユニット(E)
からの給湯運転指令信号を受けるCPU (42)と、
圧縮(幾(1)の起動111に運転モートや室内コ、ニ
ツ1へ(1’、)・〜・(1)〉の)■軒数(運転室数
)に応U −T: )商工どなるようめられた上記4個
の電動膨張弁(Vl)−(V4)の弁開度の初期設定1
「1を予め記憶でるROM<43)とを備えている。
Then, the above 10 ([1,1 temperature sensor (T)-11
) to (THl0)l, respectively, as shown in FIG. V5
) to control rJII'! It is connected to the control circuit (, 40) so that signals can be sent and received. As shown in FIG. 3, the control circuit (40) internally selectively receives temperature signals from ten temperature sensors (THl) to (THlo) through a multiplexer (41). 3.
Three types of operation mode signals (cooling, hot water supply, heating operation command signals), set room temperature signal, actual room temperature signal, and hot water storage tank unit (E) from each indoor unit (B) to (D)
a CPU (42) that receives a hot water supply operation command signal from the
Compression (when the number (1) starts 111, the driving mote, indoor unit, and unit 1 (1',) ... Initial setting 1 of the valve opening degrees of the above-mentioned four electric expansion valves (Vl)-(V4)
It is equipped with a ROM (ROM<43) that can store ``1'' in advance.

そして、上記CPU(−42)は、3台の室内−Lニラ
1−(B)〜(D>からの運転モード信号およ−び実際
室温信号並びに給温運転指令信号に応じて圧縮(幾く1
)を0N=OFF制御するとともに、下表に示J−如く
、四路切換弁(SVl)、(SV2)、電磁開閉ブ↑(
SV3)おにび4個の電動膨張弁(Vl)〜(Vりを冷
房運転時には同表第1行目の如く制御して、運転し一ド
信号を発している室内]−ニツl−11111(以下、
単に運転側という)の空調負荷側熱交1条器(3)〜(
5)で室内から吸熱した熱fTiを熱源側熱交換器(2
)で室外に放熱しで対応する室内を冷房しつつ、上記蒸
発器として作用−りる各空調負荷側熱交換器(3)〜(
5)Cの冷媒の過熱度、即ち冷媒温1衰の温度差<1−
3−T+ )、(T4−T+ )、(1−s −T+ 
)をそれぞれ対応する電動膨張弁(■1)〜(V3)で
設定過熱度(SHo + )に調整する一方、冷房給湯
運転時には同表2行目の如く制御し−(、運転側の空調
負荷側熱交換器(3)〜(5)で室内から吸熱した熱量
を給湯負荷側熱交換器(7)で貯湯槽(6)内の貯溜水
に放熱して該貯溜水を加熱(給湯)しつつ対応づる室内
を冷房し、同3時に上記蒸発器として作用する空調負荷
側熱交換器(3)〜(5)での冷媒の過熱度、即ち冷媒
湿度の温度差(T3−T+ >、(T4−1−+ >、
(T5−T1)を上記と同様にそれぞれ対応づる電動膨
張弁〈■′1)〜くv3)で設定過熱1M (S l−
11) 2 ) ニ調整し、また給湯運転時には同表3
行目の如く制御して、熱源側熱交換器(2)で室外から
吸熱した熱■1を給湯負荷側熱交換器(7)で貯湯槽(
6)内の貯溜水に放熱して給湯しつつ、上記蒸発器とし
て作用する熱源側熱交換器(2)での冷媒過熱度、即ち
冷媒温度の温度差(TsTl)を電動膨張弁〈V4)で
設定過熱度(St−103>に調整し、さらに暖房運転
時には同表4行目の如く制御して、熱源側熱交換器(2
)で室外から吸熱した熱量を運転側の空調負荷側熱交換
器(3)〜(5)で室内に放熱して対応する室内(!:
暖房しつつ、上記蒸発器どして作用覆る熱源側熱交換器
(2)での冷媒の過熱偵、即ち冷媒温度の記1良差(丁
9−1−+)ヲm動膨張弁(V4)rMQ定過熱1m 
(S l−1o4)に調整づると共に上記凝縮器として
作用する空調負荷側熱交換器(3)〜(5)での冷媒の
過冷却度、即ら冷媒温度の温度差<T2−T6 )。
Then, the CPU (-42) controls the compression (number of degrees) in response to the operation mode signals from the three indoor leeks 1-(B) to (D), the actual room temperature signal, and the heating operation command signal. Ku1
) is controlled to 0N=OFF, and the four-way switching valve (SVl), (SV2), and electromagnetic opening/closing valve ↑(
SV3) Four electric expansion valves (Vl) ~ (Indoors where the Vr is controlled as shown in the first line of the same table during cooling operation and is operated to issue the first-door signal) - Nitsu l-11111 (below,
(simply referred to as the operation side) single heat exchanger on the air conditioning load side (3) to (
The heat fTi absorbed from the room in step 5) is transferred to the heat source side heat exchanger (2).
), each air-conditioning load-side heat exchanger (3) to (
5) The degree of superheating of the refrigerant of C, that is, the temperature difference of 1 attenuation of the refrigerant temperature <1-
3-T+ ), (T4-T+ ), (1-s -T+
) are adjusted to the set superheat degree (SHo + ) using the corresponding electric expansion valves (■1) to (V3), while during cooling hot water supply operation, the air conditioning load on the operating side is controlled as shown in the second line of the same table. The heat absorbed from the room by the side heat exchangers (3) to (5) is radiated to the stored water in the hot water storage tank (6) by the hot water supply load side heat exchanger (7) to heat the stored water (hot water supply). At the same time, the temperature difference in the degree of superheating of the refrigerant, that is, the humidity of the refrigerant in the air-conditioning load-side heat exchangers (3) to (5) that act as the evaporators (T3-T+ >, ( T4-1-+ >,
(T5-T1) in the same way as above, set superheating to 1M (S l-
11) 2) When adjusting 2), and during hot water supply operation, refer to Table 3 in the same table.
The heat exchanger (2) on the heat source side absorbs heat from outside by controlling the heat exchanger (2) on the heat source side (2) to transfer the heat (1) to the hot water storage tank (7) on the hot water supply load side.
6) While supplying hot water by dissipating heat to the stored water inside, the refrigerant superheating degree, that is, the temperature difference (TsTl) of the refrigerant temperature in the heat source side heat exchanger (2) which acts as the evaporator, is controlled by an electric expansion valve <V4). The superheat degree (St-103) is adjusted to the set superheat degree (St-103), and during heating operation, the control is performed as shown in the fourth line of the same table, and the heat source side heat exchanger (2
), the amount of heat absorbed from the outside is radiated indoors by the air conditioning load side heat exchangers (3) to (5) on the operation side, and the heat is radiated indoors to the corresponding room (!:
While heating, the evaporator acts to superheat the refrigerant in the heat source side heat exchanger (2), that is, the temperature of the refrigerant increases. )rMQ constant superheating 1m
(S1-1o4) and the degree of supercooling of the refrigerant in the air conditioning load side heat exchangers (3) to (5) which act as the condensers, that is, the difference in refrigerant temperature <T2-T6).

(1−277) 、(T2 1−a )をそれぞれ対応
ツル電動膨張弁(Vl ) 〜(V3)rH’i!定過
冷7.11度(SCo+)に調整りる。なお、暖房時の
)1転W tl、−、t、L、各室内−l−ニラ1〜(
B)、(C)、(D)に段りた各室内ノアン(3a >
、(/li+ >、(5a)を停止することにより行う
。この場合、空調負荷側熱交換器(3)、(4)、(5
)での放熱開はきわめて少ないので、電動膨張弁(■1
)〜(v3)は全開にuす“、I!21房運転時の設定
過冷却庶(SCO2)に調整することによりlj1房能
力の損失を実用上問題とならない程度に制御しながら、
液溜りをも可及的に防止するのにある。尚、第3図中、
(45)〜(49)はそれぞれ5個のTi電動膨張弁v
l)〜〈v5)を駆動するドライバ、(50)はCPU
 (42)で発生する5個の電動膨張弁(vl)〜(V
5)の弁開度制御信号としての駆動パルス(後述)を対
応するものに分配するマルチプレクサ、(51)は冷媒
流量不足時に点灯するカス欠表示灯、(52)は電源プ
ラグである。また、電動膨張弁(■5)は冷凍機の運転
の停止時に開いて圧縮1(1)の高圧側と低圧側とを圧
ツノバランスさせる均圧用膨張弁として作用づるもので
ある。
(1-277) and (T2 1-a) are respectively corresponding crane electric expansion valves (Vl) to (V3)rH'i! Adjust to constant supercooling of 7.11 degrees (SCo+). In addition, during heating) 1 turn W tl, -, t, L, each room - l - chive 1 ~ (
Each indoor noan (3a >
, (/li+ >, (5a). In this case, the air conditioning load side heat exchangers (3), (4), (5
), there is very little heat dissipation in the electric expansion valve (■1
) to (v3) are fully opened, while controlling the loss of lj1 chamber capacity to the extent that it does not pose a practical problem by adjusting it to the set supercooling level (SCO2) during I!21 chamber operation.
This is to prevent liquid accumulation as much as possible. In addition, in Figure 3,
(45) to (49) are each five Ti electric expansion valves v
l) to <v5), (50) is the CPU
Five electric expansion valves (vl) to (V
5) is a multiplexer that distributes a drive pulse (described later) as a valve opening degree control signal to the corresponding one; (51) is a scum shortage indicator light that lights up when the refrigerant flow rate is insufficient; and (52) is a power plug. Further, the electric expansion valve (5) is opened when the operation of the refrigerator is stopped and acts as a pressure equalization expansion valve that balances the pressure angle between the high pressure side and the low pressure side of the compression 1 (1).

次に、上記CPU(42>による電動膨張弁(Vl)〜
(T4)の弁開度制御を第4図のフローチト一トに基づ
いて説明する。なJ5、暖房運転時には、4個の電動膨
張弁(vl)〜(T4)の全部が前記表の如く弁開度制
御され、本実施例の制御全容を説明できるので、以下暖
房運転時の流れを説明する。本フローチャートは3台の
室内ユニットのうち少な(とも1台からの暖房運転の運
転モード(g号を受けてスタートするもので、先ずステ
ップ81において3台の室内ユニット(B)〜([))
のうち少なくとも1台から受信した運転モード信号およ
びその受信数に基づい℃運転モー ・ドおよび運転室数
を判別したのち、ステップ$2にJ5いて4個の電8膨
張弁(V 1 )”−一〜(T4)の開度を閉じる方向
に弁開度制御信号としての駆動パルスを発生して、該各
電動膨張弁(Vl)=(\//I)をか開度が全開状態
となる開度基準位置に位置イー]りる。そして、ステッ
プS3にJ3いて上記判別された運転モードおよび運転
室数に応じてROM</I3>から各7R動膨張弁(v
l)〜(V7I)の弁間1女の初期設定値を読み出し、
該初期設定値ど上記間1此基tlt位冒との開度差に応
じたパルス数の駆動パルスを対応する電動膨張弁(T1
)〜(T4)に出力して、その弁開度を該各初期設定1
i1Jにal(制御ダる。そして、ステップ$4におい
てこの弁開成が運転の安定Jるまでの過渡時間に相当す
る所定時間(例えば5分)のあいだ保持されるよう指示
したのち、ステップS5で初めて圧縮機(1)を起動す
る。
Next, the electric expansion valve (Vl) ~ by the CPU (42>)
The valve opening degree control (T4) will be explained based on the flowchart of FIG. J5, during heating operation, all four electric expansion valves (vl) to (T4) are controlled in valve opening as shown in the table above, and since the entire control of this embodiment can be explained, the flow during heating operation will be explained below. Explain. This flowchart shows the operation mode of the heating operation from one of the three indoor units (starting in response to No. g, first in step 81, the heating operation mode is started from one of the three indoor units).
After determining the ℃ operation mode and the number of operating rooms based on the operation mode signal received from at least one of them and the number of receptions thereof, in step $2, J5 operates four electric 8 expansion valves (V 1 )''-. A drive pulse as a valve opening control signal is generated in the direction of closing the openings of 1 to (T4), and each electric expansion valve (Vl) = (\//I) is fully opened. The position E] moves to the opening reference position.Then, in step S3, each 7R dynamic expansion valve (v
l) - (V7I) Read the initial setting value of Benma 1 woman,
Between the initial setting value and the above value, a drive pulse of the number of pulses is applied to the corresponding electric expansion valve (T1
) to (T4), and output the valve opening degree to each initial setting 1.
Then, in step $4, the valve is instructed to be held for a predetermined period of time (for example, 5 minutes) corresponding to the transient time until the operation becomes stable, and then in step S5. Start the compressor (1) for the first time.

続いて、ステップS6にd3いて10個の温Iaヒンリ
−(’I−1−11>へ、 (i−1−110>からの
温1衰侶号に塁づき第2図の10箇所の温度(T1)〜
(−rho)を読み出したのら、ステップS7において
圧縮(幾(1)の冷媒カス用出温1良(1°10 )を
その異常上昇時に相当する所定値(−「ヒM)ど大小比
較し、該所定1ffl (T’ L M )よりも人さ
″いYESの異常運転114には、ステップSaにおい
(運転モードに対応りる設定過熱度(St−1o+〜0
4)を下げて冷媒ガス吐出温痘(Too)を低下させ、
この状態が安定1Jるまでの所定時間を侍ってステップ
S9に進む一方、冷媒ガス吐出温度(TIO)が所定値
(TcM)以下のNOの通常運転時の場合には直ちにス
テップS9に進む。
Next, in step S6 d3, the temperature at 10 points of temperature Ia ('I-1-11> from (i-1-110>) is based on the temperature at 10 points in Figure 2). (T1) ~
After reading (-rho), in step S7, the compressed (1) refrigerant waste temperature 1 good (1°10) is compared with a predetermined value (-rho) corresponding to the abnormal rise. However, in the abnormal operation 114 of YES, which is smaller than the predetermined 1ffl (T' L M ), step Sa (set superheat degree (St-1o+ to 0) corresponding to the operation mode
4) to lower the refrigerant gas discharge temperature (Too),
After waiting a predetermined time for this state to stabilize for 1 J, the process proceeds to step S9, while in the case of NO normal operation in which the refrigerant gas discharge temperature (TIO) is below the predetermined value (TcM), the process immediately proceeds to step S9.

そして、ステップS!1において蒸発器として作用して
いる熱交換器(2)での実際の冷媒の過熱度< S l
−1>を上記温度差(Ts−1−+)にもとづき詐出し
、凝縮器として作用している熱交換器(3)〜(5)で
の実際の過冷却度(SC)を上記温疫差(Tz −Te
 )、(T2−Ty >、(T2−T8’)にもとづき
搾出したのち、ステップS1oにおいて実際の過熱+1
 (S I−1) J5よび実際の過冷却111(SC
)をそれぞれ対応する設定過熱度(SHo4)および設
定過冷却Ia(SCo1〜。
And step S! The degree of superheating of the actual refrigerant in the heat exchanger (2) acting as an evaporator in 1 < S l
-1> based on the above temperature difference (Ts-1-+), and the actual degree of supercooling (SC) in the heat exchangers (3) to (5) acting as condensers is calculated based on the temperature difference (Ts-1-+). Difference (Tz −Te
), (T2-Ty >, (T2-T8'), the actual superheat +1 is determined in step S1o.
(S I-1) J5 and actual supercooling 111 (SC
) and the corresponding set superheat degree (SHo4) and set supercooling Ia (SCo1~.

2)と大小比較する。そして、それぞれが共に一致して
いないNoの場合にはステップS oに進み、該ステッ
プSI+におい【実際の過熱1m、 (S H)が対応
する設定過熱度(SHoa)よりも大きい場合−5よび
実際の過冷却度(SC)が設定過冷却度(SCo i 
−o z )よりも大きい場合には、冷媒流通量が少な
いと判断して対応する電動膨張弁<vi>−・くV/I
〉に対しCパルス数を増やづ閉信号としての駆動パルス
を出力してその弁開度を人きくする一方、逆に、実際の
過熱度(St−()が対応づる設定過熱m (81−l
o 4)よりも小さい場合および実際の過冷却度(SO
)が設定過冷却度(SCo+〜02)よりも小ざい場合
には、冷媒流通量が多いと判断して対応する電動膨張弁
(V′1)〜(v4)に対してパルス数を減らJ閉信号
としCの駆動パルスを出力して弁開度を小さくしたのら
、ステップ812に進む。一方、ステップ810 (”
実際の過熱m (S l−Od3.J、び実際の過冷人
1llla(SC)がそれぞれ対応りる設定(fl (
St−1o = ) 。
Compare the size with 2). If both of them do not match (No), the process proceeds to step S o, and in the step SI+ [actual superheat 1 m, if (S The actual supercooling degree (SC) is the set supercooling degree (SCo i
-o z ), it is determined that the refrigerant flow rate is low and the corresponding electric expansion valve<vi>-・kuV/I
>, the number of C pulses is increased and a drive pulse is output as a closing signal to control the valve opening, while conversely, the setting superheat m (81 -l
o 4) and the actual degree of supercooling (SO
) is smaller than the set supercooling degree (SCo+~02), it is determined that the refrigerant flow rate is large and the number of pulses is reduced for the corresponding electric expansion valves (V'1)~(v4). After outputting a drive pulse C as a closing signal and reducing the valve opening degree, the process proceeds to step 812. On the other hand, step 810 (”
The actual superheating m (S l-Od3.J, and the actual supercooling person 1lla (SC) correspond to the corresponding settings (fl (
St-1o = ).

(SCI〕1〜【〕2)に等しいYFSの場合には冷媒
流通量が適止であると判断してWiらにステップS 1
2に進む。
In the case of YFS equal to (SCI]1 to []2), it is determined that the refrigerant flow rate is appropriate, and Wi et al.
Proceed to step 2.

わモいC、ステップSI2において過熱度の制御111
1過程にある電動膨張ブT(V/l)の弁開1女を判定
し、全開ひないNoの場合には過熱度の適正制御中であ
ると判断しCステップS6に戻る一方、弁開度が仝聞で
あるYESの場合には過熱度が著しく人きい冷媒ガスの
不足時(ガス欠時)であると判断したのら、ステップS
 13に進む。そして、暖房運転であるから、先ず停止
側の室内ユニット(B)〜(D)での液溜りに起因して
ガス欠が生じているかを判別すべく、ステップS +s
において暖房停止側の室内ユニット(B)〜(D)での
設定過冷却1m(SCo2)を下げて、これに対応覆る
電動膨張弁(vl)〜(v3)を所一定開度だけ余分に
問いで溜った冷媒を回収し始める。そして、回収づるの
に十分な時間を侍ってステップS 16において対応づ
る過熱度(St−(o、+)を制御している電動膨張弁
< V 4 )の弁開度を改めて判定し、全開でないN
oの場合には過熱度の適正制御に戻ったと判断しCステ
ップS6に戻る一方、未だ全開であるYESの場合には
ガス欠時と判断してステップS 14において圧縮機(
1)の作動を停止させるとともに、ガス欠表示¥]’(
51)を点灯させる。
Wamoi C, superheat degree control 111 in step SI2
It is determined whether the valve of the electric expansion valve T (V/l) in the first process is open, and if the answer is No, it is determined that the degree of superheating is being properly controlled, and the process returns to Step S6, while the valve is opened. If the degree of superheating is YES, the degree of superheating is extremely high, and if it is determined that there is a shortage of refrigerant gas (gas shortage), proceed to step S.
Proceed to step 13. Since it is a heating operation, first, step S+s is performed to determine whether there is a gas shortage due to liquid accumulation in the indoor units (B) to (D) on the stopped side.
In this case, lower the supercooling setting of 1 m (SCo2) in the indoor units (B) to (D) on the heating stop side, and correspondingly increase the opening of the electric expansion valves (vl) to (v3) by a certain amount. Start collecting the refrigerant that has accumulated. Then, after waiting a sufficient time for recovery, in step S16, the valve opening degree of the corresponding superheat degree (electric expansion valve < V 4 controlling St-(o, +)) is determined again, Not fully openN
o, it is determined that the degree of superheating has returned to proper control, and the process returns to C step S6. On the other hand, in the case of YES, which indicates that the degree of superheat is still fully open, it is determined that there is a gas shortage, and the compressor (
In addition to stopping the operation of 1), the out-of-gas display ¥]'(
51) is turned on.

一方、冷房運転時の場合には、ステップS 14におい
て直ちに圧縮機(1)の作動を停止させるとともに、ガ
ス欠表示灯(51)を点灯する。
On the other hand, in the case of cooling operation, the operation of the compressor (1) is immediately stopped in step S14, and the out-of-gas indicator light (51) is turned on.

そして、(q止側の室内ユニツh(B)〜(D)ip 
rら新たに運転モートイ8号を受信した時には、第4図
のフ[1−ヂせ一トに割込んで第5図のフローヂ\・−
トに進み、ステップS yでその運転モードの種類を判
定し、ステップS +a T″運転室数を瞳出し7Cの
も、ステップS +sで運転モードおよび運転室数に応
じた弁開度の初期59定舶をROM(43)から読み出
して、新たに運転開始しようとする空調1’lVi側熱
交換器(3)〜〈5)に対応づる電動膨張ブ↑(Vl)
=(\/3)の弁開度を上記初期設定1iffに初11
fl 設定り−る。し゛かる後、この弁開度を冷媒流通
の安定ηるまでの所定時間のあいだ保持りるにう指示し
て第4図のステップ86にリターンする。
Then, (indoor unit h (B) ~ (D) ip on the q stop side
When R et al. receives a new operation mode No. 8, it interrupts the flow [1-set] in Figure 4 and goes to the flow \-- in Figure 5.
In step S, the type of operation mode is determined, and in step S+a, the number of driver's cabs is determined. Read out the 59 fixed vessel from the ROM (43) and use the electric expansion valve ↑ (Vl) corresponding to the air conditioner 1'lVi side heat exchanger (3) to <5) to start operation anew.
= (\/3) valve opening to the above initial setting 1iff for the first time
fl Settings. Thereafter, an instruction is given to hold this valve opening degree for a predetermined period of time until the refrigerant flow becomes stable, and the process returns to step 86 in FIG.

よって、第4図のフローチャ−トのステップ89により
、暖房運転時には蒸発器として作用する熱源側熱交換器
く2)通過後の冷媒の過熱度(Sl−1)を温度差(T
9−TI)に基づいて検出づるとともに、凝縮器として
作用でる給湯負荷側熱交換器(3’−)、(4)、(5
)通過後の冷媒の過冷却度(SC)をそれぞれ温度差(
T2 T6)。
Therefore, in step 89 of the flowchart of FIG. 4, the degree of superheat (Sl-1) of the refrigerant after passing through the heat source side heat exchanger (2) which acts as an evaporator during heating operation is determined by the temperature difference (T).
The hot water supply load side heat exchanger (3'-), (4), (5) acts as a condenser.
) The degree of subcooling (SC) of the refrigerant after passing through the temperature difference (
T2 T6).

(T2−T7’) 、(T2−Ta )に基づいて検出
するようにした検出手段(59)を構成している。
(T2-T7'), (T2-Ta) constitutes a detection means (59) that detects based on.

また、第4図のステップS +oおよびS oにより、
熱交換器(2)、(3)〜(5)での実際の過熱度(S
H)および実際の過冷却度(SC)がそれぞれ設定過熱
度(SHoa)および設定過冷却度(SCo+)に等し
くなるよう、上記冷媒温度の温度差(T9−TI )、
(T3−TI )、(丁4−T、+ ) 、(T5−1
−+ ) 、(T2−76 ) 。
Also, by steps S +o and S o in FIG.
Actual superheat degree (S) in heat exchangers (2), (3) to (5)
H) and the actual degree of subcooling (SC) are respectively equal to the set degree of superheat (SHoa) and the set degree of subcooling (SCo+), the temperature difference (T9-TI) of the refrigerant temperature,
(T3-TI), (T4-T, +), (T5-1
-+), (T2-76).

(1−2−Ty ) 、(T2−Ts )に応じて対応
する電動膨張弁(Vl)〜(■4)の弁開度を制御する
ようにした制御手段(55)を構成している。
(1-2-Ty) and (T2-Ts), a control means (55) is configured to control the valve opening degrees of the corresponding electric expansion valves (Vl) to (4).

また、3台の室内ユニット(B)〜(D)のうち少なく
とも1台からの運転モード信丹をCPU(42)が受信
した時には第4図のフローチャートがスター1−するこ
とにより、冷房や暖房のシーズン当初等の冷?!111
tJ&の初回運転開始時を検出す゛るようにした運転開
始時検出手段〈56)が構成されているとともに、冷凍
機の初回運転開始時゛つまり第4図のフローチャート図
スタートすれば、スラ゛ツブS2において対応する電動
膨張弁(Vl)〜(V4)をその弁開度が全開となる開
度以)1(位置に位置イ」す〔基準位置13号を発づる
ようにした基準位置付は手段(57)を構成している。
Furthermore, when the CPU (42) receives the operation mode Shintan from at least one of the three indoor units (B) to (D), the flowchart in FIG. Is it cold at the beginning of the season? ! 111
The operation start detection means (56) is configured to detect the initial operation start of tJ&, and when the refrigerator starts operation for the first time, that is, the flowchart shown in FIG. The corresponding electric expansion valves (Vl) to (V4) are positioned at position 1 (above the opening degree at which the valve opening is fully open). (57).

さらに、ステップS2での処理動作の後はステップS3
に)Wむこと、つまり上記M tl(Mt置イ1(〕手
段(57)の基準位置1壽号を受けて該ステップS1で
対応りる電動膨張弁(Vl)〜・(V4)の弁開度をイ
れぞれROM<43)で予め設定した運転モードおJ:
び運転全数に応じた初期設定値に位置イ」けるようにし
た初期設定手段(58)を構成している。
Furthermore, after the processing operation in step S2, step S3
In other words, in response to the reference position 1 of the means (57), the corresponding electric expansion valves (Vl) to (V4) are adjusted in step S1. Operation mode with each opening degree set in advance in ROM<43):
The initial setting means (58) is configured to set the position to the initial setting value according to the total number of operations.

したが・〕て、上記実施例にJjいては、冷凍機の運転
開始時、過熱度又は過冷却度を制御すべきステッピング
モータ式電動膨張弁(Vl)〜(v4)は、その弁開度
が−lコ全閉となる弁開度位置に位置(>I l)られ
たのち、運転モードおにび運転室数に応して予め圧縮機
(1)の起動時に適正となるようめられたROM(43
)の初期設定値に初期設定されるので、例えば冷房や暖
房のシーズン当初等の初回運転開始時において、電動膨
張弁の当初の弁開度が運転安定時の適正弁開度に対して
大きく離れた位置にあった場合にも、適正弁開度に短時
間で良好に収束安定J−ることになり、J、って弁開度
の収束安定性の向−ヒひいては冷凍0ヒカの早期安定化
を有効に図ることができる。
However, in the above embodiment Jj, when the refrigerator starts operating, the stepping motor electric expansion valves (Vl) to (v4) whose degree of superheating or degree of subcooling is to be controlled are controlled by their valve opening degrees. After the valve is positioned at the valve opening position where -1 is fully closed (>I l), the valve is set in advance to be appropriate when starting the compressor (1) according to the operating mode and the number of operating rooms. ROM (43
), so at the beginning of the initial operation, such as at the beginning of the cooling or heating season, the initial valve opening of the electric expansion valve may deviate greatly from the appropriate valve opening when operation is stable. Even if the valve opening is in the same position, the valve opening will be well converged and stabilized in a short time. It is possible to effectively achieve this goal.

尚、上記実施例では、電動膨張弁(vl)〜(■4)の
初期設定をROM(43)内で予め記憶された初期設定
1直でもって行うように()たが、その他、例えば第3
図の制御回路(40)にRAMを追加して、電動膨張弁
(Vl)〜(V4)の現在の弁開度を変更ある旬に書き
換え記憶するとともに、第4図のフローチャー1−のス
テップ$3を第6図のステップS′3の如く前回の運転
の停止時において記憶されている弁開度に初期設定すれ
ば、適正弁開度への収束安定をより!1111時間で行
うことができる。
In the above embodiment, the initial settings of the electric expansion valves (vl) to (■4) are performed using the first initial setting stored in advance in the ROM (43). 3
A RAM is added to the control circuit (40) shown in the figure, and the current valve opening degrees of the electric expansion valves (Vl) to (V4) are rewritten and memorized at the time of change. If $3 is initially set to the valve opening stored at the time of the previous stop of operation as shown in step S'3 in Fig. 6, convergence to the appropriate valve opening will be more stable! It can be done in 1111 hours.

また、上記実施例では、冷凍機の運転開始時、過熱度又
は過冷却痕を制御すべき電動膨張弁(Vl)〜(V/l
)を一旦弁間痘が全開となる開度基+11位置に位置イ
1()たが、それに代え、弁開度が全開となる聞瓜基準
位置に位置イ1りるにうにしてもよいのは勿論のこと、
運転中は過熱度および過冷u)麿の双方を必ず制御する
必要はなく、何れが一方のみでもよい。
Further, in the above embodiment, at the start of operation of the refrigerator, the electric expansion valve (Vl) to (V/l
) was once placed at the opening reference position +11 where the valve opening is fully opened, but instead, it may be placed at the opening reference position where the valve opening is fully opened. Of course,
During operation, it is not always necessary to control both the degree of superheating and the degree of supercooling, and only one of them is sufficient.

さらに、上記実施例では、暖房運転時において制御中の
電動膨張弁(■4)が全開である時には、停止1−側の
室内コニット(]3)〜・(]))に対応りる電動膨張
弁(vl)〜(v3)を設定過冷却1良(SCO2)の
低減にJζり所定開度だけ余分に聞い(、イこに溜った
冷媒を回収づるようにしたが、−での他、上記停止側挙
内ユニツ1−(B)〜(D)にλj応りる電動膨張弁(
vl)〜(v3)を所定時間のあいだ強制的に全Onさ
けて溜った冷媒の回収を行うようにしてしよい。
Furthermore, in the above embodiment, when the electric expansion valve (■4) under control is fully open during heating operation, the electric expansion valve corresponding to the indoor connit (]3) to ・(])) on the stop 1- side is Set the valves (vl) to (v3) to reduce supercooling (SCO2) by a specified opening (Jζ) to collect the refrigerant accumulated there, but in addition to - Electric expansion valve (
vl) to (v3) may be forcibly turned on for a predetermined period of time to recover the accumulated refrigerant.

【図面の簡単な説明】[Brief explanation of drawings]

第′1図【J本発明の構成を示J゛ブ[1ツク図、第2
図ないし第6図は本発明の実施例を示し、第2図は冷暖
房給湯機に適用した場合の冷媒配管系統図、第3図は制
御回路の内部構成を示す電気回路図、第4図および第5
図はそれぞれCPUの作動を示すフローチャー1〜図、
第6図はCPUの作動の変形例を示すフローチャート図
である。 (2)〜(5)・・・熱交換器、(T8.1)〜(Tト
19)・・・温度検出手段、(Vl)〜(V4)−・・
・ステッピングモータ式電動膨張弁、(55)・・・制
御手段、(56)・・・−運転開始時検出手段、(57
)・・・基準位置付り手段、(58)・・・初期設定手
段。 第6図 第5図
Figure 1 shows the structure of the present invention.
6 to 6 show embodiments of the present invention, FIG. 2 is a refrigerant piping system diagram when applied to an air-conditioning/heating water heater, FIG. 3 is an electric circuit diagram showing the internal configuration of the control circuit, and FIGS. Fifth
The figures are flowcharts 1 to 1 showing the operation of the CPU, respectively.
FIG. 6 is a flowchart showing a modification of the operation of the CPU. (2) to (5)...Heat exchanger, (T8.1) to (T19)...Temperature detection means, (Vl) to (V4)...
・Stepping motor type electric expansion valve, (55)...control means, (56)...-operation start detection means, (57)
)... Reference positioning means, (58)... Initial setting means. Figure 6 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1) 開度調整可能な電動膨張弁(Vl〜V4)と、
熱交換器(2〜5)通過後の冷媒の過熱度又は過冷)J
1度を検出−りる検出手段(59)と、該検出手段(5
9)からのは舅を受()、冷媒の過熱度又は過冷ノ、1
1度に応じて上記電動膨張弁(V1〜V/I)のit 
I!D度を制御りる制御手段(55)とをl+i5え、
−に間熱交換器(2〜5〉での冷媒の過熱1哀又は過冷
却度を所定餡に保持づるようにした冷凍機において、冷
凍機の初回運転開始時を検出J゛る運転開始時検出手段
(56)と、該運転開始時検出手段(56)の信号を受
けて上記電動V、張弁(Vl〜V4>の弁開度を全問又
は全問の開度基準位置に位置イ」けて基準位置信号を光
する基準位置付り手段(57)と、該);ル準位置付り
手段(57)の信号を受cノで上記電動膨張ブ↑(Vl
〜V4)の弁開度を予め設定した初期設定値に位貿イづ
(プる初期設定手段(5B)とを備えたことを特徴と覆
る電動膨張弁を備えた冷凍機。
(1) An electric expansion valve (Vl to V4) whose opening degree can be adjusted,
Degree of superheating or subcooling of the refrigerant after passing through the heat exchanger (2 to 5) J
a detection means (59) for detecting 1 degree;
9) From (), the degree of superheating or subcooling of the refrigerant, 1
It of the electric expansion valve (V1 to V/I) according to the degree
I! A control means (55) for controlling the degree of D is set to l+i5,
- In a refrigerator in which the degree of superheating or subcooling of the refrigerant in the heat exchanger (2 to 5) is maintained at a predetermined level, the first time of operation of the refrigerator is detected. The detection means (56) receives the signal from the operation start detection means (56) and positions the valve openings of the electric V and tension valves (Vl to V4> at all or all opening reference positions). ↑ (Vl);
A refrigerator equipped with an electric expansion valve characterized by comprising initial setting means (5B) for setting the valve opening degree of V4) to a preset initial setting value.
JP3367384A 1984-02-23 1984-02-23 Refrigerator with electric expansion valve Granted JPS60178271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3367384A JPS60178271A (en) 1984-02-23 1984-02-23 Refrigerator with electric expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3367384A JPS60178271A (en) 1984-02-23 1984-02-23 Refrigerator with electric expansion valve

Publications (2)

Publication Number Publication Date
JPS60178271A true JPS60178271A (en) 1985-09-12
JPH0349016B2 JPH0349016B2 (en) 1991-07-26

Family

ID=12392970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3367384A Granted JPS60178271A (en) 1984-02-23 1984-02-23 Refrigerator with electric expansion valve

Country Status (1)

Country Link
JP (1) JPS60178271A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119370A (en) * 1985-11-18 1987-05-30 ダイキン工業株式会社 Refrigerator
JPS62132319U (en) * 1986-02-14 1987-08-20
JP2009068744A (en) * 2007-09-12 2009-04-02 Mitsubishi Heavy Ind Ltd Valve opening pulse setting method for electric expansion valve and multiple air conditioner
JP2011196649A (en) * 2010-03-23 2011-10-06 Mitsubishi Electric Corp Multi-room type air conditioner
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642776A (en) * 1979-09-18 1981-04-21 Matsushita Electric Ind Co Ltd Electric expansion valve
JPS5644567A (en) * 1979-09-19 1981-04-23 Matsushita Electric Ind Co Ltd Refrigerant flow rate controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642776A (en) * 1979-09-18 1981-04-21 Matsushita Electric Ind Co Ltd Electric expansion valve
JPS5644567A (en) * 1979-09-19 1981-04-23 Matsushita Electric Ind Co Ltd Refrigerant flow rate controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119370A (en) * 1985-11-18 1987-05-30 ダイキン工業株式会社 Refrigerator
JPS62132319U (en) * 1986-02-14 1987-08-20
JPH045932Y2 (en) * 1986-02-14 1992-02-19
JP2009068744A (en) * 2007-09-12 2009-04-02 Mitsubishi Heavy Ind Ltd Valve opening pulse setting method for electric expansion valve and multiple air conditioner
JP2011196649A (en) * 2010-03-23 2011-10-06 Mitsubishi Electric Corp Multi-room type air conditioner
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH0349016B2 (en) 1991-07-26

Similar Documents

Publication Publication Date Title
CN112050399B (en) Air conditioner
JP2508860B2 (en) Operation control device for air conditioner
JPS60178271A (en) Refrigerator with electric expansion valve
JPH0814628A (en) Air conditioner
JP3334222B2 (en) Air conditioner
JP2522065B2 (en) Operation control device for air conditioner
JPH0730979B2 (en) Air conditioner
JP2966641B2 (en) Air conditioner
JPH0349034B2 (en)
JPS60194260A (en) Refrigerator with electric expansion valve
JP3047788B2 (en) Operation control device for air conditioner
JP3353367B2 (en) Air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP2002243215A (en) Regenerative air conditioning device
EP4310416A1 (en) Hybrid multi-air conditioning system
JP2518412B2 (en) Air conditioner
JP3298477B2 (en) Ice storage refrigerator
JPH0213744A (en) Operation control device for heat storage airconditioner
JPH06341741A (en) Defrosting controller for refrigerating device
JPS60108633A (en) Air conditioner with many separate indoor units
JPH037858A (en) Air conditioner
JP3285956B2 (en) Air conditioner
CN114923228A (en) Central air conditioner
JPS63290368A (en) Heat pump type air conditioner
JPS60194259A (en) Refrigerator with electric expansion valve

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term